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From Newton’s Fluxions to Virtual

Microscopes

Jacques Bair and Valerie Henry

Abstract. The method of fluxions was originally given by Newton among others in order
to determine the tangent to a curve. In this note, we will formulate this method by
the light of some modern mathematical tools: using the concept of limit, but also with
hyperreal numbers and their standard parts and with dual numbers; another way is the
use of virtual microscopes both in the contexts of classical and non standard analysis.
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In his Latin work “Methodus Fluxiorum”, which was originally written in

1671, sir Isaac Newton studied planar curves with a mechanical point of view: he

considered time, which was an implicit variable, as increasing by continual flux,

while the two current variables x and y are increasing continually in time; for

example, the equation

x2 + y2 = 1

determines the curve which is described by a point moving along a circle with an

unitary radius.

For Newton [11], the increasing of the variable x (resp. y) during an infinitely

small period of time is proportional to its fluxion ẋ (resp. ẏ), i.e. the speed with

which x (resp. y) increases: more precisely, such a variation of x (resp. y) is equal

to ẋo (resp. ẏo), where o denotes an infinitely small quantity of time.

Copyright c© 2007 by University of Debrecen
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378 Jacques Bair and Valerie Henry

Newton applied this principle to solve problems about tangents to an alge-

braic curve C with equation

f(x, y) = 0,

f being a polynomial function with two real variables x and y and defined by

f(x, y) =

m
∑

j=0

p
∑

k=0

ajkxjyk,

where all the coefficients ajk are real while m and p are natural integers. Let

P = (r, s) be a point of C: we have

f(r, s) = 0,

whereas r (resp. s) is the position reached by the variable x (resp. y) at a time t0.

During the interval of time [t0, t0 + ∆t], the point moves from P to P1 = (r1, s1)

with an uniform motion: if ẋ (resp. ẏ) denotes the constant speed of x (resp. y),

we have

r1 = r + ẋ∆t and s1 = s + ẏ∆t.

If ∆t = o is infinitely small, then the point P1 also lies on C and thus

f (r + ẋo, s + ẏo) = 0.

Because o is infinitely small, the powers of ẋo and of ẏo with an exponent greater

than 1 can be neglected; this leads to a simple equation which gives the value of
ẏ
ẋ
: it is the slope of the tangent to the curve C at point P (see Figure 1).

| |

P

P1

r r1

ẋo∆t

ẏo∆t

C

Figure 1. Curve C and its tangent at P
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As an illustration, consider the curve C whose equation is

f(x, y) = x3 + x − 3x2y + y2 = 0 (1)

and a point P = (r, s) on C. This last equality is preserved by putting

r + ẋo and s + ẏo (2)

respectively instead of r and s. So, we have:

(r + ẋo)3 + (r + ẋo) − 3 (r + ẋo)2 (s + ẏo) + (s + ẏo)2 = 0 (3)

whence, because f(r, s) = 0:

((

3r2 − 6rs + 1
)

ẋ +
(

2s − 3r2
)

ẏ
)

o +
(

3r − 6rẋẏ − 3sẋ2 + ẏ2
)

o2 +
(

ẋ3 − 3ẋ2y
)

o3 = 0 (4)

If the terms with o2 and o3 are suppressed, then one gets after dividing by o

(

3r2 − 6rs + 1
)

ẋ +
(

2s − 3r2
)

ẏ = 0 (5)

whence, if 2s 6= 3r2

ẏ

ẋ
=

3r2 − 6rs + 1

3r2 − 2s
(6)

this last result is the slope of the tangent to C at P and coincides, following the

rule of implicit differentiation, with

−

∂f
∂x

(r, s)
∂f
∂y

(r, s)

For the successors of Newton, this reasoning had two disadvantages. First,

it uses infinitesimals, i.e. infinitely small numbers, whose existence could not be

proved and raised tremendous objections. Secondly, some terms, like (oẋ)2, are

suppressed whereas they can not be equal to 0 because it is later on necessary to

divide by o.

There exist a few modern and rigorous explanations for the Newton’s method;

we shall present them on our example.

A classical way consists to consider the equalities

x = r + ẋ∆t + ε1 (∆t) and y = s + ẏ∆t + ε2 (∆t) (7)
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when

lim
∆t→0

εi (∆t)

∆t
= 0 for i = 1, 2.

By easy computations similar to the above ones on the two members of (1), we

get the desired solution by taking the limit for ∆t → 0.

As another way, we work in the context of the non standard analysis, first

developed by Robinson who has constructed the ordered field of the hyperreal

numbers [10]: it is an extension of the real field R where there especially exist

positive infinitely small numbers, i.e. hyperreal numbers which are positive but

less than every positive real number. In 1961, thanks to the recent developments of

the mathematical logic, Robinson was able to prove the existence of such infinitely

small numbers and to justify the results found in the end of the XVIIth century.

