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Abstract. We present a proof step diagnosis module based on the mathematical assistant
system Ωmega. The task of this module is to evaluate proof steps as typically uttered
by students in tutoring sessions on mathematical proofs. In particular, we categorise
the step size of proof steps performed by the student, in order to recognise if they are
appropriate with respect to the student model. We propose an approach which builds on
reconstructions of the proof in question via automated proof search using a cognitively
motivated proof calculus. Our approach employs learning techniques and incorporates
a student model, and our diagnosis module can be adjusted to different domains and
users. We present a first evaluation based on empirical data.
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1. Introduction: mathematical assistant

system support for teaching proofs

The Dialog project [7] studies natural language-based tutorial dialogue on

proofs. Within a tutorial dialogue, the student is given a proof exercise to be

solved interactively with the dialogue system. The system provides feedback
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to the student’s solution attempts and aids him in finding a solution, with the

overall goal to convey specific concepts and techniques of a given mathematical

domain. Due to the flexible and unpredictable nature of tutorial dialogue it is

necessary to dynamically process and analyse the informal input to the system,

including linguistic analysis of the informal input, evaluation of utterances in

terms of soundness, granularity and relevance, and ambiguity resolution at all

levels of processing. For the domain reasoning, the Dialog project employs the

mathematical assistant system Ωmega [27]. It allows the system to reconstruct

students’ proof steps [14]. These reconstructions serve as the basis for further

analysis, in particular, whether a given step presented by the student is correct,

but also whether it is of appropriate step size (i.e. “granularity”), and whether it

is relevant.

Overall, a number of different tutorial systems for teaching mathematics have

emerged. For propositional and first-order logic there are the CMU proof tu-

tor [26], ProofEasy [11], the HTML-based editor alfie [30], Proofweb [17], Jape [29]

and WinKE [12]. For higher-order logic there is ETPS [2]. These systems focus

on pure logic and support proof construction using, for example, Fitch-style dia-

grams or trees. To verify a proof step no search is required. Systems for teaching

mathematics at a more abstract level are the EPGY Theorem Proving Environ-

ment [28], [20], the Geometry Tutors [18] and Tutch [1]. Those systems allow

the user to perform abstract steps and use proof search in a machine-oriented

calculus such as resolution to verify them. Huang [16] argues in favor of the as-

sertion level as a suitable abstraction layer to represent human proofs. Assertion

level proofs justify proof steps by the application of axioms, definitions, or theo-

rems, or on the proof level, such as “by analogy”. The notion of assertion level

proof competes with other human-oriented calculi, such as the natural deduction

calculus [15] and its more refined variations (e.g. PSYCOP [24]). A recent investi-

gation [25] into the correspondence between human proofs and their counterparts

in natural deduction points out a mismatch with respect to their granularity.

Similar observations have been reported for EPGY in [20], where the resolution-

and paramodulation-based theorem prover Otter was used to reconstruct human

proofs. Limiting the use of Otter to a fixed time interval – in order not to allow

unreasonably large chains of thinking – turned out to be uninformative of whether

a given human proof step was indeed perceived as too complex or not.

In this paper, we argue for an approach that employs assertion level proof

search to reconstruct human-made proof steps in the system. Proofs at the asser-

tion level enable the dialogue system to suitably analyse the granularity of human
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proof steps, which in turn provides useful information for determining an appro-

priate reaction of the dialogue system to the student. The structure of this paper

is as follows: In Section 2 we present an empirical study which illustrates the role

of granularity in tutorial dialogues about proofs. In Section 3 we briefly present

the mathematical assistant system Ωmega, which is the basis for analysing proof

steps in the Dialog project. In Section 4 we identify criteria that are relevant

for determining different levels of granularity. In Sections 5 and 6 we present

our granularity analysis module and some first results obtained with a corpus of

tutorial dialogues.

