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Abstract. We propose a new kind of approach of the teaching of knapsack type problems
in the classroom. We will remind you the context of the general knapsack-task and we
will classify it, including the two most popular task variants: the discrete and the
continuous one. Once we briefly present the solving algorithm of the continuous variant,
we will focus on the solving of the discrete task, and we will determine the complexity
of the algorithms, looking for different optimizing possibilities. All these issues are
presented in a useful way for highschool teachers, who are preparing students in order
to participate in different programming contests.
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1. Introduction

The highschool educational system in Romania has an over 30 years tradi-

tion in teaching algorithmics. The participant students in different Olympiads

in Informatics manifest a particular interest towards the special algorithmics and

programming knowledge, since they want to learn new methods of program opti-

mization, both from the point of view of time execution, and the needed memory

dimension. The tasks known under the name of “knapsack type” constitute a

real challenge due to numberless variants in which they can appear and to the

diversity of solving possibilities.

Copyright c© 2008 by University of Debrecen
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38 Csaba Pătcaş and Klára Ionescu

2. General task

We will present – in a general manner – the text of the one-dimensional

knapsack task:

Let us consider a knapsack of volume V and n items, with volumes vi and

costs ci, (i = 1, 2, . . . , n). Determine the subset of the given items, which has the

total volume either smaller or equal to the knapsack’s capacity and for which the

sum of the costs is optimal.

Before going to the different variants in which the given task might be en-

countered (in giving an explicit form to the task’s general terms), let us see how

these variants could be classified. From a methodological point of view (while

teaching) it is also recommended to make the students aware from the beginning

that they must pay special attention to the differences that might appear—most

of them hidden, wrapped in a story—in various task texts.

Of course, if the students have already problem solving skills, they will observe

immediately, that this task is an “optimality” one. Also, we assume, that they

are familiarized with the greedy and the dynamic programming method [1].

3. Classifying

An ideal case would be that this classifying, the “discovery” of the differences

between the problem statements to be sort out together with the students, while

studying more text variants. Obviously, from the point of view of task type,

we could add texts that only seem different, and yet they are part of the same

category. The classifying of this task’s variants is realized on the following three

criteria: from the point of view of continuity, from the point of view of the number

of items and from the point of view of the optimal filling of the knapsack.

From the continuity point of view of the knapsack task, this can be given in

both the discrete and the continuous variant.

(1) The discrete variant: we have to select only uncut items.

(2) The continuous (fractional) variant: in this case we are not forced to

select an item as a whole, because the items can be cut. In this case, if an

item is cut, we gain a cost proportional to the selected volume. As known, it

is usually solved with the help of a greedy type algorithm.

From the point of view of the number of items we have three cases:
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Algorithmics of the knapsack type tasks 39

(1) The unbounded variant: we have an infinite number of pieces correspond-

ing to each item type.

(2) The bounded variant: each i item must be used at least li times and at

most ui times (i = 1, 2, . . . , n).

(3) The binary variant (0–1): we have a special case of the bounded task

in which li = 0 and ui = 1, where from each item we only have one piece.

The naming (0–1) of the binary variant comes from the fact that an item can

appear in the knapsack once or it can not appear at all.

If the teacher is lucky enough the students will notice by themselves the

following:

• In the bounded variant it does not make sense for the values li and ui (i =

1, 2, . . . , n) to be higher than [V/vi]
1, (i = 1, 2, . . . , n). Thus, the unbounded

variant can be changed into the bounded variant, by setting the inferior limits

li = 0 and the superior limits ui = [V/vi].

• We can simplify the bounded variant, by setting the inferior limits li = 0, a

case in which the superior limits ui will be changed in ui− li (i = 1, 2, . . . , n).

In this case the value V has to be fixed on V − (l1 · v1 + l2 · v1 + . . . + ln · vn).

In this way we will lose the inferior limits.

• The bounded variant can be changed in the binary one. We will consider

the text of the binary variant, saying that from each type of item we have ui

(i = 1, 2, . . . , n) pieces.

The teacher will emphasize these extremely important remarks, because of

the fact that all the discrete variants of the task can be reduced to the

binary variant . Out of this reason, we will further focus on the solving of this

variant, only.

From the point of view of the optimal filling of the knapsack, we have four

cases:

(1) Case (max, ≤): in such tasks we are interested in the item configuration,

for which the costs’ sum is maximal and the knapsack does not necessarily

have to be full.

(2) Case (max, =): similar to the precedent case, differing in that we are

interested only in the solutions for which the sum of the volumes of the

selected items is equal to the knapsack’s volume.

1 We marked with [x] the integer part of x.



i

i

“patcas” — 2008/12/19 — 14:59 — page 40 — #4
i

i

i

i

i

i

40 Csaba Pătcaş and Klára Ionescu

(3) Case (min, ≤): here the sum of the costs must be minimal, and the knapsack

does not have to be full.

(4) Case (min, =): the sum of the volumes of the items must be equal to the

knapsack’s volume and the costs’ sum must be minimal.

The teacher will present a lot of tasks and will ask the students to decide

which kind type they are.

4. Solving the knapsack task—the continuous variant

Once the task is formulated (probably not in a formal way, but wrapped in

a real story) we will consider an example. Let us consider V = 10, n = 4 and

v = (5, 4, 5, 10) (the items’ volumes), and c = (10, 20, 1, 15) (their costs). We

will ask the students to initiate different ideas of their own. Maybe somebody

will propose to select the items in the decreasing order of the costs and fill the

knapsack with the second item, while the fourth one will be cut. One of the

students will calculate the total cost of the knapsack: c2 + c4 · ((V − v2)/v4) =

20 + 15 · (6/10) = 24.5. The teacher knows that this is not the optimal value, so

he/she will lead the analysis of the ideas of the students so that they will reach the

conclusion themselves: before starting the packing of the items in the knapsack

they have to calculate the values ci/vi (i = 1, 2, 3, 4) that in the case above are

(2, 5, 0.2, 1.5). The students familiarized with the steps of the greedy method will

realize that they have to sort this vector and to select the items in the obtained

order, until the next item can not be selected any longer, because the knapsack is

full. It can happen, that the last selected item we have to cut, to fill the knapsack

entirely. If we follow these steps in the given example, we obtain the second and

the first item from the original array. From the fourth item a piece of 1 dimension

will be cut and with this the knapsack will be filled. Thus, the total value of the

packed items will be c2 + c1 + ((V − v2 − v1)/v4) = 20 + 10 + (15/10) = 31.5,

which is obviously more than 24.5 obtained on the first idea.

While teaching we have to introduce the necessary formalizing in order to

give the algorithm and to prove the fact that this algorithm will reach the global

optimum [2].
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Algorithmics of the knapsack type tasks 41

Let us consider that a certain solution is a vector x = (x1, x2, . . . , xn) where

the elements xi (i = 1, 2, . . . , n) have the properties:






xi ∈ [0, 1], i = 1, 2, . . . , n
n∑

i =1

vixi ≤ V.

