
i

i

“katai” — 2008/12/19 — 14:17 — page 25 — #1
i

i

i

i

i

i

tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

INFODIDACT (2008), 25–35

The single-source shortest paths

algorithms and the dynamic

programming

Zoltán Kátai

Abstract. In this paper we are going to present a teaching—learning method that help
students look at three single-source shortest paths graph-algorithms from a so called
“upperview”: the algorithm based on the topological order of the nodes, the Dijkstra
algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond
the presentation of the algorithms, to offer the students a view that reveals them the
basic and even the slight principal differences and similarities between the strategies.
In order to succeed in this object, teachers should present the mentioned algorithms as
cousin dynamic programming strategies.

Key words and phrases: optimal path algorithms, graph theory, teaching methods, pro-
gramming techniques.

ZDM Subject Classification: B10, C70, K30, P50, Q30, Q60.

1. Introduction

Comenius, [1] considered the founder of modern teaching, made the following

statement regarding teaching methods: “To teach means scarcely anything more

than to show how things differ from one another in their different purposes, forms,

and origins. . . . Therefore, he who differentiates well teaches well.” In this paper

we are going to present a teaching—learning method that help students look at

three famous single-source shortest paths graph-algorithms from a so called “up-

perview”: the algorithm based on the topological order of the points, the Dijkstra

Copyright c© 2008 by University of Debrecen

i

i

“katai” — 2008/12/19 — 14:17 — page 26 — #2
i

i

i

i

i

i

26 Zoltán Kátai

algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, be-

yond the presentation of the algorithms, to offer the students a view that reveals

them the basic and even the slight principal differences and similarities between

the strategies. According to the Comenius principle this is essential, if we want

to master this field of graph theory and programming.

We use the notion of “upperview” in the following sense [10]:

(1) We can see the entities being analyzed “next to each other”.

(2) Only those elements can be seen which are essential for the analysis.

(3) The similarities and differences are obvious, the connections are striking.

The purpose of the method is to offer the student a position where to have

such a view to the analyzed object. In order to succeed in this, teachers should

present the mentioned algorithms as cousin dynamic programming strategies.

As an illustration of the didactic value of the “upperview method”, consider

the following exercise. Given three rational numbers (11/119, 2/21, 5/51), look

for similarities, differences and relations among them. At first sight there is not

any evident relation among the three numbers. However, if we determine the

common denominator of them, we obtain: 33/357, 34/357, 35/357. Having this

form it is obvious that the three numbers are successive members of an arithmetic

progression with common difference 1/357. In the case of the mentioned graph-

algorithms the common denominator can be considered the common strategy they

use, namely, the dynamic programming method. The “common denominator

method” can be seen as an application of the “upperview method”.

2. The shortest paths problem and the dynamic programming

The single-source shortest paths graph-algorithms solve the following prob-

lem: Given a weighted digraph (G(V, E, w), V : set of nodes, E: set of arcs,

w : E → R weight function) with n nodes 1, 2, . . . , n and m arcs, determine the

shortest paths from the node s (source node) to all the other nodes (destination

nodes). The notation wsp(v) represents the weight of the shortest path from the

source node s to the node v (v ∈ V).

If the graph is acyclic, then the best algorithm is based on the topological

order of the nodes. The complexity of this algorithm is O(n + m) [6]. If G

contains cycles but no arcs with negative weight, the best solution for the single-

source shortest paths problem is the Dijkstra algorithm. The complexity of the

Dijkstra algorithm is O(n2) (using special date-structures this complexity can be

i

i

“katai” — 2008/12/19 — 14:17 — page 27 — #3
i

i

i

i

i

i

The single-source shortest paths algorithms and the dynamic programming 27

improved) [6]. The Bellman-Ford algorithm solves efficiently the problem in the

case when the graph has cycles and negative arcs, but there are not feasible cycles

with negative weight (the sum of the weights of the arcs that constitute the cycle

is negative). The complexity of the Bellman-Ford algorithm is O(nm) [6].

