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Verification of human-level proof

steps in mathematics education
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Abstract. Automated mathematics tutorial systems need support from a reasoning mod-
ule which can verify the correctness of students’ contributions. However, current systems
typically do not reason at a level similar to the student’s reasoning level, and do not
fully account for underspecified or ambiguous inputs. We present a domain-independent
method for automatically verifying correct proof steps and detecting standard reasoning
errors. We use a depth limited BFS proof search to determine and maintain multiple
possible interpretations consistent with the given proof step, we are able to resolve or
otherwise propagate underspecification and ambiguity which occurs due to unrestricted
user input. Our approach has been implemented in Ωmega

CoRe.
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1. Introduction

In recent years a number of software tools have emerged which support auto-

matically tutoring mathematics. In particular, tools based on computer algebra

systems have been successfully used [22]. It has however been recognized that

in addition to computational tasks, students must learn how to conduct mathe-

matical argumentation and mathematical proofs [13]. Therefore tools have been

developed which focus on teaching proving skills. For propositional and first order

logic there are the CMU proof tutor [23], ProofEasy [8], alfie [28], Proofweb [18],

Jape [27] and WinKE [9], and for higher-order logic, ETPS [2]. These systems
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focus on pure logic and support proof construction using for example Fitch-style

diagrams or trees. Proof construction works essentially as follows: The student

selects a formula to be modified and can then try to apply a deduction rule –

mostly without having to state the result of the application of the rule.

A drawback of these types of system is that students must first learn the

commands and input syntax to be able to interact with the system. Furthermore,

students are able to construct a proof by randomly applying rules, without getting

a deeper understanding of the meaning of these rules, which are at a very low

level. In this regard it has also been shown that logic alone does not help humans

do more abstract proofs [12].

Consequently some tutorial systems support teaching mathematics at a more

abstract level, comparable to the type of mathematics taught in schools. These

include the EPGY Theorem Proving Environment [25], the Geometry Tutors [19]

and Tutch [1]. To teach this kind of mathematics, a tutor system must be able to

interact with the student at a level of reasoning similar to that which the student

uses to perform proofs. The student should be free to express mathematical ar-

guments in a natural way, and not be restricted, for instance, to rule applications

in the logic. Abel et al. also argue for abstracting away from the detailed logic

level: “Larger proofs . . . were tedious since each step had to be a single natural

deduction inference. For practical reasoning this restriction is highly unsatisfac-

tory. . . ” [1]. Huang [17] finds that human proofs are justified at the so-called

assertion level, that is by citing axioms, definitions, or theorems, or on the proof

level, such as “by analogy”. Therefore the tutorial system must be able to reason

at this abstract level. Allowing the student such freedom puts demands on the

tutorial system’s ability to verify the correctness of student inputs. We argue

that only a fully-fledged automated theorem prover (ATP) can offer sufficient

support. However, closing the gap between abstract, human level reasoning and

machine-oriented reasoning is a difficult task.

Another motivation for high-level reasoning is efficiency: Resolution of ambi-

guity and underspecification seems easier to conduct at the abstract rather than

at the detailled level. This is because each choice at the abstract level usually

corresponds to several choices at a lower level. The use of uninformed search

techniques at the low level to analyse and reconstruct abstract steps can thus

quickly lead to unacceptable system response times for complex problems. Also,

shallow methods, such as edit distances, cannot hope to capture the fine grained

distinctions necessary to verify formal correctness.



“dietrich” — 2009/2/18 — 23:35 — page 347 — #3

Verification of human-level proof steps in mathematics education 347

In this paper we describe a method of verifying students’ proof steps using

the mathematical assistance system ΩmegaCoRe. We apply a depth-limited BFS

proof search operating directly at Huang’s assertion level and a filter to deter-

mine possible consistent cognitive proof states of the student, which are then

maintained in ΩmegaCoRe’s proof data structure. Each cognitive proof state is

the representation of one possible interpretation of the proof steps performed

so far. Stated simply, a proof step is considered correct if at least one current

cognitive proof state can be extended in a consistent way to include the step.