Out of these, an optimal solution is the one that maximizes the function

f(x) =

n∑

i=1

cixi.

If the sum of the volumes of the items is smaller than V , we have the trivial

case in which we will select all the items, meaning that the solution will be:

x = (1, 1, . . . , 1). Further on we will suppose that v1 + v2 + . . . + vn > V .

Due to the greedy strategy, we order the items decreasingly accordingly to

the profit of the unit volume, so we consider the hypothesis:

c1

v1
≥

c2

v2
≥ . . . ≥

cn

vn
(∗)

The algorithm consists in selecting the items in this order, as long as the

volume V is not overloaded (if the last item does have room in the knapsack, it

will be loaded only partially):

Algorithm 1 ContKnapsack(n, Vol, v, x)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: x – the array of the solution, representing the selected items

1: VD← Vol ⊲ VD = the disposable weight

2: term← false

3: i← 1

4: while not term and (i ≤ n) do

5: if vi ≤ VD then ⊲ corresponding to those items

6: xi ← 1 ⊲ which will be put entirely in the knapsack

7: VD← VD− vi

8: else

9: xi ← VD/vi ⊲ corresponding to that item which will be cut

10: for j ← i + 1, n do ⊲ corresponding to those items
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42 Csaba Pătcaş and Klára Ionescu

Algorithm 1 continued

11: xj ← 0 ⊲ which will not be put in the knapsack

12: end for

13: term← true

14: end if

15: i← i + 1

16: end while

The solution given by the algorithm has the form x = (1, 1, . . . , 1, xj , 0, . . . , 0),

where 1 ≤ j ≤ n and xj ∈ [0, 1). We will prove that this solution is optimal.

Let us suppose that “x is not optimal” and there is another certain solution

y = (y1, y2, . . . , yn) having the property:
n∑

i=1

ciyi >
n∑

i=1

cixi. It can be considered

without loss of generality, that
n∑

i=1

viyi = V .

Let us suppose that y 6= x, and k is the first position in which yk 6= xk. We

will show that yk < xk. There are three possibilities [7]:

(1) k < j, that means xk = 1; but yk 6= xk, so yk < 1; results yk < xk.

(2) k = j

V =
n∑

i=1

viyi =

j−1
∑

i=1

viyi + vjyj +
n∑

i=j+1

viyi

=

j−1
∑

i=1

vixi + vjyj +

n∑

i=j+1

viyi = V − vjxj + vjyj +

n∑

i=j+1

viyi

= V + vj(yj − xj) +

n∑

i=j+1

viyi.

If yj > xj ,

V =

n∑

i=1

viyi = V + vj(yj − xj) +

n∑

i=j+1

viyi > V.

Impossible. Results yj < xj , and also yk < xk.

(3) k > j

n∑

i=1

viyi =

k−1∑

i=1

viyi +

n∑

i=k

viyi =

k−1∑

i=1

vixi +

n∑

i=k

viyi
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Algorithmics of the knapsack type tasks 43

=

j
∑

i=1

vixi +

k−1∑

i=j+1

vixi +

n∑

i=k

viyi = V + 0 +

n∑

i=k

viyi > V.

Impossible.

Now we will increase yk in order to obtain xk and decrease yk+1, yk+2, . . . , yn

in order to have
n∑

i=1

viyi = V (the total capacity of the knapsack remains V ). We

obtain a solution Z = (z1, z2, . . . , zn) where zi = xi, i = 1, . . . , k and

n∑

i=k+1

vi(yi − zi) = vk(zk − yk).

The sum of the decreasing’s weight of yk+1, yk+2, . . . , yn is equal to the increasing’s

weight of yk. For Z we have:

n∑

i=1

cizi =
n∑

i=1

ciyi + (zk − yk)ck +
n∑

i=k+1

(zi − yi)ci

=

n∑

i=1

ciyi + (zk − yk)vkck/vk −
n∑

i=k+1

(yi − zi)vici/vi

≥
n∑

i=1

ciyi + [(zk − yk)vk −
n∑

i=k+1

(yi − zi)vi]ck/vk

=

n∑

i=1

ciyi >

n∑

i=1

cixi.

Here we used the (∗) properties.

If Z = X , results an impossible equation:
n∑

i=1

cixi >
n∑

i=1

cixi, so the initial

assumption that “X is not an optimal solution” is false. If Z 6= X , we repeat the

described process with Z in place of Y and we continue it until Z = X , i.e. the

hypothesis that “X is not an optimal solution” is false.

Remark. It could be relevant to observe—together with the students—that

the application of the greedy method fails in the case of the discrete variant. For

example, if V = 10, n = 3 and v = (8, 6, 4), c = (12, 8, 5) we would obtain as a

result (for selecting the first item) the profit 12. But the selection of the last two

items leads to the superior profit that is 13.
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5. The discrete variant of the knapsack task

In order to show that the task could not be solved by the greedy method, the

teacher will give an example for this like we did in the remark above. As we already

mentioned, the discrete variant can be solved by using the dynamic programming

method. We will start from a simplified variant of the one-dimensional task,

and then we will take in turns the one-dimensional, two-dimensional and the

multidimensional variant.

5.1. The coins task (one-dimensional simplified knapsack)

Let us consider n coins, where the ith has the vi (i = 1, 2, . . . , n) value. The

vi values are strictly positive integer numbers. Determine if it is possible or not

the exact payment of the V sum, using these coins!

We used on purpose the same notations as in the first text, the one of the

knapsack task, in order to facilitate the noticing of the likeness of the two tasks.

We hope, that the students will notice, that the simplifying consists in the elim-

ination of each item’s cost, so there is no need to optimize another value, we

must just answer the question. So we have the case (∅, =), where ∅ indicates the

fact that we do not have an optimum function. (The classical variant of the task

asks for the sum to be obtained by using a minimal number of coins. Thus a

cost that has to be minimized is introduced, and in this case, this will be ci = 1,

i = 1, 2, . . . , n).

The teacher will remark that, in the case in which the values vi are real

numbers, the coins task is NP-complete2. Actually, there are no polynomial algo-

rithms for any of the discrete variants of the knapsack task. The solutions using

the dynamic programming method have pseudo-polynomial complexity, because

these algorithms have an Θ(V · n) complexity. That means that the execution

time does not only depend on the number n of the items, but also on the knap-

sack’s volume V . The complexity is not polynomial, because it is possible for the

value V to exponentially increase as compared to the value n. So, if the value V

is very high, we have an inappropriate complexity. Even if the value V is low, we

can have a big number of items, so the execution time can increase in this case,

too.