2. Evidence from an experiment corpus

Research in the Dialog project is guided by empirical studies [7], [8], which

include two studies in the Wizard-of-Oz paradigm, where human experts (with

the help of a special computer interface [9]) simulated the behaviour of a tutoring

system for mathematical proofs. These studies highlight the requirements for the

modules of the system under development, including the analysis tasks that have

to be mastered by the domain reasoner. While the first series of experiments

led to the identification of the different domain reasoning tasks, the second series

of experiments required the tutors to annotate all domain contributions from the

students with judgements concerning correctness (i.e., correct, partially correct, or

incorrect), granularity (i.e., too detailed, appropriate, or too coarse-grained) and

relevance (i.e., relevant, limited relevance or irrelevant). Both experiments were

conducted with students from Saarland University and four experts with teaching

experience as the wizards1. The exercises were taken from the domains of naive set

theory (first experiment series) and binary relations (second experiment series).

The second series of experiments involved 37 students, who spent approximately

two hours each during an experiment session (including an introduction phase,

interaction with the Wizard-of-Oz system and questionnaires).

2.1. Correctness

Most importantly, proof step analysis includes the task of checking whether a

proof step is logically correct. An example of such a situation is given in Figure 1.

1 The experts consisted of the lecturer of a course Foundations of Mathematics, a maths teacher,

and two maths graduates with teaching experience.
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student 1: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

correct appropriate relevant

student 2: hence (y, x) ∈ (S ◦ R)

tutor: This step is not correct!

incorrect - -

Figure 1. Dialogue fragment exhibiting an incorrect step

Correctness – in contrast to granularity and relevance – is relatively simple

to verify. EPGY [20], for example, employs proof search in Otter. Our solution

to checking proof steps employs assertion level proof search and will be presented

in Section 3.

2.2. Granularity

Tutors in the Wizard-of-Oz studies were observed to reject proof steps for

other reasons than correctness. An example is the dialogue fragment displayed

in Figure 2, where the student’s task is to show that in the domain of binary

relations (where ◦ denotes relation composition, and −1 denotes inversion), the

equality (R ◦ S)−1 = S−1 ◦ R−1 holds.

student 1: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

correct appropriate relevant

student 2: (x, y) ∈ S−1 ◦ R−1

tutor: One cannot directly deduce that.

You need some intermediate steps!

correct too coarse-grained relevant

Figure 2. Dialogue fragment exhibiting inappropriate step size

The student (tacitly) tries to show that (R ◦ S)−1 ⊆ S−1 ◦R−1 by assuming

that (x, y) ∈ (R ◦ S)−1 (marked as student 1 in Figure 2). However, the tutor

notices that the statement student 2 requires further elaboration. He explicitly

asks the student to subdivide this step into intermediate steps (and indeed, this

step is not completely obvious, since it is not the case that (R◦S)−1 = R−1◦S−1 =

S−1 ◦ R−1, which relies on the misconception that ◦ is commutative, which it is



“schiller˙et˙al” — 2009/2/18 — 23:33 — page 329 — #5

Proof step analysis for proof tutoring – a learning approach to granularity 329

not). However, if we restricted proof step analysis to correctness checking, we

would fail to detect any difference between this student step and other more

trivial steps.

The developers of the EPGY theorem proving environment [20] encountered

similar problems when they used the automated theorem prover Otter to check

conjectured proof steps from the user. The use of Otter was restricted to five

seconds, in order not to allow too large “leaps of logic”. Still, this allowed Otter

to sometimes accept seemingly large steps, whereas seemingly easy steps were

sometimes not validated. This shows that counting the seconds of using Otter is

not a suitable measure for granularity.

We develop a more refined measure for granularity in Section 4.

2.3. Relevance

Proof steps which did not advance the proof state with respect to the proof

goal were often identified as “irrelevant” by the tutors, for example the step

displayed in Figure 3.

student 2: (a, b) ∈ S−1 ⇔ (b, a) ∈ S

tutor: This step is not relevant

correct appropriate irrelevant

Figure 3. Dialogue step lacking relevance (for proof problem: (R ◦ S)−1 = S−1
◦ R−1)

Relevance, like granularity, is a challenging topic for the dialogue-based teach-

ing of proofs. In the remainder of this paper we focus on the problem of identify-

ing appropriate levels of granularity of human-made proof steps. We address the

problem by using proof constructions at the assertion level, as supported in the

Ωmega system.