An essential feature of our approach is that we can resolve the ambiguity and

underspecification which occurs due to the unrestricted nature of the student’s

proof steps. Ambiguities which can not immediately be resolved are propagated

as parallel cognitive proof states until enough information is available for their

resolution. Our approach is domain independent, that is, proof steps can be

verified in any mathematical domain which has been formalised in a standard

specification language supported by ΩmegaCoRe. This removes the need for pre-

authoring of solution graphs and also allows for unforeseen solutions. Proof steps

of varying length can be verified and a measure of their size can be computed.

Note that this requires a close correspondence between the student’s step and its

formal counterpart. In addition, the formal proof object which is incrementally

built during the proving session is available to the tutorial environment.

The structure of this paper is as follows: Section 2 introduces our corpus

of human/human tutorial dialogue from which we take our data and gives some

examples. We briefly present Huang’s assertion level in Section 3 before describing

the ΩmegaCoRe mathematical assistance system in Section 4. Section 5, the core

of the paper, shows how we represent and maintain the student’s cognitive proof

state and use it as the context to verify proof steps. In Section 6 we give example

verification followed by a sketch of how to deal with erroneous proof steps in

Section 7. Section 8 presents some evaluation data, Section 9 mentions some

related work and Section 10 concludes the paper.

2. Tutorial dialogue on mathematical proofs

The framework in which our research is being carried out is the Dialog

project [5], which has the final goal of natural tutorial dialogue between a stu-

dent and a mathematical assistance system. The student’s task is to build a proof

by performing natural language utterances which may contain proof steps. Each

correct proof step extends the current partial proof. In the wider scope of the
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project, domain-specific hints are generated when the student is stuck or shows

non-understanding of domain concepts. A natural language processing module

performs an analysis of student utterances and a tutorial module decides on ped-

agogical strategies.

2.1. A corpus of mathematical tutorial dialogues

Our approach to the verification of proof steps is motivated by phenomena

found in a corpus of tutorial dialogues, collected in the Wizard-of-Oz paradigm,

between students and experienced mathematics teachers [11]. The goal of the

experiment was to collect data on the use of natural and mathematical language

in a tutorial interaction and on the behaviour of students and tutors with respect

to the theorem proving task. After having seen some preparatory material intro-

ducing the theory of binary relations, students were asked to solve four exercises

in a session with the tutorial system. No restrictions were made with respect to

the type of language the student were allowed to use. Tutors rated each proof

step with respect to correctness, granularity (or proof step size) and relevance to

the current task. In the examples S refers to a student turn and T to a tutor

turn.

Figure 1 shows a fragment of a tutorial session in which the student has been

instructed to prove the theorem (R ◦ S)
−1

=
(

S−1 ◦ R−1
)

, where R and S are

relations.

S8: let (x, y) ∈ (R ◦ S)
−1

T9: correct

S10: hence (y, x) ∈ (S ◦ R)

T11: incorrect

S8a: we consider the subgoals

(R ◦ S)
−1 ⊂ S−1 ◦ R−1

and (R ◦ S)
−1 ⊃ S−1 ◦ R−1

S8b: first, we consider the

subgoal (R ◦ S)
−1 ⊂ S−1 ◦ R−1

Figure 1. Examples illustrating phenomena of the corpus

The approach taken by the student in the first example on the left of Figure

1 is to apply set extensionality and then to show that the subset relation holds

in both directions. The student begins in utterance S8 by directly introducing

a pair (x, y) in the set (R ◦ S)−1. This is rated as correct by the tutor, who

recognises that the student wants to prove both directions separately and that

the introduction of the pair (x, y) is useful due to the definition of subset. The

student then states an incorrect formula in S10, which the tutor rates as incorrect.
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Two alternatives ways that the student could have started the same exercise,

which we will use as running examples in this paper, are shown on the right in

Figure 1. In S8a the student explicitly splits the proof into two subgoals with an

application of set extensionality. In S8b the same rule is applied, but only one

of the two resulting proof obligations is explicitly presented.