2 We consider that both the students and the reader are familiarized with algorithm complexity

notions [1].
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So we have to decide whether or not the given sum payment is possible. As

we mentioned above, in order to answer to this question, we will use the dynamic

programming method. We will build a matrix a (a helping data structure) of

(n + 1)× (V + 1) dimensions:

aij =

{

true, if sum j can be obtained using the first i type of coins,

false otherwise,

i = 0, 1, . . . , n, j = 0, 1, . . . , V . Obviously, for i = 0, the only element with true

value will be a00 (with zero coins you can only get the sum zero). The other

values can be thus determined:

aij =

{

true, if ai−1,j = true or ai−1,j−vi
= true,

ai−1,j otherwise.

After this analysis and the preparation of the needed formulas, the solving algo-

rithm can be presented by a student. The Knapsack1(n, Vol, v, a) algorithm

builds the a matrix of logical values, in which the value of the anV element will

contain the answer to the question (true/false).

Algorithm 2 Knapsack1(n, Vol, v, a)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: a – two-dimensional Boolean array where

⊲ an,Vol will represent the final result

1: a00 ← true ⊲ with zero coins we can get the sum zero

2: for j ← 1,Vol do

3: a0j ← false ⊲ with zero coins we can not get sum j

4: end for

5: for i← 1, n do

6: ai ← ai−1 ⊲ we assign to the ith line of the matrix the (i− 1)th line

7: for j ← vi,Vol do ⊲ we build the matrix a

8: if ai−1,j−vi
then

9: aij ← true

10: end if

11: end for

12: end for
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A negative aspect of this solution is the fact that it utilizes a space memory

of Θ(V ·n). But, skillfully, a teacher could lead the analyzes of the solving so that

a student observes that for building a line in the matrix, only the precedent one is

used. Thus, it seems natural the “lucky” idea of not keeping in memory the whole

matrix of (n + 1)× (V + 1) dimensions, but to memorize just two vectors, one in

which the actual line is kept and the other for the precedent one. Each time we

start the determination of a new line of the matrix, we will overwrite the vector

of the precedent line with the vector of the actual one, so that the determination

of a new line will be possible [3]. Thus, we obtain the Knapsack2(n, Vol, v,

new) algorithm:

Algorithm 3 Knapsack2(n, Vol, v, new)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: new – array, where newVol will represent the final result

1: old0 ← true ⊲ local: old – auxiliary array

2: for j ← 1,Vol do

3: oldj ← false

4: end for

5: new← old ⊲ initially the second line of the matrix equals to the first one

6: for i← 1, n do

7: for j ← vi,Vol do ⊲ the new vector is built by using

⊲ the corresponding values of the old vector

8: if oldj−vi
then

9: newj ← true

10: end if

11: end for

12: old← new

13: end for

But if we succeeded in reducing the necessary memory from a matrix with

n + 1 lines of V + 1 elements to two vectors with V + 1 elements, we will ask

ourselves (and the students, of course) if there is the possibility of further reducing

the data structure’s dimension? But, when trying to solve the problem using just

one vector, the students should observe the possibility of obtaining a certain sum,

by using one coin more than one time (which is obviously wrong). For instance,
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if we have V = 4 and v = (2), when verifying if we can obtain the value 4, we will

find that it is possible, because the second element of the vector is already true.

If the students will not propose it, the teacher will show that one solution is

to memorize in another vector the highest coins’ index that form the respective

sum: indj = the index of the last coin that was used to obtain the j sum, (j =

0, 1, 2, . . . , V ). Thus, we obtain the third variant of the solving algorithm:

Algorithm 4 Knapsack3(n, Vol, v, b)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: b – similar to the new vector from the previous algorithm

⊲ where bVol represents the final result

1: b0 ← true

2: ind0 ← −1 ⊲ we have to put there a value different from 0,

⊲ we will see later why

3: for j ← 1,Vol do

4: bj ← false

5: indj ← 0 ⊲ local: ind – auxiliary array

6: end for

7: for i← 1, n do

8: for j ← vi,Vol do ⊲ we build the vectors b and ind

9: if bj−vi
and (indj−vi

6= i) then

10: bj ← true

11: indj ← i

12: end if

13: end for

14: end for

The students should observe that it seems that no improvement has been

done, because we still use two vectors. Maybe, when they will take a closer

look they will notice that we do not need anymore the b vector, because bj (j =

0, 1, 2, . . . , V ) is true only for the values for which indj is different from zero.

That explains the 3. line of the algorithm.

The implementing of this variant can be a homework for the students (or for

the reader).

Further on, we will present the most elegant method, which uses only one

vector and which is based on the following remark: in a certain sum we can have
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48 Csaba Pătcaş and Klára Ionescu

the same coin many times, only if first we already got a smaller sum by using at

least once the respective coin. Thus we come to the idea of calculating the sum

in decreasing order of the values. The final variant of the solution is presented in

the Knapsack4(n, Vol, v, b) algorithm. In the work-field this method is known

as Pull dynamic programming.

Algorithm 5 Knapsack4(n, Vol, v, b)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: b – array, where bVol represents the final result

1: b0 ← true

2: for j ← 1,Vol do

3: bj ← false

4: end for

5: for i← 1, n do

6: for j = Vol, vi,−1 do

7: if bj−vi
then

8: bj ← true

9: end if

10: end for

11: end for

5.2. Other optimization possibilities

Let us see if we can further optimize this solution. We notice that, for V

and vi (i = 1, 2, . . . , n) if they are high enough, we have “holes” in the b vector,

meaning that we obtain only a very small part of the sums from 0 to V , but still

we parse all the interval n times.

To improve this fact one has to parse only the values that are achieved at a

certain step. This thing can be implemented with chained lists in the program-

ming languages which do not offer either the set type or the possibility of using

the iterators (like the STL from C++ for instance).

We mention the fact that this change most of the times leads to speed increase,

in detriment of the dimension of the needed memory. The memory usage is

increased by the following factors. In the case of the implementation with chained

lists it is increased by the “next” pointers needed for the lists and by the fact that
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we do not only store a Boolean value for each sum (that occupies usually a byte

in the older programming languages) but a value that can occupy more bytes.

In the case of the second implementation the memory usage is increased by the

way iterators are usually implemented. In the work-field this method is known

as Reach or Push dynamic programming.

Let us go back to the Pull variant. Another optimizing possibility is memo-

rizing the highest and the lowest value achieved at a certain point, and parsing

the values only in this interval [3]. But when do these values modify?