3. The domain reasoner: Ωmega

The Dialog project employs the mathematical assistant system Ωmega [27]

(i) to represent the mathematical theory in which the proof exercise is carried out,

that is, definitions, axioms, and theorems of a certain domain (ii) to represent the

ongoing proof attempts of the student using Ωmega’s proof data structure [4],

and (iii) to dynamically reconstruct intermediate steps necessary to verify each
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step entered by the student (see [14]). This allows us to support tutoring in the

spirit of cognitive constructivism [19], such that for a given proof problem, a large

variety of solutions can be reconstructed and analysed. In particular, given a

proof problem including the to-be-proven statement and the required definitions

and facts, any valid deduction up to a predefined number of assertion level steps

can be reconstructed (cf. [14]). These reconstructed proofs serve as the basis

for the further analysis of the students’ proof steps with respect to correctness,

granularity and relevance.

Different from other approaches to automated theorem proving, Ωmega uses

an assertion application mechanism [13], which is based upon Serge Autexier’s

CoRe calculus [3], as its logical kernel. The notion of assertion level proofs is due

to Huang [16], and characterises a proof representation where all inference steps

are justified by a mathematical fact from the knowledge base, such as definitions,

theorems and lemmata. Whereas originally, the assertion level was only the target

language for the presentation of machine-generated proofs (e.g. in a natural

deduction calculus), Ωmega now directly constructs proofs at the assertion level.

CoRe and our assertion level inference mechanism are (higher-order) variants

of the deep inference approach2, that is, they support deductions deeply inside

a given formula without requiring preceding structural decompositions as needed

in natural deduction (or sequent calculus). As a result, we obtain proofs where

each inference step is justified by a mathematical fact, such as a definition, a

theorem or a lemma. To illustrate the difference between a typical proof step

from a textbook and its formal counterpart in natural deduction consider the

following example:

Given the definition of subset

∀U, V . U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V

an assertion step consists of deriving a1 ∈ V1 from U1 ⊂ V1 and a1 ∈ U1. The

corresponding natural deduction proof is shown below:

∀U, V. U ⊂ V ⇔ ∀x.x ∈ U ⇒ x ∈ V

∀V. U1 ⊂ V ⇔ ∀x.x ∈ U1 ⇒ x ∈ V
∀E

U1 ⊂ V1 ⇔ ∀x.x ∈ U1 ⇒ x ∈ V1

∀E

U1 ⊂ V1 ⇒ ∀x.x ∈ U1 ⇒ x ∈ V1

⇔E

U1 ⊂ V1

∀x.x ∈ U1 ⇒ x ∈ V1

⇒E

a1 ∈ U1 ⇒ a1 ∈ V1

∀E
a1 ∈ U1

a1 ∈ V1

⇒E

2 http://alessio.guglielmi.name/res/cos/index.html



“schiller˙et˙al” — 2009/2/18 — 23:33 — page 331 — #7

Proof step analysis for proof tutoring – a learning approach to granularity 331

Even though natural deduction proofs are far more readable than proofs in

machine-oriented formalisms such as resolution, we see that they are at a much

lower level than proofs typically found in mathematical textbooks. In the example

above, a single assertion step corresponds to six steps in the natural deduction

calculus. This is mainly because each natural deduction rule stands for a simple

manipulation of the logical structure of a formula. Assertion level inference rules

in Ωmega are automatically generated from the axioms of the problem statement

(cf. [5]).

The reconstruction of a student proof step in Ωmega is achieved by using a

depth-limited breadth-first search (with pruning of superfluous branches). For a

given proof state and one utterance, all possible successor states up to a speci-

fied depth limit are constructed. From these, those successor states that match

the given utterance with respect to some filter function (analysing whether a

successor state is a possible reading of the student proof step) are selected. An

utterance that leads to at least one such successor state is reported by the mod-

ule to be correct, otherwise it is reported to be incorrect. It is possible that

a proof step is wrongly rejected because of a too restrictive depth limit. How-

ever, a first case study shows that even with a depth limit of four assertion level

steps, the vast majority of steps (95.6%) taken from a sample of proofs obtained

in the second Wizard-of-Oz experiment can be correctly identified as correct or

incorrect (cf. [6]).