In the book entitled Introduction to Algorithms [6] the authors are trying to

find a kind of common denominator among the discussed algorithms by presenting

them as applications of the so called successive approximation method. (Interest-

ingly, the authors consider the Dijkstra algorithm mainly a greedy strategy, and

in the case of the two other algorithms they do not make any connection with a

specific programming technique.) Sniedovich [11] goes further and presents the

mentioned algorithms as dynamic programming strategies on the base of the fact

that the successive approximation method is a dynamic programming strategy

(Other references: [4, 9]). (According to Sniedovich [11], a careful reading of

Dijkstra’s original paper [3] “leaves no room for doubt” that methodologically

the Dijkstra algorithm is based on Bellman’s Principle of Optimality and techni-

cally it constitutes a successive approximation procedure for the solution of the

functional equation of dynamic programming associated with the single-source

shortest paths problem.)

There are to strategies to transpose the functional equation of dynamic pro-

gramming into an algorithm: the direct method (“direct-conversion” of the func-

tional equation into an iterative procedure) and the successive approximation

methods (after an initial approximation, the (s → v) “distances” (v ∈ V) are

successively updated (improved) either by the functional equation itself or by an

equation related to it) [11].

The didactical method presented in this paper brings the three shortest paths

algorithm much closer to each other, and, consequently, transmits to the students

a much clearer “upperview” than the methods mentioned above.1

3. The principals of the dynamic programming

The dynamic programming is characterized by the following principals:

(1) The dynamic programming strategy can be considered as an implementation

of the principal of the optimality: the optimal solution is built by optimal

sub-solutions. Consequently, the dynamic programming follows this strategy:

starts from the optimal solutions of the trivial sub-problems and builds the

1 This research was supported by the Research Programs Institution of the Sapientia University.

i

i

“katai” — 2008/12/19 — 14:17 — page 28 — #4
i

i

i

i

i

i

28 Zoltán Kátai

optimal solutions of the more and more complex sub-problems and eventually

of the original problem. (Bottom-up way) In the case of the shortest path

problem this principal can be announced as it follows: Parts of any shortest

path are also shortest paths.

Consequences of the principal of the optimality in the case of shortest

paths problem [6]:

• The optimal paths with more arcs can be built from optimal paths with

fewer arcs.

• The optimal paths constitute a rooted tree. All the three algorithms

build this optimal-paths-tree as one which grows progressively from the

root node s. (At each step the tree is extended with a new arc which

binds to the tree a new node.)

• If the node u is the predecessor of the node v on the optimal path from

s to v, then:

wsp(v) = wsp(u) + w(u, v).

• For all arcs (u, v) it is true that:

wsp(v) ≤ wsp(u) + w(u, v).

(2) The basic principle of optimality is expressed by a recursive formula (named

by Bellman as the dynamic programming functional equation), which de-

scribes mathematically the way in which the solutions of the more and more

complex sub-problems are built from the simpler sub-problems’ optimal so-

lutions.

In the case of the shortest paths problem the functional equation has

the following form (for each node v, pred(v) denote the set of the immediate

predecessors) [11]:

wsp(s) = 0 (we assume that pred(s) = ∅)

wsp(v) = ∞, if pred(v) = ∅, and v 6= s

wsp(v) = min{wsp(u) + w(u, v) | u ∈ pred(v) }, if pred(v) 6= ∅

(3) The dynamic programming method records the optimal values of the optimal

solutions of the already solved sub-problems (the optimal values of the object

function to be optimized concerning the respective sub-problems).

According to the successive approximation method all the three algo-

rithms we are going to present use a distance array d[1..n] (the weights of the

i

i

“katai” — 2008/12/19 — 14:17 — page 29 — #5
i

i

i

i

i

i

The single-source shortest paths algorithms and the dynamic programming 29

arcs can also be seen as distances), where the element d[v] stores the “current

optimal weight” (in the actual stage of the algorithm) of the path from the

node s to the node v. Initially all the elements of the array d are set with

∞, excepted d[s] which is set with 0. During the algorithm the values of the

elements d[v] (v = 1, . . . , n) are updated (hopefully decreased) according to

the following procedure (updating operation on the basis of the arc (u, v)):

if d[v] > d[u] + w(u, v) then

d[v] = d[u] + w(u, v)

end if

In the end of the algorithms the array d will contain the “wsp-values” of

the nodes (d[v] = wsp(v) for all v = 1, . . . , n).