One can notice that in the case of the coins’ task the minimum always remains

zero, because the coins have positive values. Thus, for our task we do not even

need this minimum. The maximum will always be the sum of the first i elements,

if this sum does not exceed the V value. Thus we get to the solution given by the

Knapsack5(n, Vol, v, b) algorithm:

Algorithm 6 Knapsack5(n, Vol, v, b)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: b – array, where bVol represents the final result

1: b0 ← true

2: for j ← 1,Vol do

3: bj ← false

4: end for

5: max← 0 ⊲ local: max – the sum of the first i elements

6: for i← 1, n do

7: if max > Vol− vi then

8: max← Vol− vi

9: end if

10: for j ← max, 0,−1 do ⊲ the max value will be recalculated for each i

⊲ in order to reduce the number of steps in this for cycle

11: if bj then

12: bj+vi
← true

13: end if

14: end for

15: max← max + vi

16: end for
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Because the b vector contains Boolean values, we can utilize bit processing.

Thus, we will reduce the dimension of the needed memory from V bytes to [V/8]

bytes.

This method has one more advantage because of the fact that the vector from

the ith step can be obtained by shifting to right the vector from the (i− 1)th step

with vi positions (bits) and making a logical disjunction between the initial vector

and the vector got after the shift. More exactly, we will utilize a formula like this:

ai = ai−1 or (ai−1 shr vi). Using this property, we do not have to calculate the

a vector bit by bit; we can utilize bigger steps (byte by byte, word by word etc.)

significantly improving the program’s running speed. This is due to the fact that

bit operations are very fast [4].

Let us see some applications.

Task 1 – Sticks 1

Let us consider n sticks (5 ≤ n ≤ 1000). The sticks have different lengths,

not necessarily distinct ones (1 ≤ lengthi ≤ 100, i = 1, 2, . . . , n, the lengths are

given in millimeters). The sticks must be grouped, so that those from one group

form a “line” whose length should be as close as possible to the “line” formed by

the sticks from the other group. The length of the line is equal to the lengths’

sum of the sticks that form the line.

Determine the length of the two lines formed by the sticks arranged in the

two groups, so that the difference between the length of the “line” formed by the

sticks from the first group and the length of the “line” formed by the sticks from

the second group is as small as possible.

Example: n = 7, length = (28, 7, 11, 8, 9, 7, 27), the length of the first line of

sticks: 48 (= 28 + 11 + 9), the length of the other one: 49 (= 7 + 8 + 7 + 27).

Solution

The analysis of the task begins with its formalizing. The students will notice

that we have a vector of integer (not necessarily distinct) numbers which must

be divided in two groups so that the difference between the two sums is minimal.

It is possible that the students notice that apparently there is an NP-complete

task, and consequently they will want to apply the backtracking method. We will

calculate the sum of all the numbers, and then its half. It is clear that the two

sums that have to be calculated should be “around” this half. But we cannot

know for sure which ones these numbers will be. We build the following Boolean

vector: each number from the initial length vector could be a partial sum, so we

mark the corresponding elements of the Boolean vector with true. Obviously, we

do not have to implement this explicitly, because the algorithm will do it, if we
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set used0 to true. We also mark in the same way any element in the vector that

has the index a partial sum of the read numbers. Thus it seems that this vector

should have the length equal to the sum of all the elements. Another remark

leads us to realizing that we do not have to keep the whole vector. We will focus

only on those elements that cover the first half, and we will calculate the second

number from the total sum and the biggest number smaller or equal to the half

which is marked with true. Because in the task’s text we had soft restrictions

for the limits, we will present at first the unoptimized variant of the algorithm:

Algorithm 7 Divide(n, length, half )

⊲ input: n – the number of the sticks

⊲ length – the array with the sticks’ length

⊲ output: half – the length of the first line of the sticks

1: sum← 0 ⊲ local: sum – the total length of the sticks

2: for i← 1, n do

3: sum← sum + lengthi

4: end for

5: half← [sum/2]

6: for i← 1, half do

7: usedi ← false ⊲ local: used – auxiliary Boolean vector

8: end for

9: used0 ← true

10: sum← 0

11: for i← 1, n do

12: for j ← Min(sum, half), 0,−1 do ⊲ in order not to parse the whole

⊲ Boolean vector, but only the useful part of it

13: if usedj then

14: usedj+length
i
← true

15: end if

16: end for

17: sum← sum + lengthi ⊲ it is necessary to recalculate sum

⊲ in order to reduce the number of the steps

⊲ we use the same idea as in the Knapsack5(n, Vol, v, b) algorithm

18: end for

19: while not usedhalf and (half > 0) do

⊲ searching of the existing value for half
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Algorithm 7 continued

20: half← half − 1

21: end while

After the execution of this algorithm the values half and sum− half will be

printed.

In case we had had not 1000, but 2000 sticks, certain compilers would not

have let us to allocate such a big used array (2000 × 100 = 200000, from which

half is 100000). In this case a vector of bits will be used. Usually we number

the bits from left to right starting with the most significant one. Thus the most

insignificant one (the 0 value) will be the rightmost.

7 6 1 0 15 14 9 8 . . .

This solution we present in Pascal. The vector of bits is implemented in the

bits type, where the bits are grouped in bytes.

type sticks = array[1..2000] of Word;

bits = array[0..12500] of Byte;

var n: Word;

Vol: Word;

v: sticks;

b: bits;

function GetBit(var v: bits; ind: Word): Boolean;

begin

GetBit := v[ind shr 3] and (1 shl (ind and 7)) <> 0

{ where v[ind shr 3] was used instead of v[ind div 8] and }

{ 1 shl (ind and 7) instead of 1 shl (ind mod 8) }

end;

procedure SetBit(var v: bits; ind: Word);

begin

v[ind shr 3] := v[ind shr 3] or (1 shl (ind and 7))

end;

function min(a, b: Word): Word;

begin

if a < b then min := a

else min := b

end;
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procedure Divide(n: Word; var length: sticks; var half: Word);

{ input: n - the number of the sticks }

{ length - the array of the sticks’ length }

{ output: half - the length of the first line of the sticks }

var i,j: Word;

sum: Longint; { local: sum - the total length of the sticks }

used: bits;

begin

sum := 0;

for i:=1 to n do

Inc(sum, length[i]);

half := sum div 2;

FillChar(used, SizeOf(used), 0);

SetBit(used, 0);

sum := 0;

for i:=1 to n do begin

for j := min(sum, half) downto 0 do

if GetBit(used, j) then

SetBit(used, j+length[i]);

Inc(sum, length[i])

end;

while not GetBit(used, half) and (half > 0) do

Dec(half)

end;

Task 2 – Sums

On a table there are n (1 ≤ n ≤ 100) cards. On each card there is written

one natural number between 1 and 10000. One can choose as many cards from

the table as wanted. After this, the sum of the natural numbers from the chosen

cards must be calculated.

Determine the number of the distinct sums that can be obtained through

such selections. It is possible to select as many cards (but at least 1).