4. Granularity criteria

In order to develop an algorithm that judges the granularity of individual

(human-made) proof steps, we have started with the simple approach of recon-

structing these proof steps in a suitable calculus (which generally resulted in

several calculus level proof steps corresponding to one single utterance), and iden-

tifying the step size of a given proof step with the number of calculus level proof

steps that correspond to it. A case study (reported in [25]) was undertaken with

both Gentzen’s natural deduction calculus [15] and the psychologically motivated

PSYCOP calculus [24] as the base calculus for the proof reconstruction. However,

the study provided evidence that counting calculus level steps in neither of the

two calculi provided a sufficient means for characterising granularity, and that

more sophisticated criteria for measuring granularity are required. In particular,

the approach did not account for all the different granularity-related phenomena
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we could observe in the corpora obtained in the Wizard-of-Oz experiments. We

list some of them below.

Merging different concepts

The combination of several applications of the same definition or theorem (re-

lating to the same concept) into one proof step was observed frequently, consider

the example in Figure 4.

student 4: ∃ z , such that (b, z) ∈ R and (z, a) ∈ S

tutor: Right. correct appropriate relevant

student 5: Then (z, b) ∈ R−1 and (a, z) ∈ S−1

tutor: Correct. correct appropriate relevant

Figure 4. Dialogue fragment illustrating two applications of the con-
cept of relation inverse

Here, the fact that (x, y) ∈ R iff (y, x) ∈ R−1 for any x,y is applied twice.

This was never subject to criticism by the tutors. In fact, from a cognitive view-

point, applying the same mathematical fact several times requires retrieving the

relevant concept in memory only once, where it is readily available for subsequent

applications. The same is not true for using several different concepts in one step,

which was sometimes subject of criticism from the tutors. Therefore, we consider

the number of different concepts required to justify a given proof step as one

criterion for its granularity (rather than the mere number of calculus level steps).

Note that this is easily possible in our approach, as we reconstruct and main-

tain a student’s proof attempt at the assertion level. Here, a single deduction

step corresponds to a concept application. Consequently the information about

what concepts are involved is directly available. This this not the case in natu-

ral deduction or resolution, where this information is generally more difficult to

obtain.

Verbal explanation

Whether students explicitly referred to the concepts that they used in their

proofs was also a criterion for the tutors in the experiment. Consider the dia-

logue fragment in Figure 5, where the tutor considers the step leading to utterance

student 9 as too coarse-grained unless the student provides further verbal evi-

dence that he can justify this step. Therefore, when judging about granularity, it
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is of interest to consider how many (and probably which) concepts were applied

in a student’s step without mentioning them verbally.

student 8: However, this means: (z, y) ∈ R−1 and (x, z) ∈ S−1

tutor: Now it is correct. correct appropriate relevant

student 9: Therefore it follows: (x, y) ∈ S−1
◦ R−1, what was to

be shown.
tutor: Correct. Please give a (simple) justification for this

last step of the proof.
correct too coarse-grained relevant

student 10: This follows immediately from the definition of the

relation product.
tutor: Right. With this, you have solved the exercise.

correct appropriate relevant

Figure 5. Dialogue fragment involving verbal explanation

To detect the concepts mentioned by the student we currently employ key

words extracted from the student’s utterance. However, we plan to integrate a

more sophisticated analysis in the near future, based on linguistic investigations

within the scope of the Dialog project.

Introducing hypotheses

In the experiment corpus, steps that introduced new hypotheses (for example,

when an implication was shown by assuming the premise, in order to derive the

implication’s conclusion) generally stood on their own, and were not combined

into much larger steps. Indeed, introducing a new hypothesis to the proof can be

a crucial step towards the solution. Thus, steps that introduce new assumptions

have a special status, they need to be spelled out explicitly.

Introducing subgoals

The corpus also showed that steps which split the current goal into several

(independent) subgoals have a special status, and should hence be taken into

account for the granularity analysis. For example, splitting the proof of showing

set equality between two relations into two directions ⊂ and ⊃ is an important

step. We also found that students implicitly introduced a subgoal by only stating

a hypothesis, as shown below:

student 1: let (a, b) ∈ (R ◦ S)−1

tutor: Right. correct appropriate relevant
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Here, the proof task is to show that (R◦S)−1 = S−1 ◦R−1, therefore we may

suppose that the student intends to show that (a, b) ∈ S−1 ◦ R−1 according to

the extensionality principle.