An other classification of the dynamic programming strategies is based

on the way the “wsp-values” are calculated. The so called “pull-approach”

calculates direct (not through an updating process) the “wsp-value” of the

current node on the basis of the already calculated “wsp-values” of its immedi-

ate predecessors. This approach is an immediate application of the functional

equation, and can be used only for the acyclic graphs. In this case the array

d[1..n] can be replaced with the array wsp[1..n], which elements are calculated

according to the topological order of the nodes [2, 8, 9, 11].

The key idea in the case of the “push-approach” is to propagates any

improvement that has been made in the current node u (the d[u] value has

been updated) to its immediate successors (if v is a successor of the u, than

d[v] is updated on the basis of the arc (u, v)). The algorithm ends when any

other improvements cannot be performed. All the three algorithms we are

presenting apply the “push-approach” [5, 7, 9, 11].

4. Shortest path algorithms as dynamic programming strategies

According to the above exposed ideas we can state that:

• If node u is the immediate predecessor of node v on the optimal path from s

to v, then the wsp(v) value can be figured out (d[v] reaches its minimum) only

after the wsp(u) value has been determined (d[u] has already been reached

its minimum).

• The wsp(v) value is calculated by updating d[v] on the basis of the arc (u, v)

(after d[u] has already been reached the wsp(u) value).

i

i

“katai” — 2008/12/19 — 14:17 — page 30 — #6
i

i

i

i

i

i

30 Zoltán Kátai

Consequently the algorithms, in order to determine the “wsp-values” for the

all nodes, have nothing else to do than to update the array d on the basis of the

arcs of the shortest paths tree in their topological order (topological-optimal tree-

arc-sequence). According to this order, arc i precedes arc j if arc i precedes arc j

on any shortest path of the graph. (Evidently, the topological-optimal tree-arc-

sequence is not unique.) This updating process in effect is a dynamic program-

ming solution-building process.

Since the shortest paths tree is unknown (this tree represents the solution

of the problem) the algorithms generate arc-sequences which contain, as sub-

sequence, the topological-optimal tree-arc-sequence necessary for the dynamic

programming building process. The basic difference between the presented al-

gorithms is the way they generate a proper arc-sequence.

4.1. The algorithm based on the topological order of the nodes

In the case that the graph is acyclic it is obvious that if we sort the arcs

of the graph on the basis of the topological order of their start points this arc-

sequence will contain, as sub-sequence, a topological-optimal tree-arc-sequence.

Consequently, this algorithm traverses the nodes of the graph (starting with node

s) according to their topological order, and updates the d[v] value of all immediate

successors of the current node u (v ∈ succ(u)) on the basis of the arc (u, v)

(Figure 1(a))

Remarks:

• At the moment we have arrived to a node, the corresponding element in array

d already stores its “wsp-value”. The algorithm only confirms this optimal

value.

• The succession the “wsp-values” of the nodes are determined (confirmed) is

“predestinate” by the topological order of this nodes. The topological order

of the nodes can be established by a DFS procedure.

• The algorithm attempts to approximate with each arc at most ones.

4.2. The Dijkstra algorithm

In the case of the Dijkstra algorithm the cycles are welcome, but arcs with

negative weight are not allowed. In this situation it can be observed that along the

shortest paths the “wsp values” of the nodes are in ascending order. Consequently,

the Dijkstra algorithm traverses the nodes of the graph according to the ascending

i

i

“katai” — 2008/12/19 — 14:17 — page 31 — #7
i

i

i

i

i

i

The single-source shortest paths algorithms and the dynamic programming 31

1(1)
[0]

6(5)
[110]

5(6)
[100]

4(4)
[160]

[150]

3(3)

[50]

2(2)

50
(1)

120(3)

110(2)

1
5
0
(9

)

6
0
(6

)

5
0
(5

)

1
0(7)

100(4)

30
(10

)