Example: n = 3, numbers = (1, 3, 7), result = 7, that are: 1, 3, 4 (= 1 + 3),

7, 8 (= 1 + 7), 10 (= 3 + 7), 11 (= 1 + 3 + 7).

Solution

This task can be solved by keeping a Boolean vector of values which indicates

if a certain sum can be (or cannot be) obtained. Because we have at most 100

numbers whose values are at most 10000, the maximum sum that can be obtained

is 1000000, so we need 1000001 values in the vector. Thus, we must use just one

bit to represent a sum, and so we reduce the necessary memory to 125001 bytes.
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Initially we will consider that only the sum 0 can be obtained. Further on,

for each next step we will consider one more number. We will parse the vector of

the previously obtained sums (bit by bit) and, to each bit with the value 1, we

will add the current number to the respective sum. The result of the operation

will represent a sum which can surely be obtained, so for the next step we will

have to set the corresponding bit for the new sum to value 1. Finally, we will

number the value 1 bits from the whole vector and we will write down the result.

Because of the hard limits, an implementation similar to the one used in the

problem Sticks1 could be too slow. We present a faster solution in Pascal. To

help an easier implementation, at this time we will consider the bits of a byte to

be ordered from left to right.

0 1 6 7 8 9 14 15
︸ ︷︷ ︸

vi mod 8

8−vi mod 8
︷ ︸︸ ︷

︸ ︷︷ ︸

vi

type cards = array[1..100] of Word;

bits = array[-1..125000] of Byte;

{ we start from -1 to avoid special cases }

{ we consider compilers, that allow us to allocate this array, }

{ to not over-complicate the source code }

var n: Word;

v: cards;

b: bits;

sum: Longint;

procedure Build(n: Word; var v: cards; var new: bits; var max: Longint);

var i, aux, aux2: Byte;

j: Longint;

old: bits;

begin

FillChar(old, SizeOf(old), 0); { set everything to 0 }

old[0] := 128; { we can always get the sum 0 }

max := 0;

for i := 1 to n do begin

aux := v[i] shr 3;

aux2 := v[i] and 7;

for j := aux to (max+v[i]) shr 3 do

new[j] := Byte(old[j - aux - 1] shl (8 - aux2)) or

old[j - aux] shr aux2;

{ we need this type cast here to stay }
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{ in the bounds of a byte and avoid overflow }

for j := aux to (max+v[i]) shr 3 do

old[j] := old[j] or new[j];

max := max + v[i]

end;

new := old

end;

function Count(var b: bits; sum: Longint): Longint; { here we will use }

{ a little trick for counting quickly a byte’s bits that are set [4] }

var i, ans: Longint;

aux: Byte;

begin

ans := 0;

for i := 0 to sum shr 3 do begin

aux := b[i];

while aux > 0 do begin

Inc(ans);

aux := aux and (aux-1)

end

end;

count := ans

end;

5.3. The reconstruction of the solution

In the coins’ task text, it was asked to decide only if the sum can be paid

or not. We might need also the method through which we got to a certain sum,

not just the checking of the fact that this can be obtained. The determination of

paying modalities can be either easily or with much difficulty realized, depending

on the size of input data and the available memory.

The first idea would be to memorize the highest index of a coin that is part

of that sum, for each obtained sum, similarly to the Knapsack3(n, Vol, v, b)

algorithm presented above.

This method provides the correct result only in the case of utilizing matrices

(the first variant of the algorithm—Knapsack1(n, Vol, v, a)). In all of the other

versions we cannot reconstruct the solution using this method for all cases. As a

counter-example let us consider n = 3, V = 7 and v = (5, 2, 3). Using the first

coin, we can pay the sums 0 and 5. Using the first two coins, we can get 0, 2,

5 and 7. But in the next iteration we have a problem. (Here we will remind

the students, that we are discussing the binary variant of the knapsack problem.)
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Using the first three coins, we will pay the sum 5 with the second and the third

coin, so when trying to pay the sum 7 we will use the second coin two times which

is not allowed (7 = 2 + 3 + 2 instead of 7 = 2 + 5). This problem arises with

algorithms which are allowed to overwrite previously achieved values, such as the

Knapsack3(n, Vol, v, b) algorithm.

Even if we do not allow the program to overwrite values that have been

achieved, the solution won’t work in the classical variant of the problem, when we

must pay the sum with minimum number of coins. Let us consider the following

example n = 5, V = 23 and v = (19, 7, 7, 7, 2). We observe that the sum 21 can

be achieved minimally with two coins (19 + 2). In the same time the sum 23

cannot be obtained by the algorithm, which is wrong, because 23 = 7 + 7 + 7 + 2.

We will remind the students again the fact that now we focus on the binary

variant of the task. In the case of the unbounded variant, the reconstruction of

the solution can be easily done by using a memory quantity of Θ(V ), with the

help of a vector similar to ind vector from the third variant of the algorithm—

Knapsack3(n, Vol, v, b).

The solution based on these remarks is presented in the Knapsack6(n, Vol,

v, parent) algorithm. During the design of the algorithm, the teacher will take

care of the students not to “forget” about the optimizations learned before.

Algorithm 8 Knapsack6(n, Vol, v, b)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: parent – two-dimensional array,

⊲ needed in the reconstruction of the solution

1: a00 ← true

2: for j ← 1,Vol do

3: a0j ← false

4: end for

5: max← 0

6: for i← 1, n do

7: if max > Vol− vi then

8: max← Vol− vi

9: end if

10: ai ← ai−1

11: parenti ← parenti−1
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Algorithm 8 continued

12: for j ← 0,max do

13: if ai−1,j then

14: ai,j+vi
← true

15: parenti,j+vi
← i

16: end if

17: end for

18: max← max + vi

19: end for

The modality through which the reconstruction is realized is presented in the

ReBuild(n, Vol, v, parent) algorithm:

Algorithm 9 Rebuild(n, Vol, v, b)

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: parent – two-dimensional array,

⊲ needed in the reconstruction of the solution

1: i← n

2: j ← Vol

3: while j > 0 do

4: aux← parentij
5: Write: aux

6: i← aux− 1 ⊲ the auxth item will surely not be part of the next j sum

7: j ← j − vaux

8: end while

It is noticeable that this solution uses two matrices that contain n + 1 lines

and V + 1 columns, so the solution needs an Θ(n · V ) memory space, while the

execution time is also Θ(n · V ).

If the memory limits are harder, we could improve this method by memorizing

the matrix only from k to k lines and by running of the algorithm “on parts” of k

lines. More exactly, after we have determined the [n/k] lines, we reconstruct the

solution starting from the last memorized line (the ([n/k])th) and constructing

the next k lines. Afterwards, we start from the one before last memorized line

(the ([n/k] − 1)th) and we determine again the following k lines etc. Thus, we
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will need an Θ(k · V + [n/k] · V ) memory space, while the algorithm’s execution

time will be Θ(n · V + k · [n/k] · V ) = Θ(n · V ).