2.2. Phenomena observed in the corpus

We analysed those utterances from the corpus which contain contributions to

the theorem proving task. We were able to identify a number of general phenom-

ena which must be accounted for in order to correctly verify (or reject) the proof

steps that students perform and to maintain correct consistent representations of

the proofs they are building.

Underspecification. Some subset of the complete description of a proof step is

often left unstated. Utterance S8 is an example of a number of different types

of this underspecification which appear throughout the corpus. The proof step

in S8 includes the application of set extentionality, but the rule is not stated

explicitly. The student also does not specify that of the two subgoals introduced

by set extentionality, he is now proving the subset direction, nor does he specify

that there is a second subgoal. Further, the number of steps needed to reach this

proof state is not given. Part of the task of analysing such steps is to instantiate

the missing information so that the formal proof object is complete.

Incomplete Information. Proof steps can, in addition to issues of underspeci-

fication, be missing information which is necessary for their verification by formal

means. For instance the utterance S8 is clearly a contribution to the proof, but

since the step only introduces a new variable binding, there is no assertion whose

truth value can be checked. However, anticipating that the student is using the

definition of subset A ⊂ B ⇔ x ∈ A ⇒ x ∈ B allows us to determine that the new

variable binding is useful. Utterance S8b is also a correct contribution, but the

second subgoal is not stated. This second subgoal is however necessary to verify

that proving the subset relation is part of justifying the equality of the sets, since

one subgoal alone does not imply the set equality which is to be shown.

These examples are evidence that verification in this scenario is not simply

a matter of logical correctness, but must take into account for instance proof

context.
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Ambiguity. Ambiguity pervades all levels of the analysis of the natural language

and mathematical expressions that students use. Even in fully specified proof

steps an element of ambiguity can remain. For example in any proof step which

follows S8a, we cannot know which subgoal the student has decided to work on.

Also, when students state formulas without natural language expressions, such

as “hence” or “conjecture”, it is not clear whether the formula is a newly derived

fact or a newly introduced conjecture. Again, this type of ambiguity can only be

resolved in the context of the current proof, and when resolution is not possible,

the ambiguity must be propagated. This must be done by maintaining multiple

parallel interpretations, which are retained until enough information has been

provided by the proof context to decide whether they are still consistent.

2.3. Linguistic markers of proof step type

The analysis of the students’ natural language utterances is a very challenging

area which we will not consider in this paper, however we refer to [16]. We assume

that the NLP module can deliver the formula that the student intended to utter.

The corpus shows that proof steps are embedded in utterances which carry

information about the type of the proof step which is important for its verification,

such as the phrase “we consider the subgoal” in utterance S8b in Figure 1. The

types of proof step we consider are let, which introduces new variables, hence,

which indicates a forward reasoning step, subgoal, which indicates a reduction

of a goal to subgoals, and assume, to make an assumption necessary to conduct

a proof by contradiction, and conjecture to state a lemma. We additionally use

done to claim that a proof goal has been closed and back to undo a proof step.

Thus we assume our input to be a pair 〈c, {f1 . . . f2}〉 where c is a proof step type

and fi are formulas.

3. The assertion level

Once students have attained a good background in logic and start to prove

more advanced theorems such as simple properties about sets and relations, it is

no longer feasible to communicate the complete proof as a sequence of natural

deduction inferences (c.f. [1]). Rather, students express their deduction steps as

shown in the examples in Figure 1, in a style which comes close to the proof repre-

sentation in mathematical textbooks. Huang analyses in [17] that human proofs

are justified at the so-called assertion level, that is by citing axioms, definitions,
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or theorems, or on the proof level, such as “by analogy”. To illustrate the differ-

ence between a typical proof step from a textbook and its formal counterpart in

natural deduction consider the following example:

