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Reflecting upon reflections

H. Zeitler and D. Camp

Abstract. This paper considers many applications of reflections in geometry. It begins
with a few motivational problems for the classroom and goes on to consider the formal
application to cases involving reflections across one line, two lines and three lines. It
wraps up with a summary of results for reflections in higher orders.

All this stuff was treated in German and American schools too – so the paper is a
typical example of German–American didactics.

Thinking is one of the greatest pleasure of mankind.

Galileo Galilei
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Most students and teachers of secondary school mathematics are acquainted

with reflections across a line, because this is often discussed in elementary analytic

geometry. However, many of the beautiful subtleties of reflections are never seen

at this level. Here we will consider a lot of questions that naturally pop up when

studying reflections, though we will not be able to answer them all. The hope

is that students will be motivated to investigate the world of reflections in more

depth.

Let us begin with same teasers to whet mental appetite:

1. Suppose that John, who is 1.75 meters tall, stands in front of a mirror, as

shown in Figure 1. What is the smallest height of a vertical mirror that will

allow John to see his full image? How does the result change with respect to

John’s distance from the mirror?

2. Suppose the angle between two adjacent mirrors is α. A ray of light meets

one of the mirrors with an angle of incidence ϕ, where ϕ < α. Calculate the
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Figure 1. John in the mirror

angle β shown in Figure 2. (Hint: Use two reflections and the fact that the

angle of incidence is equal to the angle of reflection.) How does the situation

change if ϕ ≥ α?

Figure 2. A ray of light within an angular mirror

3. On a billiard table, a ball starts at point S. If it is to meet the stationary

ball situated at point K, as shown in Figure 3, after hitting only one cushion,

what is its path? Suppose that we required it to two, or even three cushions
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first. How does this change the path? (Hint: Figure 4 shows the billiard table

with a mirror behind it. . . reflect on that!)

Figure 3. Playing billiards

Figure 4. The billiard table

4. Suppose we have an acute triangle ABC as shown in Figure 5. Let the edges

AB and BC be mirrored. Suppose that a ray of light emanates from a point

X on AB. Is it possible that this ray will find its way back to X after two
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reflections? Suppose that ABC was an equilateral triangle and all of the

edges were mirrored and the ray of light emanated from a point X inside the

triangle. Is there such a point where the ray will come back through X after

reflection through each of the three edges?

Figure 5. Triangular reflections

5. Nina is standing between two mirrors that meet at a 90◦ angle in Figure 6.

She claims that she can see three copies of herself. How so? She also claims

that if she raises her right arm, then two pictures move on the left but only

one on the right. What does she mean? What would happen if the angle was

an angle less than 90◦?

Figure 6. Nina in the double mirror
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Let’s stop now and consider some formal elements of reflection geometry. To

do so, we will have to agree on how to indicate composition of reflections. We will

indicate this “product” with a small circle “◦”. For example σ1 ◦ σ2 ◦ σ3 applies

the three reflections in numerical order. Here are some results:

Given two lines, r and s, with corresponding reflections, σr and σs what

happens if we apply them one after another σr ◦ σs? There are two cases:

1. r ‖ s

• If r = s, we have the identity and nothing happens.

• If r and s have a distance d > 0, then we get a translation τ with a

magnitude of 2d, as shown in Figure 7. XX ′ = 2x + 2(d− x) = 2d, and

XX ′ orthogonal to r and s. Thus τ = σr ◦ σs.

Figure 7. Translation τ

2. r ∦ s

• If α 6= 90◦, as we can see in Figure 8, m∠XSX ′ = 2ϕ + 2(α − ϕ) = 2α.

This is simply a rotation, ρ, with center S. So ρ = σr ◦ σs.

• If α = 90◦, we get the special case of the half-turn shown in Figure 9, a

so called “point reflection” in S. We symbolize this τ = σr ◦ σs.
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Figure 8. Rotation ρ

Figure 9. The special case of a point reflection τ

In summary, we get a theorem about composition: the application of two

reflections yields one of three fundamental mappings: the identity (id), a rotation

(ρ), or a translation (τ). But what about the converse? Can every rotation and

every translation be decomposed into two reflections? The answer is yes.
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First, let’s look at the case of the translation, τ , illustrated in Figure 7. Let

τ be given by two points X and X ′ with a distance of 2d between them. If we

choose an arbitrary line, s, orthogonal to the line
←→

XX ′ and reflect X through

s, we get a point, X̃ . The perpendicular bisector of the segment X ′X̃ gives the

line r. So we have τ = σs ◦ σr, where the distance between r and s is d. The

proof for rotations runs analogously. (Here we should add one word of caution:

with each one of the mappings, we are not simply operating on a single point or

a special figure, we are affecting the whole plane.)