Learning progress & student modelling

The Wizard-of-Oz experiments made use of a series of exercises which became

gradually more advanced, where previously proven statements could be used in

subsequent proofs. The tutors encouraged the students to use these previously

proven statements as lemmata, such that they had the same status as those

mathematical facts (e.g. definitions, properties) they were initially provided with

as an introduction into the mathematical domain. We model this in our dialogue

system by making previously applied sequences of proof steps, and of course, the

statement of the finished proof, a part of the mathematical theory during the

tutorial dialogue, such that each one subsequently becomes an atomic inference

rule at the assertion level. Furthermore, we use a student model to keep track of

those concepts a student has previously mastered (these facts are recorded during

the dialogue) and of those he possibly does not know or has not applied before.

This way, a sequence of novel steps can be given a different status with respect

to granularity than one that includes only well-known steps. In the following, we

consider only the sheer number of concepts that are supposed to be known and

supposed to be unknown, respectively, to be relevant for judging granularity.

We do not claim that the above criteria are exhaustive, since they are based on

a particular series of experiments in one mathematical domain only. Furthermore,

the question remains what weight to give to each of these criteria (for example,

does the verbal explanation counterbalance a high number of facts combined into

one step?). There is also the question of how to employ the observed criteria

for the actual generation of useful feedback to the user, which requires didactic

considerations beyond the scope of this paper.

5. Judging granularity

The result of granularity analysis for an uttered proof step is a granularity

judgement, which can take one out of three possible values: appropriate, too

detailed, and too coarse-grained. This section illustrates how information from

the proof reconstructions with respect to the criteria discussed above is used to

categorise the to-be-analysed proof steps. Consider again the example proof step
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student 2 presented in Figure 2. Ωmega reconstructs the following derivation

for the student input, shown in sequent notation (in this example, we assume that

the student model considers all concepts as not yet mastered by the student).

Γ, (x, y) ∈ S−1 ◦ R−1 ` ∆

Γ, (z, y) ∈ R−1 ∧ (x, z) ∈ S−1 ` ∆
Def ◦

Γ, (z, y) ∈ R−1 ∧ (z, x) ∈ S ` ∆
Def −1

Γ, (y, z) ∈ R ∧ (z, x) ∈ S ` ∆
Def −1

Γ, (y, x) ∈ R ◦ S ` ∆
Def ◦

Γ, (x, y) ∈ (R ◦ S)−1 ` ∆
Def −1

From this reconstruction, the following information can be extracted.

Total number of steps: This is simply the number of assertion level inference

steps, which yields a value of “5” in our case.

Number of different concepts: Since only two distinct assertions were used

(the definitions of the inverse relation −1 and relation composition ◦), this

yields a value of “2” in our case.

Number of previously used concepts: For each employed concept (here,

the definitions of ◦ and −1), we look up in the student model if they are

already known to the student. If we assume for our example that this is not

the case, we obtain a value of “0”.

Number of not previously used concepts: This is simply the difference of

the total number of concepts and the number of previously used concepts, in

the case of our example this will consequently indicate “2” new concepts.

Verbal explanation: This is extracted from the utterance via natural lan-

guage analysis. Since in the example, there is no accompanying explanation,

we report that “2” concepts rest unexplained.

Introduced hypotheses: None of the above steps introduces a new hypothe-

sis, therefore the result is “0”.

Number of introduced subgoals: In the absence of newly introduced sub-

goals, this also yields a “0”.

As a result, we obtain a granularity observation tuple, where each entry rep-

resents one of the evaluated granularity criteria for the given step: (5, 2, 0, 2, 0, 0).