Given the definition of a subset

∀U, V .U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V (1)

an assertion step consists of deriving a1 ∈ V1 from U1 ⊂ V1 and a1 ∈ U1. The

corresponding natural deduction proof is

∀U, V. U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V

∀V. U1 ⊂ V1 ⇔ ∀x ∈ U1 ⇒ x ∈ V1
∀E

U1 ⊂ V1 ⇔ ∀x.x ∈ U1 ⇒ x ∈ V1
∀E

U1 ⊂ V1 ⇒ ∀x.x ∈ U1 ⇒ x ∈ V1

⇔E
U1 ⊂ V1

∀x.x ∈ U1 ⇒ x ∈ V1

⇒E

a1 ∈ U1 ⇒ a1 ∈ V1
∀E

a1 ∈ U1

a1 ∈ V
⇒E

(2)

Even though natural deduction proofs are far more readable than proofs in

machine oriented formalisms such as resolution, we see that they are still at

a much lower level than proofs typically found in mathematical textbooks. In

the example above, a single assertion step corresponds to 7 steps in the natural

deduction calculus. This is mainly because each natural deduction rule stands

for a simple syntactical manipulation. It is clear that for teaching advanced

techniques, this level of interaction is far too low and too tedious, and that the

assertion level is much more suitable.

4. The ΩmegaCoRe prover

ΩmegaCoRe [24], a mathematical assistance environment comprising an inter-

active proof assistant, a proof planner, a structured knowledge base, a graphical

user interface, access to external reasoners, etc., has been under development

since the early 90’s at Saarland University. Similar to HOL4, Isabelle/HOL, Coq,

or Mizar, the overall goal of the project is to develop a system platform for formal

methods (not only) in mathematics and computer science. In ΩmegaCoRe, user

and system interact in order to produce verifiable and trusted proofs.

ΩmegaCoRe is based on Autexier’s CoRe calculus [3], which has been trans-

formed into an assertion level inference mechanism [10]. CoRe and our assertion
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level inference mechanism are (higher-order) variants of the deep inference ap-

proach1, that is, they support deductions deeply inside a given formula without

requiring preceding structural decompositions as needed in ND (or sequent cal-

culus). In ΩmegaCoRe we thus have a smaller “distance” between abstract level

proofs and their expansions to the verifiable assertion level. Most importantly, it

supports reasoning directly at the assertion level, that is the proof step given in

formula (1) corresponds to one inference step in the ΩmegaCoRe system.

Proof representation. ΩmegaCoRe provides an uniform abstract proof con-

struction interface, the so called task layer [10], which is used by the interactive

and automatic proof construction. The task layer uses a special tree-like proof

data structure [4] (PDS) to maintain proof attempts. The nodes of the PDS

are annotated with tasks, which are Gentzen-style multi-conclusion sequents aug-

mented by a means of defining multiple foci of attention on subformulas that

are maintained during the proof. Each subformula is annotated with a polarity

+ or −. A subformula f of a formula F has negative (or positive) polarity if

decomposing F introduces f on the left hand side (or right hand side) of the

sequent.

Proof search is realised by reducing a task to a possibly empty set of subtasks

by transformation rules which can be applied to subformulas. The basic transfor-

mation rules are inferences, representing the application of theorems, definitions,

and axioms2.

Each proof attempt is represented by an agenda. It maintains a set of sub-

problems which need to be solved to finish the proof of the overall conjecture the

user wants to show. Formally an agenda is a triple A = 〈T1, . . . , Tn; σ; Tj〉 where

T1, . . . , Tn are tasks, σ is a substitution instantiating meta-variables of the task,

and Tj =: current(A) is the task the user is currently working on. We will use the

notation 〈T1, . . . , Tj−1, Tj , Tj+1 . . . Tn; σ〉 to denote that the task Tj is the current

task. The set of agendas in the PDS is denoted by {A1, . . . ,Am} = ~A.