It is noticeable that the best choice for k is n1/2. In this case we have a

memory space of Θ(n1/2 · V ). This idea can be treated like in the following

algorithm:

Algorithm 10 Knapsack7(n, k, Vol, v, parent, bigparent)

⊲ input: n – the number of the given items, k – square root of n

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: parent – two-dimensional array

⊲ needed in the reconstruction of the solution

⊲ it stores the lines between two consecutive lines stored in bigparent

⊲ output: bigparent – two-dimensional array, needed in the reconstruction

⊲ of the solution; it stores every kth line of the solution

⊲ both matrices need to have at most
√

n + 1 lines and Vol + 1 columns
1: k ←

√

n

2: for i← 1,Vol do

3: parent0i ← 0

4: end for

5: parent00 ← −1

6: max← 0

7: for i← 1, n do

8: if max > Vol− vi then

9: max← Vol− vi

10: end if

11: if i mod k = 1 then

12: bigparenti div k ← parent0
13: end if

14: parenti mod k ← parent(i−1) mod k

15: for j ← 0,max do

16: if parent(i−1) mod k,j 6= 0 then

⊲ we use the remark from Knapsack3(n, Vol, v, b)

⊲ algorithm to avoid using the Boolean matrix

17: parenti mod k,j+vi
← i

18: end if

19: end for
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Algorithm 10 continued

20: max← max + vi

21: end for

Algorithm 11 BuildFrom(line, k, Vol, v, parent, bigparent)

⊲ builds the parent matrix starting with the corresponding line stored in

⊲ the bigparent matrix to the lineth line

⊲ input: n – the number of the given items

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ output: parent – two-dimensional array,

⊲ needed in the reconstruction of the solution

1: parent0 ← bigparentline div k

2: for i← line div k2 + 1, line do

3: parenti mod k ← parent(i−1) mod k

⊲ as a possible optimization, we could store for each line from bigparent

⊲ the sum of the elements until that point, in order to avoid parsing the

⊲ whole interval by introducing a variable with the meaning of max from

⊲ the main algorithm

4: for j ← 0,Vol− vi do

5: if parent(i−1) mod k,j 6= 0 then

6: parenti mod k,j+vi
← i

7: end if

8: end for

9: end for

Algorithm 12 ReBuild(n, k, Vol, v, parent, bigparent)

⊲ input: n – the number of the given items, k the square root of n

⊲ Vol – the total volume of the knapsack

⊲ v – the array of the given items’ volumes

⊲ parent – at the beginning: the array of last

⊲ (n mod k) + 1 lines of the solution

1: i← n

2: j ← Vol

3: while j > 0 do

4: aux← parenti mod k,j

5: Write: aux
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Algorithm 12 continued

6: i← aux− 1

7: j ← j − vaux

8: BuildFrom(i, k, Vol, v, parent, bigparent)

9: end while

Still—sometimes we must find a solution that is able to use less memory. We

will present a solution that uses a memory space of Θ(V ) and runs in Θ(n · V )

time.

The two vectors will be constructed by using an implementation similar to

the one utilized for the algorithm Knapsack3(n, Vol, v, b), with the following

change: instead of a vector with the significance of the ind vector we will use

another vector (named goto), where gotoj has the value of the partial sum of the

j sum, wherein there are all the coins used for obtaining the j sum, which have the

indexes smaller than or equal to [n/2] (j = 0, . . . , V ). For better understanding,

we can think of the vector goto, as a “super-parent vector”, similar to the vector

parent in Knapsack6(n, Vol, v, parent) algorithm, but with the modification,

that for values of i greater than [n/2] it “points back” to line [n/2] of the matrix.

The construction of the goto vector is realized in the following way:

gotoj =

{

j for i ≤
[

n
2

]
,

gotoj−vi
otherwise.

Thus, after the execution of the n iterations, the gotoV value will represent

the sum of the elements in the searched solution, if coins whose indexes are at

most equal to [n/2] are used.

By using this value, we will apply the Divide and Conquer method3 and we

will solve the task for the first [n/2] coins and the gotoV sum, respectively the

rest of the coins and the V − gotoV sum.

Let us analyze the complexity of this algorithm. Each subtask is made of two

subtasks, one of [n/2] dimension and gotoV and one of n − [n/2] dimension and

V − gotoV .

A subtask of n dimension and V has the Θ(n·V ) complexity. So, the execution

time necessary for the algorithm is given by the recursive formula: T (n, V ) = Θ(n·

V )+T ([n/2], gotoV )+T (n−[n/2], V −gotoV ), where we obtain T (n, V ) = Θ(n·V ).

3 We consider that both the students and the reader are familiarized with the Divide and

Conquer method [1].
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The proof of this is based on the usual methods, the most comfortable being the

substitution method or the applying of the Master Theorem. This step we will let

for the reader to think upon ([1]).

6. The one-dimensional task of the knapsack

Once we analyzed this simplified variant of the task, we can present the

more complex variants. In presenting the solving methods we will focus on the

particularities only, because most of the solution is similar to those presented

above. The text of the one-dimensional task of the knapsack was presented in the

beginning of this article.

In order to solve the task we must modify the solution from the coins task

in the following way: for each obtained sum j we have the optimum cost optj
(j = 0, 1, . . . , V ) with whose help the respective sum was obtained. Obviously, we

will overwrite the optj (j = 0, 1, 2, . . . , V ) value, if we found a better value for the

j sum at the current step. So, we have optij = optim(opti−1,j , opti−1,j−vi
+ ci),

where optim is the optimal function specific to the task (min or max). The final

solution will be given by optnV , for the cases (min, =) and (max, =), respectively

by optim(optnj | j = 0, 1, 2, . . . , V ) for the other cases.

We notice that in the unbounded task’s case we can apply a new improve-

ment: we can eliminate the “dominant” items, that certainly do not belong to

the optimal solution. For example, in the (max, ≤) case if an item has a lower

cost and a bigger weight than another item, the first item can be eliminated.

Task 3 – Fish4

Fisherman Naum has caught n (n ≤ 500000) fish. The weight vi of each fish

(vi ≤ 35000) is measured at the coast. Naum works for one fishing company and

he has the right to take home at most V (V ≤ 7000) grams fish. He wishes to

take as few as possible number of fish, but with the maximal possible weight L

(≤ V ). Decide which fish will be taken home and give the number and the weight

of fish to be taken home.

Example: n = 10, V = 280, v = (300, 10, 30, 80, 200, 20, 20, 60, 10, 100). Num-

ber of fishes: 2, the weight of the fishes to be taken home: (200, 80).

