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Abstract. During the early 20th century, advocacy of a range of mathematical tech-
nologies played a central part in movements for the reform of mathematical education
which emphasised ‘practical mathematics’ and the ‘mathematical laboratory’. However,
as these movements faltered, few of the associated technologies were able to gain and
maintain a place in school mathematics. One conspicuous exception was a technology,
originally championed by the mathematician Herschel, which successfully permeated the
school mathematics curriculum because of its:

• Disciplinary congruence with influential contemporary trends in mathematics.

• External currency in wider mathematical practice beyond the school.

• Adoptive facility of incorporation in classroom practice and curricular activity.

• Educational advantage of perceived benefits outweighing costs and concerns.

An analogous perspective is applied to the situation of new technologies in school mathe-
matics in the early 21st century. At a general level, the cases of calculators and computers
are contrasted. At a more specific level, the educational prospects of CAS and DGS are
assessed.
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1. New technologies and school mathematics

in the early 20th century

1.1. Herschel’s heritage

In 1833, a scientific paper by the astronomer-mathematician Herschel recom-

mended a new technology to his fellow researchers. It is clear that he expected

this technology to be unfamiliar to his readers, since he described both its design

and manner of use with care. Herschel enthused that the technology in question

was “so very useful for a great variety of purposes that every person engaged in. . .

physico-mathematical inquiries of any description, will find [it valuable to have]

always at hand” [1, p. 178]. As interest in this new technology grew amongst sci-

entists and engineers, many manufacturers entered the market. Over the second

half of the 19th century its price fell by two orders of magnitude and its uptake

and use increased enormously.

By the early 20th century, enthusiasm for this technology had spread to ed-

ucation. Reformers saw it not just as a useful tool, but, to quote a prominent

English mathematics educator of the time, “as quite the most valuable instrument

in our possession for awakening interest” [2, p. 289]. It had become associated

with broader educational movements which laid emphasis on giving pupils of all

ages ‘practical’ experience and encouraging their ‘self-activity’. The widespread

endorsement and adoption of this technology was reported by the newly founded

International Commission on Mathematical Instruction (ICMI): “of the value of

squared millimetre paper there is no question anywhere” [3, p. 614]. Equally, the

English Board of Education suggested that “squared paper was to be found in

any well-equipped elementary school” [4]. Clearly, in the early years of the 20th

century, there was a squared paper bandwaggon rolling in mathematics education.

But how best to use squared paper appears to have been a matter of some

uncertainty. The ICMI report suggested that “its use has been abused by the over-

extensive treatment of equations and by its application to proving the obvious”

[3, p. 614]. Likewise, the English Board of Education issued clarificatory circulars

to schools which cautioned, for example, that: “The use of paper ruled in squares

for the working of arithmetic examples has no real educational advantages”, and

sought to rein in the proliferating interpretations of the new slogan of ‘graphic(al)

algebra’. The Board even offered guidance on avoiding health risks from the new

technology: “Any risk of injury to eyesight by the excessive use of squared paper

should be avoided”; but gave reassurance that “little danger to health is likely if

no paper with rulings less than one-tenth of an inch apart is used” [4].
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1.2. Reform movements

At the 5th International Congress of Mathematicians in 1912, the Section on

Didactics held a session on ‘Intuition and experiment in mathematical teaching’

which received and discussed an ICMI report surveying those contemporary de-

velopments which aimed to provide an ‘intuitive’, ‘perceptual’, ‘experiential’ and

‘experimental’ base for the subject through “applying mathematics seriously to

the problems of life, and. . . visualizing the work” [3, p. 615]. As already noted,

this report acknowledged the rapid uptake and wide-ranging use of squared paper

in general, and graphical methods in particular: “Graphic methods of one form or

another are now found in the courses in mathematics. . . in all countries, having

gradually made their way from engineering, through thermodynamics and general

physics, to pure mathematics” [3, p. 622].

Other key enthusiasms within these developments were geometrical drawing,

practical measurement and numerical computation. Geometrical drawing was of-

ten linked to material traditionally taught in art or craft classes or in technical

subjects; activities such as practical surveying were seen as means of bringing

measurement, estimation and computation to life. A key idea was that a more

formal treatment of mathematical properties should be built on the experiential

base gained from direct use of mathematical instruments and practical under-

standing of their functionality.

In the United States, the ‘laboratory method’ advanced by Moore, president

of the American Mathematical Society, envisaged that teachers would work with

students individually or in small cooperative groups, “to develop on the part

of every student the true spirit of research, and an appreciation, practical as

well as theoretic, of the fundamental methods of science” [5]. Writing in the

American School Review in 1903, Moore’s Chicago colleague, Myers, listed the

components of “a fairly complete equipment for a mathematical laboratory”: as

well as “drawing instruments” and “cross-ruled paper”, the list included tape

measures, weighing scales, surveying equipment, barometers and thermometers,

pendulums and gyroscopes, cords and pulleys, and “spherical blackboards, both

concave and convex” [6, pp. 737–738].