Now let us “up the ante” and look at the cases for 3-fold reflections. We will

start with lines r, s, t and the corresponding reflections σr, σs, σt. Again we have

to consider cases:

1. r, s and t are all three parallel.

• The cases where r = s = t and r = s 6= t are trivial, we obtain a

reflection in one of the given lines.

• In general, the composition yields a reflection in a fourth line, x, parallel

to r. As illustrated in Figure 10, we know τ = σr◦σs, but any translation

can be decomposed into two reflections where one line is given, so we

also have τ = σx ◦ σt. Thus, it follows that (σr ◦ σs) ◦ σt = τ ◦ σt =

σx ◦σt ◦σt = σx where the line x is the perpendicular bisector of XX ′.

Figure 10. Three reflections
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2. r, s and t are not all parallel.

Figure 11. Glide reflection τσ

• There is a special case: r ‖ s, r 6= s and t ⊥ s. Figure 11 illustrates this

“glide reflection”. This is a translation composed with a line reflection.

We will symbolize this as τσ. Besides the mappings of id, τ and ρ, there

exists another fundamental mapping, τσ. Figure 12 shows two real life

examples–tracks in the show and paddling.

Figure 12. Tracks in the snow and paddling
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• r, s and t intersect in a single point S. This composition yields a re-

flection in a line x through S. As illustrated in Figure 13, we know

ρ = σr ◦ σs and ρ = σx ◦ σt analogous to the parallel line case. Now it

follows that (σr ◦ σs) ◦ σt = ρ ◦ σt = σx ◦ σt ◦ σt = σx, as before. The

line x is the perpendicular bisector of the angle XSX ′.

Figure 13. Concurrent lines

• r, s and t are pairwise not parallel and they do not intersect in one point.

In other words, they form a triangle. In this complicated case we again

get a glide reflection, by using the decomposition trick for rotations two

times. The procedure is illustrated in the pictures presented in Figure 14:

Start with a triangle as shown (a). (b) Let s and A be fixed, rotate r

and t around A until as r ⊥ s. The new elements are denoted by r̃, t̃,

B̃ and C̃. (c) Now fix t̃ and B̃ and rotate r̃ and s around B̃ until r̃ ⊥ t̃,

calling the new elements Ã and ˜̃r.
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Figure 14. The complicated case

• There is a special case: r ‖ s, r 6= s and t 6⊥ s. This composition again

yields a glide reflection, στ . The proof is similar to the previous case

and is illustrated in Figure 15. We start with parallel lines r and s cut

by a nonorthogonal transversal as shown (a). (b) Let s and A be fixed

again, and rotate r and t around A until t ⊥ s. The new elements are

denoted by r̃, t̃, B̃ and C̃ . (c) Now fix r̃ and B̃ and rotate t̃ and s around

B̃ until r̃ ⊥ t̃, calling the new elements Ã and ˜̃t.
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Figure 15. Another complicated case

Though the last two cases were rather complicated, we now have enough to

summarize our results. First, let us define a pencil as the set of all lines parallel to

one another or all lines intersecting in the same point. We can now say: three lines

compose a pencil if and only if composing reflections of them yields a reflection

in a line of the pencil.
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It is quite natural to continue and ask about 4-fold reflections and beyond.

Though we will stop the investigation here, we have really stumbled across all we

need to handle higher order reflections because:

• 2n-fold reflections can be represented by 2-fold reflections.

• 2n + 1-fold reflections can be represented by 3-fold reflections.

• Thus fundamental mappings of identity, σ, τ , ρ and στ are all of the possible

compositions of reflections.

Now we are able to solve many complex geometric problems without any

calculations, including those at the beginning of this article. We do not need any

analytic geometry at all. What a wonderful insight – we have an entire algebra

whose elements are reflections! As many of you may know, not only is this fun

geometrically speaking, it has immediate practical applications in group theory.

What a fascinating game mathematics can be!
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