4 BOI 2000, Ohrid, Macedonia (the author of the task is unknown for us)



i

i

“patcas” — 2008/12/19 — 14:59 — page 62 — #26
i

i

i

i

i

i
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Solution

The first observation we make is, that the weight of some fishes can be greater

than V , so we can safely ignore these, because it is sure, that they will be not part

of the solution. The solution presented in Pascal shows a possible implementation,

of the approach explained at the end of the section 5.3. The time limit for this

problem allowed solutions with Θ(n · V ) complexity to run in time.

type fishes = array[1..500000] of Word; { again, for simplicity }

{ we suppose that the compiler lets us allocate this vector }

vect = array[0..7000] of Longint;

var optNew, optOld, gotoOld, gotoNew: vect;

v: fishes; { the weights of the fishes }

n, Vol: Integer;

procedure DivideAndConquer(low, high: Longint; Vol: Word);

var i, j: Longint;

aux: Word;

begin

if vol = 0 then

Exit;

if low <> high then begin

FillChar(gotoOld, sizeof(gotoOld), 0);

FillChar(gotoNew, sizeof(gotoNew), 0);

FillChar(optOld, sizeof(optOld), 0);

optOld[0] := 1; { using -1 would not have worked here }

{ do not forget to subtract one from the final solution }

{ when writing the number of items }

optNew := optOld;

for i := low to high do begin

for j := v[i] to vol do

if (optOld[j-v[i]] <> 0) and ((optNew[j] = 0) or

(optNew[j] > optOld[j-v[i]] + 1)) then begin

optNew[j] := optOld[j-v[i]] + 1;

if i <= (low+high) div 2 then

gotoNew[j] := j

else

gotoNew[j] := gotoOld[j-v[i]]

end;

gotoOld := gotoNew;

optOld := optNew

end;

i := vol;

while (i > 0) and (optOld[i] = 0) do
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Dec(i);

if (low = 1) and (high = n) then

WriteLn(optOld[i]-1); { the number of the fishes }

aux := gotoOld[i];

{ we need to store this in an auxiliary variable, because }

{ the gotoOld vector will change after the first recursive call }

DivideAndConquer(low, (low+high) div 2, aux);

DivideAndConquer((low+high) div 2 + 1, high, vol-aux);

end else

WriteLn(v[low]) { low = high, we have one item left }

end;

7. The two-dimensional task of the knapsack

A thief rubs a house. In the house there are n items, while the ith item has

the vi, (i = 1, 2, . . . , n) volume, the gi weight and the ci cost. We know that the

thief cannot carry a weight bigger than G and that his knapsack has a V volume.

Determine the items’ configuration that have room in the knapsack and that can

be carried by the thief and for which the costs’ sum is maximal.

We changed the last word from “optimal” to maximal, in order to avoid the

discussion of more similar cases. The difference from the precedent task is given

by the introduction of the weight factor, and thus the number of task’s dimension

is increased. Unfortunately, this involves the increase of the complexity of the

solution which this time will be Θ(n · V ·G). So we can deduce that we will need

a three-dimensional matrix in order to build the solution. The formula can be

easily deduced, in analogy with the solution from above:

optijk = max(opti−1,j,k, opti−1,j−vi,k−gi
+ ci).

8. The multidimensional task of the knapsack

We will present the general variant of the m-dimensional task of the knapsack,

where the meaning of n stays the same.

Let us consider a matrix R of dimensionsn · (m + 1) and a Q vector of m

elements.

Determine the X vector so that
n∑

i=1

XiRij ≤ (or =)Qj, j = 1, 2, . . . , m
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and the value of
n∑

i=1

XiRi,m+1

is optimal. The Xi values depend on the task’s variant. For example, we can

have:

• in the case of the binary variant 0 ≤ Xi ≤ 1.

• in the case of the bounded variant li ≤ Xi ≤ ui.

• in the case of the discrete variant Xi ∈ N, and in the case of the fractional

variant Xi ∈ Q.

Remark. We can notice the analogy between this general task, and the ones

presented before: the first m columns of the matrix R contain the dimensions

(e.g. volumes, weights etc.) of the n items, and the last (m + 1)th column the

cost of each item. The Q vector represents the dimensions of the knapsack.

In the general case the task is NP-complete, but we can improve a lot the

banal backtracking.

Task 4 – Collection

Alan has a lot of CD-s and DVD-s. He wants to label them with numbers,

so he went to the store to buy labels formed by digits. In the store there are n

(1 ≤ n ≤ 30) boxes, which are containing one-digit labels. One box contains some

0-digit labels, some 1-digit labels etc. (different packages may contain different

number of each kind of labels). He wants to buy some of these boxes of labels in

order to form the numbers from 1 to k (1 ≤ k ≤ 1000000) (k is the number of his

CD-s and DVD-s).

(1) Determine, if it is possible to buy some boxes, knowing that Alan wants to

use all of the bought labels (obviously, it is not sure that this is possible).

(2) If there are such boxes, determine the minimal number of them!

(3) Determine which boxes has to buy Alan!

Example: n = 4, k = 11

In the next table l means “label”.
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l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

box 1 0 1 0 0 0 0 1 1 0 0

box 2 1 2 1 1 1 1 0 0 0 0

box 3 0 1 0 0 0 0 0 0 1 1

box 4 0 2 0 0 0 0 1 1 1 1

The answers:

(1) Yes, it is possible.

(2) There are 2 boxes which have to be bought by Alan.

(3) That are: the second and the fourth one. (Extra details: the labels will be:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Alan will have 1 digit 0, 4 digits 1, 1 digit 2,

3, 4, 5, 6, 7, 8 and 9.)

Solution

The task can be cut in two subtasks. In the first one we have to determine

the vector of the numbers of the digits i (i = 0, 1, . . . , 9), which appear in the

numbers between 1 to k. Let us note this vector (having 10 elements) with A.

We can find these numbers in Θ(log k) time, using the dynamic programming

method.

Let us note the vector of boxes with B. The second subtask is to obtain a

subset of B, where
∑

i∈I

Bij = Aj , j = 0, 1, . . . , 9 and I = { the indexes of the boxes

in the corresponding subset }.

We cut B in two sets, S1 containing Bi, i = 1, 2, . . . , [n/2], and S2 = B \ S1,

with n− [n/2] elements. We determine all the subsets of S1, and calculate their

vectorial sums. After that, we sort these subsets according to their sums. In the

next step we calculate the vectorial sum of each subset of S2. Let us note with

V a sum of this kind. We want to add to V some elements from S1 in order to

obtain A. We use the binary search algorithm for A − V in the stored subsets

of S1.