Godfrey’s account of parallel trends in England suggests that there too prac-

tical measurement, estimation and computation were closely linked to the in-

troduction of specially-equipped ‘mathematical laboratories’ [7, p. 453]. How-

ever, writing in 1915, in the English Mathematical Gazette, Fawdry noted that

the form of ‘practical mathematics’ generally taking root in schools was actually

much more modest than envisaged by its advocates, focusing on topics such as
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“numerical evaluation of algebraic expressions, accurate construction of geomet-

rical problems, plotting of curves, graphical solutions, [and] use of logarithms in

computation”, which could “be conducted in a class-room without the use of fur-

ther apparatus than a box of instruments, some squared paper, and a table of

logarithms” [8, p. 36].

1.3. Adoptive influences

The differential adoption of technologies associated with these movements

reflected considerations of financial and educational cost, as the Subcommission’s

report noted in relation to slide rules: not just “the expense of the instrument, the

cheaper ones not being accurate enough to be of value”, but also “the question

of time to acquire the necessary facility”, with the result that “in the upper

classes the numerical computation is performed almost exclusively by the aid of

logarithms” [3, p. 624]. More fundamentally, however, stronger versions of the

‘practical mathematics’ movement – and the idea of the ‘mathematical laboratory’

in particular – proved poorly matched to shifting educational priorities.

In relation to the United States, Roberts points out how a reform emphasis on

‘correlating’ the study of mathematics and science ran counter to changes in the

composition of the school population: “At the very time that Moore was proposing

to justify mathematics education primarily as an aid to science and engineering,

the population of high school students was exploding with students, most of whom

were not aiming to become scientists or engineers” [5, p. 695]. Moreover: “In

the face of the surge of students into the schools, calls for educational efficiency

that had emerged during the last half of the nineteenth century became much

more insistent and attractive. The efficiency advocates claimed to offer means to

control the flood of students by carefully circumscribing requirements in terms of

time and effort. In contrast Moore’s ‘mathematical laboratory’, which called for

such extravagances as performing all demonstrations in two different ways and

for blurring of subject-matter boundaries, could well be seen as a prescription for

waste and confusion.” [5, p. 694]

In relation to England, Brock and Price argue that the adoption of squared

paper was part of a much wider transformation of mathematical education in re-

sponse to the influence of new educational philosophies and pressure to strengthen

scientific and technical education. But why was it that squared paper prospered

while so many other technologies faded away? Certainly Fawdry’s observation

about ease of incorporation into classroom use must be part of the story. But as

well as these drivers external to mathematics itself, I would point to the important
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internal motor of Klein’s advocacy of ‘functional thinking’ as a core mathemat-

ical process, integrating pure and applied mathematics, fusing arithmetic with

geometry, and emphasising graphical representation [9].

In sum, then, I suggest that the particular success of squared paper and

graphical methods depended on the following features:

• Disciplinary congruence through alignment with an influential contempo-

rary trend in mathematics.

• External currency thanks to the growing use of graphing in mathematical

practice beyond the school.

• Adoptive facility in terms of relative ease of incorporation in classroom

practice and curricular activity.

• Educational advantage in terms of the perceived benefits of use consider-

ably outweighing any costs and concerns.

2. New technologies and school mathematics

in the early 21st century

The present parallels to this past episode are intriguing. The commercialisa-

tion and diffusion of paper-based technologies – such as graph paper and math-

ematical tables – during the 19th century for use within scientific and technical

professions certainly prefigures a similar rise of computer-based technologies in

the 20th. Even more striking is the educational appropriation of both waves of

new technology to reform aspirations for more authentic engagement of students

in mathematical activity and enquiry. Looking back a hundred years from now,

what stories will our successors tell about the rise of computer-based technologies

and their eventual influence on mathematics education?

2.1. Marginal uptake

Evidence from the most recent TIMSS study [10] provides a simple indicator

of the degree to which use of such technologies has become a regular part of

mainstream practice in today’s schools. This study operationalises ‘regular’ use

as use by a class in about half of lessons or more. Focusing on the 24 educational

systems for which information is available relating to both Grade 4 and Grade

8 provides a good basis for comparison between primary and secondary levels of

schooling. First calculators. Across these educational systems, regular calculator
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use is extremely rare at primary level – reported in only 8% of classes in the

system at the upper quartile of the distribution of systems– and very variable at

secondary level – reported in 12% of classes in the system at the lower quartile

against 67% of classes in the system at the upper quartile. Next computers.