Automation in ΩmegaCoRe. Automation of proof search is realised in two

components: an extension of the multi-strategy proof planner Multi [21] and

the resource-guided agent-based reasoning system Ωants [26]. For the purpose

of this paper we focus on Multi, which integrates a basic set of algorithms

1http://alessio.guglielmi.name/res/cos/index.html
2Note that we employ the term inference in its general meaning; Taken in this sense an inference

can be either valid or invalid, in contrast to the formal logic notion of an inference rule.
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parametrised over strategic information. There are several search strategies im-

plemented. Among others, it includes a breadth-first proof planning algorithm

that is parametrised over inferences and control rules and which searches through

the space of applicable inferences by using the heuristic function defined by the

provided control knowledge.

5. Maintaining the student’s cognitive proof state

In this section we show how the ΩmegaCoRe prover can be used to (i) represent

possible cognitive states the student might be in, and (ii) to judge about the

correctness of a proof step of the student. We assume that tutoring takes place

in a mathematical domain, which we define to be a tuple 〈I, p〉 where I is a set

of formulas representing axioms, definitions, and theorems of the current theory

and p is the theorem to be proved.

5.1. Representing the possible cognitive proof states

The PDS is used to simultaneously represent all of the possible cognitive

proof states the student might be in. More specifically each agenda determines

one possible cognitive proof state. Given a problem and a theory the inferences are

automatically constructed from the formulas I and the initial PDS is constructed.

The initial PDS consists of one initial task T = Γ ` ∆ where Γ contains the

assumptions of the problem and ∆ is the proof problem to be shown. The initial

cognitive proof state is determined by the initial agenda, containing only the initial

task: A = 〈T ; ∅〉

5.2. Updating the cognitive proof states

Given a set of possible cognitive proof states ~A and a preprocessed utterance

s = 〈c, {f1, . . . , fn}〉, we must determine all possible successor states which are

consistent with the utterance s. For the sake of simplicity we only show how to

determine the successor states of a single cognitive proof state A ∈ ~A, denoted by

ϕ(A). Combining the result for each A ∈ ~A gives the complete set of successor

states. If no agenda can provide a consistent successor state, i.e. ∪
A∈ ~A

ϕ(A) = ∅,

the step is classified to be incorrect.
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Given a pair 〈c, {f1, . . . , fn}〉 and an agenda A, ϕ(A) is determined in four

steps: (i) A depth limited BFS search is performed at current(A)3 (including some

control knowledge to cut off irrelevant branches of the search space), resulting in

a set of successor nodes, (ii) from this, consistent successor nodes are selected and

partial agendas are created from them, (iii) the partial agendas are completed, and

finally (iv) the PDS is cleaned. The overall result is a confirmation of whether the

step could be verified, along with the side-effect that the PDS has been updated to

contain exactly the possible cognitive proof states resulting from the performance

of the step. We now illustrate each step of the algorithm schematically.

. . .

. . .

. . . . . .

. . .

. . .

Step (i). The node current(A) is expanded using a depth

limited BFS search. The depth limiter specifies how many

calculus steps4 the student is allowed to perform implicitly.

Intuitively we can think of this bound as reflecting the ex-

perience of the student, consequently it should be based on

a student model. This bound is needed to guarantee termination of the verifica-

tion algorithm, which might otherwise not terminate for a faulty step even if we

assume a complete calculus.

. . .

. . .

. . . . . .

. . .

. . .

Step (ii). Whereas step (i), (iii), and (iv) are independent

of the proof step type c, step (ii) differs for each c. There-

fore we introduce a filter function Θc to filter consistent

cognitive successor states for each type c. We apply this fil-

ter function Θc to get those successor states which possibly

represent the student’s cognitive state after applying the utterance. Note that in

general there may be several successor states satisfying Θc. To further restrict

the consistent successor nodes only those with minimal distance to the expansion

node are stored. For the types introduced in Section 2.3 we define the following

filters:

let: A node is classified by Θlet to be consistent if its corresponding task contains

f as a subformula with negative polarity, no conditions and the free variables

of f have been introduced. A negative subformula f of a formula F has

no conditions if the decomposition of F to obtain f in the sequent calculus

3Note that without restriction we can assume current(A) 6= ∅ in (i) (otherwise we transform

the A into a set of agendas representing all possibilities to select a task in A).
4Note that the correspondence of student steps to calculus steps may vary for each calculus.
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introduces no branching and f occurs on the left hand side of the resulting

sequent.