So, we can use the Newton’s formulas (2) where o denotes an infinitely small

number, we also obtain the equality (4) and the conclusion is found intuitively by

taking the real observable value of each hyperreal number: formally, it consists

to take the standard parts [8] of the considered hyperreal numbers.

A more surprising way, developed in [5], consists to work with dual numbers

introduced by Clifford [4]: they are “a particular two-dimensional commutative

unital associative algebra over the real numbers, arising from the reals by adjoin-

ing one new element ε with the property ε2 = 0”. Indeed, if the expression o is

taken equal to this ε dual number in the Newton’s reasoning over the example

(1), then the desired result is immediate.

In the following, we propose a modern approach of the Newton’s method, by

using the concept of virtual microscope ([3], [6], [7], [8]). The use of this tool

by mathematicians has recently spread with the coming of non standard analysis.

However it is not new, as proved by this citation of Pascal in 1654, as he wanted to

give an advise to those who had difficulties to conceive infinitely small quantities

s’ils ne peuvent comprendre que des parties si petites, qu’elles nous sont

imperceptibles, puissent être autant divisées que le firmament, il n’y a

pas de meilleur remède que de les leur faire regarder avec des lunettes

qui grossissent cette pointe délicate jusqu’à une prodigieuse masse 1 ([9,

p. 30]).

1. if they can’t understand that so small quantities, imperceptible for human being, can be

as much divided as the firmament, no solution is better than looking at these quantities through

glasses which enlarge this delicate point into a phenomenal mass.
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From Newton’s Fluxions to Virtual Microscopes 381

The goal is here to have a look on the curve C in a very small neighbourhood

of the considered point P . So, it seems natural to try to “enlarge” the graphical

representation of the curve around P ; for that, a virtual microscope is an adequate

tool.

As an illustration in the plane, let us guide on point P = (1, 1) a “microscope”

which enlarges all the lengths by a factor 10: P is seen in the “center” of the

ocular, i.e. at the intersection of two new horizontal and vertical axes, and, for

example, the square [0.9, 1.1]× [0.9, 1.1] becomes equal to the new square [−1, 1]×

[−1, 1] (see Figure 2).

x

y

|

|

1

1
X

Y

1

1

Figure 2. Illustration of the use of a microscope

Mathematically, such a virtual microscope leads to a transformation in the

plane R2 defined by

(x, y) 7→ (10(x − 1), 10(y − 1)) .

More generally, we consider a virtual microscope directed to point P = (r, s)

and which enlarges n times all the vertical and horizontal lengths; so, we consider

the mapping, from R
2 to R2, given by

(x, y) 7→ (X, Y ) = (n(x − r), n(y − s)) ;

the new coordinates X and Y are such that

x = r +
X

n
and y = s +

Y

n
(8)

If we apply this last transformation to equation (1), we get

f

(

r +
X

n
, s +

Y

n

)

= 0
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and so, we obtain equality (4) in which

ẋo =
X

n
and ẏo =

Y

n
;

so, we have the image of the curve C in the ocular of our microscope. The

conclusion is obtained by taking a limit for n → +∞ (see [2]).

It is possible to see geometrically what happens with this method. Indeed,

if we take, for example, the point P = (1, 1), we can plot the curve C first in the

neighbourhood [0, 2] × [0, 2] of P and then we divide each length respectively by

factors n = 2, 10, 100: this corresponds to the use of microscopes pointed on P

which enlarge 2, 10, 100 times; progressively, the curve becomes nearer and nearer

to a straight line (see Figures 3).
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Figure 3. Geometric illustration

Clearly, the curve drawn on the last figure is similar to the tangent of C at P .

It is also possible to work in the context of hyperreal numbers by using a sole

virtual microscope directed to P and which enlarges ω times every length, where
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ω is an infinite number, i.e. a hyperreal number greater than every real number

[8]. Then, the conclusion holds by taking the standard parts of the two members

of equality (4) in which

ẋo =
X

ω
and ẏo =

Y

ω
(9)

In conclusion, Newton’s method of fluxions can be rigorously justified by

a few modern and various arguments, some of them being intuitive and other

more abstract. In consequence, this works shows a subsequent development of

the concepts used by mathematicians. Especially, the context of the hyperreal

numbers is very close to the Newton’s ideas and seems convenient for solving local

problems in mathematical analysis. This confirms a recent thought about the fact

that non standard analysis deserves a place among the fundamental methods to

be used by mathematicians of future generations [1].
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