A simple model, which we have implemented in our approach, is to formulate

the correspondence between such evaluation results and the final judgement as
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simple if-then rules, which provide a mapping between the values of the auto-

matically determined granularity criteria for a proof step and the corresponding

granularity labels appropriate, too coarse-grained and too detailed 3. To formulate

these rules, we employ the LISA rule environment (see [31]), which provides the

infrastructure for building expert systems. This allows us to formulate rules such

as:

IF number-of-different-concepts > 1 ∧ number-of-unexplained-concepts > 1

THEN result= too coarse-grained

This simple rule expresses that whenever we have a proof step that requires

two or more different assertions, and two or more of the required assertions are

not explained verbally, we classify the proof step as too coarse-grained. However,

care has to be taken in those cases where for a given proof step, more than one

rule is applicable with conflicting results. For the purpose of conflict resolution,

rules can be given different weights in order to decide which rule in the conflict

set is given priority. In the following, we consider the learning of decision rules

from empirical data.

6. A machine learning approach to granularity

Whereas the proof step evaluation with respect to granularity criteria as

described above can easily be computed given the proof reconstructions in Ωmega

and a description of the verbal input, it is not a priori clear how to turn this

information into an appropriate final judgement whether the proof step in question

is of appropriate step size in the given context or not. The answer to that question

may in particular depend on the preferences of a particular human tutor and

the particular mathematical domain under consideration. Therefore, we turn

the problem into a machine learning problem in which individual preferences

and domain dependency in the granularity judgements can be learned. Training

instances are pairs of the granularity observation tuples as described in Section 5

together with a corresponding class label in the form of a granularity judgement

by the human tutor (one of appropriate, too coarse-grained and too detailed).

Currently, we use the C5.0 data mining tools (see [23] and also [22]) – which

support the learning of decision trees and of rule sets – to obtain classifiers for

3Ideally, the association between the criteria and the granularity judgements mimics the deci-

sions of the human tutors.
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granularity. A learned decision tree can be rewritten straightforwardly to an

equivalent rule set, which can be used in the same way as described in the previous

section. Nevertheless, rule sets generated by C5.0 can under circumstances be

more accurate predictors than decision trees, but these rule sets may not be

conflict-free. C5.0 provides confidence values for the learned rules to aid conflict

resolution.

Thus, we employ two modules for granularity analysis; one serves to obtain

training instances, from which the associations between granularity criteria and

granularity judgements can be learned. Using this, a judgement component can

then automatically perform granularity judgements. This architecture allows to

adapt to the way an individual human tutor makes granularity judgements (and

thus to gauge mathematical practice without asking explicit questions), but at

the price of requiring previous training of the granularity analysis. Training can

be performed either with the help of an annotated corpus of proofs (i.e., where

each proof step already carries a granularity label), or in an interactive session

with the human expert.

6.1. Setup

An overview on the setup for the training module for learning from an anno-

tated corpus is given in Figure 6.

Annotated

Corpus

Proof

Step

Analysis

Decision

Tree/Rule

Set Learning

Ωmega

Proof

Assistant

Student

Model

Decision

Rules

evaluation results

w.r.t. criteria

query

query

formalised
steps

granularity

annotations

decision

rules

Figure 6. Overview over the architecture for learning granularity
judgements from an annotated corpus
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Each proof step utterance in the corpus is formally represented in the logical

representation language of our system, sent to the analysis module and handed

over to the Ωmega system for verification. If successful, this yields an assertion

level proof, which can be analysed with respect to the granularity criteria with

the help of the student model (and possibly also keyword-based verbal content of

the proof step under consideration stored in the corpus). The training instances

obtained this way are labelled with the corresponding granularity judgements

stored in the corpus and handed over to the learning algorithm, which produces a

classifier, i.e., a set of decision rules or a decision tree. In the interactive mode, the

training module computes the “corpus” on the fly. It steps through a given proof

(which can be automatically generated from a problem statement with Ωmega,

or by hand) at a variable (but bounded) step size in the number of inference

steps at the assertion level. That is, for a given proof state, and a random (but

bounded) number n, the module proceeds n assertion level inference applications

further with the proof and prints the associated formula to the expert who has

to provide a granularity judgement (note that the n − 1 intermediate steps are

skipped in the presentation).