hence: A node is classified by Θhence to be consistent if its corresponding task

contains f as a subformula with negative polarity and no conditions. The

search is restricted in the sense that only new facts are derived during the

expansion of the agenda.

subgoal: Given the input 〈subgoal, {f1, . . . , fn}〉 the subgoal filter tries to find

successor nodes s1, . . . , sn in different branches such that each fi occurs as

a positive subformula in si. During the expansion, only reduction steps are

allowed, i.e. steps that reduce the current goal.

assume: Assume works similarly to let except that the PDS is searched for a

positive subformula where f is negated, i.e. ¬f or f ′ with ¬f ′ = f .

conjecture: Conjecture starts a new proof tree and tries to prove the conjecture

using the currently available knowledge. If the conjecture could be proved, it

is inserted into the knowledge base and hence available for the main proof.

done: Done is used to indicate that the proof is completed. It checks whether

the current goal(s) can be closed.

. . .

. . .

. . . . . .

. . .

. . .

Step (iii). The agendas obtained from step (ii) can be par-

tial, i.e. not all subgoals that must be solved are in the

agenda. Such situations occur if the prover reduces a task

to more than one subtask but the Θc does not select a node

from each branch. In this case the user has not modified

any of the missing subtasks. Hence it is reasonable to extend the partial agenda

by the tasks introduced by the reduction. We extend the agenda as shown on the

right.

Step (iv). Usually there will be many nodes which are generated by the

search but are rejected by the filter. All of these nodes are removed from

the PDS.

6. Example verification

In order to illustrate how the verification algorithm works, we will step

through the verification of utterance S8 from Figure 1, beginning with the initial

cognitive proof state and finishing with the cognitive proof state extended by the
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proof step. The initial cognitive proof state is {〈` (R ◦ S)−1 = S−1 ◦ R−1; ∅〉}
and the proof step to be verified is 〈let, {(x, y) ∈ (R ◦ S)−1}〉.

Having expanded the current task (step (i), shown in Figure 2), we apply

the filter Θlet to find the set of newly-created tasks which are consistent with the

given proof step.

T0 : ` (R ◦ S)−1 = S−1 ◦ R−1

Ti : ` (R ◦ S)−1 ⊆ S−1 ◦ R−1

Tk : (x, y) ∈ (R ◦ S)−1 ` (x, y) ∈ S−1 ◦ R−1 . . . Tl

Tj : ` (R ◦ S)−1 ⊇ S−1 ◦ R−1

Tm . . . Tn

Figure 2. The expanded task after step (i) of verification (abbreviated).

Of the tasks in the tree, only the node containing the task Tk passes, since the

formula in the proof step appears on the left hand side of the sequent. Now that we

have found the consistent successor tasks, we must complete any partial agendas

(step (iii)). Because the decomposition of the task T0 introduced a subgoal split,

the task Tj must be proved in addition to Tk. The resulting agenda is therefore

{〈Tk, Tj ; ∅〉}, that is, Tk is the now the current task, and Tj is still to be proved.

Finally in step (iv), we prune the nodes which were rejected by the filter, resulting

in the proof state shown in Figure 3. This becomes the initial state for the

verification of the student’s next proof step.

T0 : ` (R ◦ S)−1 = S−1 ◦ R−1

Ti : ` (R ◦ S)−1 ⊆ S−1 ◦ R−1

Tk : (x, y) ∈ (R ◦ S)−1 ` (x, y) ∈ S−1 ◦ R−1

Tj : ` (R ◦ S)−1 ⊇ S−1 ◦ R−1

Figure 3. The resulting proof state after verification.