Using a sorting algorithm with Θ(n log n) complexity, the sorting time will

be Θ(2[n/2] · log(2[n/2])) = Θ(2[n/2] · [n/2]). The searching time will be Θ(2[n/2] ·

log(2[n/2])) = Θ(2[n/2] ·[n/2]) that yields to Θ(2[n/2] ·[n/2]+logk) time complexity

for the whole solution. To store the input data we need Θ(n) memory and the

A vector takes Θ(1) memory. After that we need to store only the subsets of S1,

which yields to memory complexity Θ(n)+Θ(1)+Θ(2[n/2] ·n) = Θ(n+2[n/2] ·n).

Let us see the corresponding Pascal program:
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const mSubsets = 35000;

type vect = array[0..9] of Longint;

Tset = array[1..30] of Boolean;

Tsubset = record

v: vect;

n: Byte;

selected: Tset

end;

var b: array[1..30] of vect; { the content of the boxes }

n: Byte;

k: Longint;

a: vect; { the number of appearence of each digit from 1 to k }

subsets: array[1..mSubsets] of Tsubset;

{ again, we consider, that the compiler lets us allocate this }

nSubsets: Word;

ss: Tset; { needed by the backtracking algorithm }

solution: Tset;

nSolution: Shortint;

procedure BuildA(x, pow10, last: Longint);

{ builds the A vector, runs in log(k) time }

var q, digit: Shortint;

begin

digit := x mod 10;

if digit <> 0 then

Inc(a[0], (x div 10)*pow10);

for q := 1 to digit-1 do

Inc(a[q], (x div 10+1)*pow10);

Inc(a[digit], (x div 10)*pow10+last+1);

for q := digit+1 to 9 do

Inc(a[q], (x div 10)*pow10);

if x >= 10 then

BuildA(x div 10, pow10*10, digit*pow10+last)

end;

procedure BuildSubsets(sp: Byte);

{ builds all the possible subsets from the first [n/2] boxes }

var q,w: Byte;

begin

if sp > n div 2then begin

Inc(nSubsets);

FillChar(subsets[nSubsets], sizeof(subsets[nSubsets]), 0);

subsets[nSubsets].selected := ss;
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for q := 1 to n div 2 do

if ss[q] then begin

Inc(subsets[nSubsets].n);

for w := 0 to 9 do

Inc(subsets[nSubsets].v[w], b[q][w])

end;

end else begin

ss[sp] := false;

BuildSubsets(sp+1);

ss[sp] := true;

BuildSubsets(sp+1)

end;

end;

function less(var x, y:vect): Boolean; { Operations on vectors }

var q: Byte;

begin

q := 0;

while (q < 9) and (x[q] = y[q]) do

Inc(q);

less := x[q]<y[q]

end;

function Equal(var x, y: vect): Boolean;

var q: Byte;

begin

q := 0;

while (q < 9) and (x[q] = y[q]) do

Inc(q);

equal := x[q]=y[q]

end;

procedure SortSubsets(down, up: Byte);

var i, j: Byte;

m, c: Tsubset;

begin

m := subsets[(down+up) div 2];

i := down;

j := up;

repeat

while less(subsets[i].v, m.v) do

Inc(i);

while less(m.v, subsets[j].v) do

Dec(j);

if i <= j then begin
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c := subsets[i];

subsets[i] := subsets[j];

subsets[j] := c;

Inc(i);

Dec(j)

end;

until i > j;

if down < j then

SortSubsets(down, j);

if i < up then

SortSubsets(i, up)

end;

function BinarySearch(var dif: vect): Longint;

{ Returns -1 if dif could not be found }

var down, up, m: Word;

begin

down := 1;

up := nSubsets;

while down < up do begin

m := (down+up) div 2;

if Equal(subsets[m].v, dif) then begin

BinarySearch := m;

Exit

end else

if less(dif, subsets[m].v) then

up := m-1

else

down := m+1

end;

BinarySearch := -1;

end;

procedure FindSolution(sp: Byte);

{ generates all the possible subsets using the boxes from }

{ [n/2] + 1 to n, and binary searches for a solution }

var sum, difference: vect;

nSum, q, w: Byte;

aux: Longint;

begin

if sp > n then begin

Fillchar(sum, sizeof(sum), 0);

nSum := 0;

for q := n div 2 + 1 to n do

if ss[q] then begin
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Inc(nSum);

for w := 0 to 9 do Inc(sum[w], b[q][w])

end;

difference := a;

for q := 0 to 9 do

Dec(difference[q], sum[q]);

aux := BinarySearch(difference);

if (aux <> -1) and

((nSolution > nSum+subsets[aux].n) or (nSolution = -1)) then begin

{ we found a better solution or this is the first one }

nSolution := nSum + subsets[aux].n;

Fillchar(solution, sizeof(solution), false);

for q := 1 to n div 2 do

solution[q] := subsets[aux].selected[q];

for q := n div 2 + 1 to n do

solution[q] := ss[q]

end

end else begin

ss[sp] := false;

FindSolution(sp+1);

ss[sp] := true;

FindSolution(sp+1)

end

end;

Begin

{ read data }

FillChar(a, sizeof(a), 0);

BuildA(k, 1, 0);

nSubsets := 0;

BuildSubsets(1);

SortSubsets(1, nSubsets);

nSolution := -1;

FindSolution(n div 2 + 1);

{ write data }

End.

9. Special task

Task 5 – Sticks 2

Let us remember the task Sticks 1 presented above. But now we have to

determine the number of possibilities of the grouping of the sticks in two “lines”, so

that the difference between this two “lines” length to be minimal and to determine
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also, the value of this minimum. We have some changes related to the restrictions:

there are n (2 ≤ n ≤ 32) sticks, and their lengths are between 1 and 1000000.

Example: n = 4, length = (1, 2, 4, 6). The minimal difference is 1 and there

are 2 such groupings, that are: (1 + 2 + 4 = 7) and 6, (2 + 4 = 6) and (1 + 6 = 7).

Solution

We will consider all the possible subsets which can be formed by the first [n/2]

sticks, and we will sort them corresponding to the sum of their total lengths. After

that we will determine all the possible subsets which can be formed by the last

n − [n/2] sticks. For all the subsets A, obtained in such a way, we will search a

subset B (using binary search) in the first list of the subsets which has its value

closest to S/2− x, where S is the total length of all the given sticks and x is the

total length of the sticks from subset A. The “candidate” group of the sticks will

be obtained by uniting set A and B. If the length of the line is closer to S/2 than

the solution obtained before now, that means we have a new minimal difference,

and (for the moment) only one way to reach it. If the difference is equal to the

actual one, we will increment the number of the possibilities. At the end, we will

write the value of the minimal difference and the number of the groupings which

lead to it.

Let us analyse the complexity of this algorithm. For each subset A (there

are approximately 2[n/2] such subsets) we make a binary search on the first list

(which has 2[n/2] elements). This yields to complexity Θ(2[n/2] · log2 2[n/2]) =

Θ(2[n/2] · [n/2]), which is substantially better than the naive Θ(2n) backtracking.
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