Proof Steps

Decision

Rules

Repository

Proof

Step

Analysis

Expert

System

Ωmega

Proof

Assistant

Student

Model

Granularity

Judgements

evaluation results

w.r.t. criteria

query

query

formalised

steps

granularity

judgements

decision

rules

Figure 7. Overview over the architecture for judging granularity

The judgement module is displayed in Figure 7. As part of the proof step

analysis, each attempted proof step is handed over to Ωmega. In case it can be

verified, the resulting assertion level proof is analysed in the light of the student

model and a description of the verbal input, yielding a granularity observation tu-

ple with respect to our granularity criteria. We finally use the set of decision rules



“schiller˙et˙al” — 2009/2/18 — 23:33 — page 339 — #15

Proof step analysis for proof tutoring – a learning approach to granularity 339

previously learned via machine learning to produce the corresponding granularity

judgement.

6.2. Evaluation

We have performed an evaluation on a subset of the dialogues from the corpus

of the experiments reported in [8]. This subset of dialogues includes only dialogues

which contain at least one correct proof step labelled as too coarse-grained or too

detailed by the tutors. This excludes incorrect or partially correct steps, because

– unlike human tutors – the system is not able to guess the student’s intentions in

such a case. The sub-corpus of proof steps we obtain this way includes 47 steps,

of which 11 are too coarse-grained and one is too detailed, the rest is of appropri-

ate granularity. Using 10-fold cross validation4, we achieve a mean classification

error of 13% and an inter-rater reliability coefficient κ=0.65 with C5.0 decision

tree learning. This is considerably better than naively assigning all steps to be

appropriate, knowing that the majority is appropriate, which would still result in

a classification error of 27.5%. Nonetheless, using the classifier SMO [21], which

implements a support vector machine, we obtain a mean classification error of

6, 4% and κ=0.84.

Even though at first glance, the support vector machine approach classifies

better in our example, the decision tree learning approach (as well as learning

rule sets) is more informative with respect to the question which of the criteria

mentioned above would be most useful for characterising the behaviour of the

tutors in the experiments. During the decision tree learning, two (extremely

simplistic) decision trees (producing approximately the same error rate) emerged,

which we express as rule sets for brevity:

Rule set 1: IF number-of-not-previously-used-concepts > 1

THEN result= too coarse-grained ELSE result= appropriate

Rule set 2: IF total-number-of-steps > 3

THEN result= too coarse-grained ELSE result= appropriate

The simplicity of these one-rule rule sets owes to the fact that our sample

was rather small. It shows that for the given examples, the role of verbal ex-

planation is negligible (otherwise this criterion would appear in the rules). Also,

4 We use cross validation since 47 instances are a very small sample indeed. We concentrated

on this small sample because collection and processing of empirical data such as in our Wizard-

of-Oz experiments is in itself already a very work-intensive process.
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knowing the number of different concepts that were employed at once is infe-

rior to simply knowing the total number of inference steps, which provides the

more relevant criterion according to the learned rules. Nevertheless, knowing how

many of the employed concepts are not familiar to the student according to the

student model provides a valid means to distinguish between appropriate and in-

appropriate proof steps. Note that these observations only apply to the particular

experiment sessions reported in [8], which include judgements by different tutors.

However, by the virtue of being a learning approach, our granularity analysis can

adapt to other domains, teachers, etc.

7. Discussion and conclusion

We have presented an approach to automating granularity judgements for

human proof steps, based on the identification of relevant criteria. The assertion

level proofs as produced by Ωmega are directly amenable to our granularity

analysis with respect to these criteria. Furthermore, we have demonstrated how

machine learning techniques can be used to obtain context-adapted granularity

judgements. The approach can easily be extended to other criteria than the ones

exemplified in Section 4. Our method does not require pre-authored solutions

for the proof exercises, but makes use of dynamic proof reconstructions at the

assertion level in Ωmega. Furthermore, the granularity analysis can be trained

interactively by human teachers without requiring them to know the internals of

the analysis module or to write any classification rules by hand. As shown by our

first evaluation, our method provides a means to evaluate how the granularity

judgements of a teacher or a group of teachers depend on different criteria (and

also, which criteria are negligible). Finally, we have gained some evidence that

the student model and reconstructions at the assertion level are useful ingredients

for our granularity analysis.

Future work includes a study which is more focused on the evaluation of

the granularity analysis module than the previous experiments, for which the

interactive training module was not yet available.
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