This example has illustrated the verification algorithm for a single agenda

with a single successor state. For ambiguous steps, that is steps which result in

more than one successor task after the filter in step (ii), we simply create a new

agenda for each successor, and maintain these in the set of agendas ~A. Step (iii) is

done for each new agenda separately, and only those nodes which do not occur in
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any agenda are pruned in step (iv). An example of this is the verification of proof

step S8a. Here two successor agendas are created, {〈Ti, Tj ; ∅〉} and {〈Ti, Tj ; ∅〉},

differing only in which of the two tasks is the current task.

For the case in which the current proof state already contains multiple agen-

das, the entire verification process is carried out for each in turn. This is the

point at which ambiguities introduced in previous steps can be resolved: those

agendas which do not lead to successor states are deleted, and those which have

successors are maintained. For example, any proof step following S8a will belong

to either the left or right branch of the proof only, and will have no successor

tasks in the other branch. Thus the agenda in which the “wrong” current task

had been chosen will be deleted.

7. Error detection

When no cognitive proof state consistent with the filter corresponding to the

input proof step can be derived within n steps then the system is unable to verify

a proof step. There are two possible causes: (i) The step was logically correct,

but needs more than n deduction steps to be verified, (ii) the step was wrong. In

both cases the prover can deliver the valuable information that it was unable to

verify the proof step to the tutorial system. To also detect standard errors and to

be able to inform the tutoring system about them we extend the current theory

T = 〈I, p〉 to T ′ = 〈I, If , p〉 where If are inferences representing typical errors

in the domain. When the filter Θc does not find any consistent successor states

in step (ii) of verification, the prover attempts to verify the proof step using the

extended set of rules I ∪ If . If this is successful then the student has made a

mistake, and the prover can report the concrete error.

In the case of utterance S10 in Figure 1, the prover will not find any consistent

successor states for the call 〈hence, (s, r) ∈ R ◦ S〉 starting from the proof state

generated by 〈let, (s, r) ∈ (R ◦ S)−1〉. However by adding either the inference

(x, y) = (y, x) or (x, y) ∈ R ⇔ (x, y) ∈ R−1 to the set of rules, consistent successor

nodes can be found. The tutorial environment can then check in the proof object

which inference from If has been used, and offer suitable feedback.

8. Evaluation

We have evaluated our verification module with 17 tutorial dialogues taken

from the Wizard-of-Oz corpus described in Section 2, containing a total of 144
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proof steps. The steps within a single dialogue are passed to the verification

module sequentially until a step that is labelled as correct cannot be verified (using

a proof search depth of four), in which case we move on to the next dialogue. We

then compared the results of the automated proof step analysis with the original

correctness judgements given by the tutors.

Of the 116 correct steps, 113 (97.4%) were correctly verified and we correctly

classify 141 out of the 144 steps (97.9%) as correct or wrong. For the remaining

three steps the verification fails. This is due to our restriction of the search

space to either forward or backward search (at the assertion level) for efficiency

reasons. These steps are not captured by the current filter functions because they

require a mixture of both. It would be straightforward to allow such a mixture,

and we could easily implement a new filter function which would capture these

steps. However, we feel that these steps are exceptions and decided for the more

efficient variant. All steps in the example dialogue (c.f. Figure 4) are correctly

classified as valid by our verification module (used with proof depth four), taking

approximately 13.2 seconds on a standard PC.