4
0
(8

)

80(11)

(1,2), (1, 5), (1, 6), (2,3), (2,5), (2,6), (3,4), (3, 5), (3, 6), (4, 5), (6, 5)

(a)

1(1)
[0]

6(4)
[110]

5(3)
[100]

4(6)
[160]

[150]

3(5)

[50]

2(2)

50
(1)

120(3)

110(2)

(1
0)

1
5
0

6
0
(6

)

5
0
(5

)

1
0(8)

100(4)

(11
)

30

(9
)

4
0

(7)80

(6, 5), (3, 5), (3, 6), (4, 5)(1,2), (1, 5), (1, 6), (2,3), (2,5), (2,6), (3,4),

(b)

1(1):0
[0]

6(3):2
[110]

5(5):2
[100]

4(6):2
[160]

[150]

3(4):2

[50]

2(2):1

50
(9)

:1

120(3)

110(2)

1
5
0
(1

0)

6
0
(1

):
2

5
0
(6

):2

1
0(8):2

100(5):2

30
(11

)

4
0
(7

)

80(4)

1: (2, 6), (1, 5), (1, 6), (6, 5), (2, 3), (2, 5), (3, 5), (3, 4), (1,2), (3, 6), (4, 5)
2: (2,6), (1, 5), (1, 6), (6, 5), (2,3), (2,5), (3, 5), (3,4), (1, 2), (3, 6), (4, 5)

(c)

Figure 1. The strategies of the Topological (a) / Dijkstra (b) /
Bellman-Ford (c) algorithms. The “topological-optimal tree-arc-
sequence”, as sub-sequence of the generated arc-sequence, is bolded.

i

i

“katai” — 2008/12/19 — 14:17 — page 32 — #8
i

i

i

i

i

i

32 Zoltán Kátai

order of their “wsp-values”, and updates the d[v] values of all immediate successors

of the current node u (v ∈ succ(u)) on the basis of the arc (u, v). This arc-sequence

contains, as sub-sequence, a topological-optimal tree-arc-sequence (Figure 1(b))

Remarks:

• It is evident that in this case the order the “wsp-values” of the nodes are

determined (confirmed) is unpredictable. Therefore Dijkstra’s algorithm de-

termines this order on the fly (during the algorithm): If the node v is the

out-neighbour of the current (confirmed) shortest-path-tree that is “closest”

to the source node (according to the current values of the array d), then d[v]

is confirmed as the “wsp-value” of the node v (wsp(v) = d[v]). (This greedy

choice can be justified as follows: if the other out-neighbours are farther from

the node s than the node v, then through this nodes cannot lead shortest

paths from s to v than d[v]). In the other words, v is the next node where

the shortest path is confirmed. If the last update of the element d[v] was

performed on the basis of the arc (u, v), then node v is linked to the shortest-

paths-tree through this arc. We could say that wsp(v) is the next value in

the ascending succession of the “wsp-values” of the nodes.

• The algorithm attempts to approximate with each arc at most ones.

5. The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest paths problem

efficiently when the graph contains cycles and “negative-arcs”, but there are not

feasible cycles with negative weight. In this case it is unknown any method that

generates such arc-sequence (containing each arc at most ones) which contains, as

sub-sequence, a topological-optimal tree-arc-sequence. Therefore this algorithm

goes through (in arbitrary order) all the arcs of the graph (and attempts to

approximate with them) again and again until the arc-sequence generated in this

way finally will contains, as sub-sequence, a topological-optimal tree-arc-sequence

(Figure 1(c)).

Remark:

• It needs at most (n−1) tours. During a last extra-tour the algorithm realizes

that all elements of the array d have reached their optimal value (“wsp-

value”). (There were not any updates.)

i

i

“katai” — 2008/12/19 — 14:17 — page 33 — #9
i

i

i

i

i

i

The single-source shortest paths algorithms and the dynamic programming 33

6. Teaching method for the single-source shortest paths algorithms

According to the presented material we suggest the following didactical

method:

• The teacher presents the principals of the dynamic programming with respect

to the single-source shortest paths problem.