Regular computer use in lessons is rare at both levels, reported in 7% of classes

in the system at the upper quartile of the primary distribution, and in only 3%

of classes in the system at the upper quartile of the secondary distribution. Even

focusing only on those systems where the majority of classes report having access

to computers, regular use is still rare: found in only 10% of classes at primary level

and 4% at secondary level in the systems at the upper quartiles of the respective

distributions.

Such evidence suggests that computer-based technologies in contemporary

mathematics education are, in the large, following the wider trend over the last

century towards limited uptake and influence of new information and communica-

tion technologies within schooling. Reviewing the educational reception of wave

upon wave of such technologies, Cuban [11, 12] suggests that a recurrent pat-

tern of response can be found: a cycle in which initial exhilaration then scientific

credibility give way to practical disappointment and eventual recrimination. He

reports that while new technologies have broadened teachers’ instructional reper-

toires to a degree, they remain relatively marginal to classroom practice, and are

rarely used for more than a fraction of the school week.

For scholars of school reform, this cautious reception of new technologies

forms part of a much wider pattern of largely unsuccessful attempts to change

structures of curriculum, pedagogy and assessment at the heart of schooling.

While an ever richer diversity of materials and tools is becoming available for use

in the mathematics classroom, there is a striking gap between the perspectives of

reform advocates and classroom teachers [13]. The main concern of practitioners

remains one of developing coherent use of a relatively small selection of materials

and tools to form an effective resource system. This depends, in turn, on the

more fundamental issue of coordinating working environment, resource system,

activity format and curriculum script to underpin classroom practice which is

viable within the time economy [14].

2.2. Calculator counterexample

These TIMSS findings identify the use of calculators as a relative success in

terms of uptake, even if a qualified one – prevalent only at secondary level, and

only so in some educational systems [15]. In terms of the factors which were
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suggested as contributing to the earlier success of squared paper, the situation

of calculators is rather less clear-cut. While, with the development of compu-

tational technologies, numerical methods have become more significant within

mathematically-based professions, they have not become associated with a cen-

tral disciplinary idea on the lines of Klein’s ‘functional thinking’. Although, in

the earlier days of computer-based technologies within mathematics, ‘algorithmic

thinking’ was proposed as a modern counterpart of ‘functional thinking’ [16], this

idea has not had the same degree of influence on the field as a whole, and appears

to have largely disappeared from contemporary discussions of school mathematics.

However, numerical calculation by machine clearly has an established exter-

nal currency in wider mathematical practice within and beyond the school. Use

of a calculator – designed as a cheap, portable, personal technology – represents

the most ready educational realisation of this, due to its adoptive ease of incorpo-

ration into classroom practice and curricular activity [17]. However, at primary

level, where the curriculum has traditionally been organised around highly val-

orised methods of written and mental calculation, the educational advantage of

calculator use remains controversial, and appropriate forms of curricular reorgan-

isation are underdeveloped [18]. But at secondary level, although reservations

of principle may still be expressed, stronger pragmatic motivations have led to

the relatively widespread use of calculators which can be found in some educa-

tional systems, where they serve as convenient means of effecting the numerical

calculation needed to support students’ work on more advanced mathematical

topics.

Likewise at secondary level, symbolic and graphic algebra occupy a predomi-

nant place in mathematics curricula, with correspondingly high valorisation of the

associated pencil-and-paper techniques. These are prominent in the mathemat-

ics assessment which acts as an important ‘gatekeeper’ for access to further and

higher educational opportunities. Thus, during those stages of the curriculum

where the development of paper-and-pencil techniques of graph construction and

symbolic manipulation remain central, a similar reluctance can be found about

giving students access to graphic and symbolic calculators. At all stages of the

school curriculum, then, calculator use by students tends to be seen primarily as

a means of effecting more elementary techniques where students’ use of pencil-

and-paper methods would prove cumbersome, unreliable and distracting.
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2.3. CADGME prospects

What, then, are the prospects for computer algebra and dynamic geometry

in secondary school mathematics? While in some respects it is appropriate to

discuss these two technologies together, in other respects there are important dif-

ferences between their cases which deserve to be noted. In particular, while CAS

have been developed for use in professional mathematics by correspondingly so-

phisticated users, DGS have been designed with educational purposes and student

users specifically in mind. Thus, while CAS have stronger external currency, DGS

have greater adoptive facility. Equally, while the symbolic and graphic algebra

to which CAS are applicable occupy a central place in the secondary mathemat-

ics curricula of different educational systems and take a broadly similar form,

treatments of the ‘shape and space’ or ‘geometry’ with which DGS are primarily

concerned are much more varied between systems [19]. Thus more uniform judge-

ments of educational advantage can be expected across systems with respect to

CAS, whereas with respect to DGS such judgements may vary with the style and

emphasis of curricula.