s5: (x, y) ∈ s−1 ◦ r−1 ` ”—”
Close

s4: (z, y) ∈ r−1 ∧ (x, z) ∈ s−1 ` ”—”
Def.◦

(y, z) ∈ r ∧ (x, z) ∈ s−1 ` ”—”
Def−1

s3: (y, z) ∈ r ∧ (z, x) ∈ s ` ”—”
Def.−1

s2: (y, x) ∈ (r ◦ s) ` ”—”
Def.◦

s1: (x, y)∈ (r ◦ s)−1 ` (x, y)∈ s−1 ◦ r−1
Def.−1

` (r ◦ s)−1 ⊆ s−1 ◦ r−1
Def. ⊆

s10: (x, y) ∈ (r ◦ s)−1 ` ”—”
Close

s9: (y, x) ∈ (r ◦ s) ` ”—”
Def.−1

s8: (z, x) ∈ s ∧ (y, z) ∈ r ` ”—”
Def.◦

(x, z) ∈ s−1 ∧ (y, z) ∈ r ` ”—”
Def.−1

s7: (x, z) ∈ s−1 ∧ (z, y) ∈ r−1 ` ”—”
Def.−1

s6: (x, y)∈ s−1 ◦ r−1 ` (x, y)∈ (r ◦ s)−1

Def.◦

` s−1 ◦ r−1 ⊆ (r ◦ s)−1
Def. ⊆

t10: ` (r ◦ s)−1 = s−1 ◦ r−1
Def. =

Figure 4. Annotated Ωmega
CoRe assertion level proof for the example dialogue.

The main reason for the efficiency and the simplicity of our algorithm lies

in the fact that we directly search at the assertion level. Consequently, a small

search depth is sufficient to verify a correct proof step. Indeed, a search depth

of four already suffices to obtain the results shown above. Most importantly, our

proof representation is very close to the proof representation of the student, as

illustrated in Figure 4. Here, the formulas given by the student are shaded. The

number of assertion level steps required (13, excluding the automatic Close steps)

is still comparable to the number of proof steps as uttered by the student in the

original dialogue (10), which provides evidence that the ΩmegaCoRe assertion

level proof is at a suitable level of granularity. In particular this allows for a

further analysis of proof given by the student.
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9. Related work

Some of the wider challenges for domain reasoning in the context of tutoring

mathematical proofs, for instance dealing with ambiguity and underspecification,

have been highlighted in an analysis of an earlier corpus collected within the

Dialog project [6]. We show a possible approach to accounting for these chal-

lenges.

Our approach has some similarities to a number of implemented systems. The

SLOPERT system [30] operationalises human tutoring on differentiation prob-

lems, using a task model for calculating derivatives and a set of buggy rules that

model typical errors. The mathematical assistance system Scunak [7] implements

a domain-independent approach to verifying proof steps in textbook proofs which

maintains multiple proof interpretations. Rather than using proof search, steps

are considered correct if they have a continuation of at least one further proof step.

Also related to our work are the EPGY Theorem Proving Environment [20], using

Otter to justify or reject proof steps proposed to the environment, and Zinn’s [29]

computational framework for the analysis of textbook proofs.

By using existing mathematical knowledge to verify proof steps within a cur-

rent proof situation, our approach differs from more traditional solution check-

ing approaches in tutoring systems which match student contributions to pre-

authored or pre-compiled answers [14], [15]. This is not suitable for complex

mathematical domains, characterised by a possibly infinite solution space. We

also directly account for underspecification and multiple interpretations of stu-

dent proof step utterances. Our treatment of underspecification allows students

to enter arbitrary formulas without the need to state which rules are needed for

verification. Further, we construct one global, coherent proof object at the asser-

tion level for each dialogue instead of just looking from step to step. The provision

of a formal proof object allows further analysis of the granularity and relevance of

proof steps, not just their correctness. Finally, there is a strong theorem prover

working in the background.

10. Conclusions and further work

We have presented a domain-independent method of verifying correct proof

steps and detecting typical errors performed by students interacting with a tu-

toring system for mathematical proofs in natural language. Our approach can

be used in arbitrary mathematical domains without the need for pre-authoring
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solutions. We assume preprocessed input, however our input language can easily

be extended by adding new filters Θc. Most importantly, we directly search for

proofs at the assertion level, which enables us to employ a simple depth-limited

breadth-first search algorithm in our proof step verification module. Interestingly,

a depth limit of just four assertion level steps already enables our approach to

correctly classify 95.9% of the proof steps in our corpus.

Future work will include utilising a student model to check whether the proof

step is not only logically correct but also within the scope of the student’s current

knowledge. We will also investigate verifying goal-directedness of proof steps. In

order to offer further support to the tutoring system, we will use proof search to

supply suggestions of meaningful next steps when the student gets stuck.
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