• The teacher helps students to understand that

– the “wsp-values” of the nodes can be determined by updating the ele-

ments of the array d on the basis of the arcs of the shortest paths tree

in their topological order.

– this arc-sequence is unavailable directly.

– the updating process effectuated according to the “topological-optimal

tree-arc-sequence” constitutes dynamic programming.

• The teacher helps students to realize that the “topological-optimal tree-arc-

sequence” can be generate as sub-sequence of

– a complete arc-sequence sorted by the topological order of the start-

points of the arcs (acyclic graph).

– a complete arc-sequence sorted on the basis of the “wsp-values” of the

start-points of the arcs (graph without “negative arcs”).

– “multiple arc-sequence” (graph without feasible “negative cycles”).

• The teacher explains how the three algorithms generate the above mentioned

arc-sequences, and update the array d on the basis of them.

• The students are invited to identify the specific characteristics of the three

algorithms. For example:

– The first algorithm can predict the node-succession the “wsp-values” are

determined (confirmed).

– The second algorithm determines (confirms) the “next wsp-value” on

the fly with greedy choices.

– The third algorithm has to generate a “multiple arc-sequence”.

• The students implement the algorithms.

i

i

“katai” — 2008/12/19 — 14:17 — page 34 — #10
i

i

i

i

i

i

34 Zoltán Kátai

7. Conclusions

The “upperview character” of the teaching method described above can be

illustrated as follows. We denote the three graph-algorithms with the following

initials: T, D and BF (Topological, Dijkstra, Bellman-Ford). As this letters at

firs sight do not have any commonality, the students may not find any common

feature in the algorithms the letters represent. The way the presented method

transforms the “image of the algorithms” (in the students’ mind) into a so called

“common denominator form” can be illustrated with the “fractions” below:

GT/DP GD/DP GBF/DP

DP denotes the common basis of the algorithms: Dynamic Programming.

GT, GD and GBF denote the ways the algorithms generate “topological-optimal

tree-arc-sequence”-s.

As the above illustration also emphasizes, there are more common features in

the presented algorithms than the fact that all of them apply the successive ap-

proximation variant of the dynamic programming method. The presented method

accentuates that the core idea in all the three algorithms is to generate a topo-

logically ordered sequence of the arcs of the shortest paths tree (in order to make

updating operation on the basis of this arc-succession), and all the three algo-

rithms provide these arc-sequences as sub-sequences of “proper ordered complete

arc-sequences” or of a “multiple arc-sequence”. This approach transmits to the

students a much clearer “upperview” than the traditional ones.

References

[1] Comenius, Orbis sensualium pictus, 1653.

[2] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

[3] E. W. Dijkstra, A note on Two Problems in Connexion with Graphs, Numerische

mathematik 1 (1959).

[4] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Whinston, NY, 1976.

[5] E. V. Denardo and B. L. Fox, Shortest-route methods: 1. Reaching, pruning, and
buckets, Operations Research 27 (1979).

[6] T. H. Cormen, C. E. Leirserson, R. L. Rives, Introduction to Algorithms, The Mas-
sachusetts Institute of Technology, 1990.

[7] D. Bertsekas, Linear Network Optimization, The MIT Press, Cambridge, MA, 1991.

i

i

“katai” — 2008/12/19 — 14:17 — page 35 — #11
i

i

i

i

i

i

The single-source shortest paths algorithms and the dynamic programming 35

[8] M. Sniedovich, Dynamic Programming, Marcel Dekker, NY, 1992.

[9] E. V. Denardo, Dynamic Programming, Dover, Mineola, NY, 2003.

[10] Z. Kátai, “Upperview” algorithm design in teaching computer science in high
schools, Teaching Mathematics and Computer Science 3, no. 2 (2005), 221–240.

[11] M. Sniedovich, Dijkstra’s algorithm revisited: the dynamic programming connexion,
Control and cybernetics 35, no. 3 (2006), 599–620.

ZOLTÁN KÁTAI

SAPIENTIA–EMTE

TÎRGU-MUREŞ

ROMANIA

E-mail: katai zoltan@ms.sapientia.ro

(Received May, 2008)