The pioneering development of dynamic geometry systems has taken place

largely in countries – notably France and the United States – which have retained

a more strongly Euclidean spirit within their school geometry curriculum. How-

ever, such an emphasis may lead teachers to perceive DGS as ultimately inimical

to the development of proof-oriented reasoning because of the support that they

provide for perceptually-based strategies. This has, for example, been reported at

upper-secondary level in France [20]. In current practice, then, the perceived edu-

cational advantage of DGS is seen primarily as a means of supporting observation

and measurement in those (stages of) curricula where more perceptually-based or

empirically-grounded forms of reasoning are acceptable. Equally, such activities

are often organised in terms of closely guided ‘discovery’ learning [21]. Indeed,

drawing a contrast with the style of DGS use envisaged by pioneering advocates,

Hölzl suggests that: “In the literature. . . the reader is provided with numerous

examples of how DGS can support the heuristic phase of problem solving. . . How-

ever, a closer look at various examples [questions whether] the software is used

effectively to support a methodical and an active style of knowledge acquisition.

Often. . . [the] DGS is used only in a verifying manner: that is, learners are just

supposed to vary geometric configurations and confirm empirically more or less

explicitly stated facts.” [22]

Likewise, while the content of school-level algebra and calculus may be sim-

ilar across systems, differences in more fundamental mathematical orientation
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may shape the ways in which CAS are used and the issues that arise. Here,

an interesting contrast has arisen between the approaches of pioneering projects

in North America and France: whereas American approaches have emphasised

mathematics as a modelling discipline, French approaches have displayed a preoc-

cupation with mathematical anomaly [23]. This helps to explain why complexities

of instrumentation have emerged much more strongly in the French work: such

phenomena are foregrounded by the use of tasks which deliberately take students

beyond their curricular experience and place them in situations devised to expose

limitations of the schemes available to them. Indeed, Fey argues that such ap-

proaches: “have focused too narrowly on the applications of CAS to traditional

algebraic symbol manipulation problems and have looked too hard to find subtle

problems that are not well handled by CAS functions. . . Learning how to use

CAS functions to support applied problem solving is not as complicated or as

fraught with the potential for mistakes as learning how to use the same tool for

more general algebraic reasoning” [24].

Both CAS and DGS make considerably greater demands on the user than

do the calculators or courseware currently used more widely by secondary-school

teachers and students. This means that the adoptive facility of CAS and DGS

as tools for students, even for teachers, is perceived as problematic by practi-

tioners, and this leads to the educational advantage of such forms of use being

questioned. Indeed, such perceptions have encouraged the use of CAS and DGS

more as a platform for providing teachers and students with prepared templates

or applets intended to demonstrate, or support investigation of, a predetermined

mathematical idea. This is one important factor shaping the tendency noted

above towards a relatively closely led and tightly structured style of classroom

use. While this may be effective in providing visual aids to support mathematics

teaching and learning, it does not develop students’ capacity to use CAS and DGS

as tools for mathematical thinking. Nevertheless, the more regular and sustained

the attention a curriculum gives to the associated areas of mathematics, the more

likely that the return from investing in students’ learning to use an appropriate

computational tool will be viewed as worthwhile. For example, the prevalence in

the United States of whole-year courses focused on Algebra, Geometry or Cal-

culus creates relatively favourable conditions for making such investment. More

fundamentally, however, these issues of adoptive facility reflect an educational

culture in which mathematical knowledge continues to be construed primarily in

terms of forms mediated by the use of pencil-and-paper; from such a perspective,
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computer-mediated forms of knowledge appear to make only an ancillary contri-

bution. This leads to the potential function of computer algebra and dynamic

geometry being seen initially as one of supporting development of mathematical

knowledge and understanding as expressed in a pencil-and-paper environment,

and subsequently as one of effecting the associated techniques in circumstances

where use of pencil-and-paper methods would prove cumbersome, unreliable and

distracting. Such tendencies have been noted in studies both of computer algebra

[25] and dynamic geometry [21, 26].

Realistically, then, a stronger and wider integration of computer algebra

and dynamic geometry into secondary-school mathematics curricula is unlikely

to come about until they have come to be accepted as pervasive mathematical

tools. This will depend on a more fundamental realignment of the school cur-

riculum with contemporary trends in professional mathematics to create greater

disciplinary congruence: in the case of computer algebra, this might centre on

giving greater emphasis to ideas of mathematics as a computational and mod-

elling discipline; in the case of dynamic geometry, on increasing acceptance and

systematic development of dynamic methods of visual reasoning; in both cases,

on according greater recognition to algorithmic dimensions of mathematics. The

work being presented at this first CADGME conference promises to provide bases

on which such realignment might eventually be built.
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