
i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 183 — #1
i

i

i

i

i

i

tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

5/1 (2007), 183–193

Brute force on 10 letters

Zoltán Kovács and István Hudi

Abstract. We deal with two problems in the set of 10-character-long strings. Both
problems can be solved by slightly different methods, but our approach for each is brute
force. As we point out, there can be differences in effectivity even in different brute
force algorithms. As an additional result, we answer an open question of Raymond
Smullyan’s.

Key words and phrases: puzzles, brute force, C/C++ language, graph algorithms.

ZDM Subject Classification: K30, F90.

1. Self descriptive numbers

My university professor, back in the 90’s, raised the following question: Is

there a decimal number a0a1a2a3a4a5a6a7a8a9 which contains exactly a0 pieces

of zeros, a1 pieces of ones, a2 pieces of digit “2”, and so on. He went on to say,

however, that “the solution should fit on half a page”.

I liked these type of puzzles, and even though it was a challenge to explain

it in a nutshell, was quite satisfied that after some experimenting I was able to

come up with a relatively short solution. My professor kept on shaking his head,

however, saying that my solution was too long. I still wonder what he meant

when he said that he was looking for a “short” solution.

Searching the Internet, I found that other people were also challenged to find

a short explanation as to why the number 6210001000 is the (only) answer to this

question, or to find this number by a short process.

Copyright c© 2007 by University of Debrecen

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 184 — #2
i

i

i

i

i

i

184 Zoltán Kovács and István Hudi

The use of computer program in this era makes it easier to solve such prob-

lems. Of course, it can still be interesting to determine how one should write an

appropriate program. A brute force technique which covers all the possible 1010

numbers seems to be feasible if one uses a modern computer and a compilable

programming language. The following computer program is just 15 lines of C

code (272 characters) and provides the answer within an hour1 on a desktop PC:

int main() {

unsigned long long n;

char a[11];

char f[11];

int i;

for (n = 1000000000ULL; n < 10000000000ULL; ++n) {

sprintf(a, "%lld", n);

strcpy(f, "0000000000");

for (i = 0; i < 10; ++i)

++f[a[i] - ’0’];

if (strcmp(a, f) == 0)

printf("%s\n", a);

}

}

The programming language and the applied technique are important here:

other methods may increase running time and slow down the process too much.

([1] describes a Mathematica code which is more than 500 characters.)

Which is easier or better, or more beautiful? It is difficult to know if there

is a decision of Solomon concerning this question. Paul Erdős’s idea that “The

Book” contains the most elegant proofs of the mathematical theorems, kept by

God, has been found recently a printed body by Aigner, Ziegler and Hofmann

[2, 3]. Here we refer to the short solutions of other authors [4, 5, 6, 7].

A strange side effect of the growing technological background is that “to be

short” in time for calculation, or in addition, to be short in time of programming,

may be more elegant than spending many hours of thinking and gathering infor-

mation to find the only case which fulfills the demands of a problem. Of course,

this can be only true for finite problems. Clearly, we only have to check a finite

amount of possibilities here, namely 1010, which can be easily decreased to much

less.

In fact, the possible solutions for the suitable n should be not less than

1 000 000 000 because of the leading zeros. Further considerations show that n

151:43 time on an Ubuntu Linux 6.10 system, Intel Pentium 4, 3 GHz, gcc 4.1.2 – no optimization

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 185 — #3
i

i

i

i

i

i

Brute force on 10 letters 185

should be greater than 5 000 000 000 which immediately saves the half of the cal-

culations. (See [8] for details.) One can easily check that a7 = a8 = a9 = 0 must

also stand and a0 ∈ {5, 6} is necessary, too. These facts give even smaller run-

ning time: modifying the above mentioned, underlined parts to 5000000000ULL,

7000000000ULL, n+=1000, respectively, we gain the result within 1 second!

However, to find a fast, efficient and smart computer program, is not always

easy, even for finite problems. We show two completely different brute force

algorithms in the next section for another problem, and we will get two completely

different results in time and smartness.

Brute force methods usually cannot help in infinite problems. The Goldbach

conjecture ([9]) can be checked for an arbitrary m integer using a rather easy

method if someone has an array with all the prime numbers not greater than

m. But there are infinitely many m integers to check and this fact causes the

Goldbach problem to remain unsolved.

2. The mystery of the Monte Carlo lock

Raymond Smullyan introduces the story of Inspector Craig of Scotland Yard

in his great [10] novel. Craig finds a possible key code for the Monte Carlo lock

with his colleagues, Dr. Ferguson and McCulloch.

There seems to be a cultural hunger for new quizzes. Today’s mathematicians

are often asked to develop new puzzles to entertain TV audience or other groups

(e.g. Internet surfers). Let us give two examples: Sudoku ([11]) and Perplex City

([12]), which are popular not only among young people but the older ones too,

employ a wide group of mathematicians for months or even years. The submitted

problems are sometimes old ones clothed with a new look and style, but others

may be new ones. Final decisions to find the best player in such games are usually

based on brand-new problems.

The authors were asked to help to develop such a new problem. Smullyan’s

Monte Carlo story also offered an open question. Smullyan gives the information

that he can open the lock with a 10-letter-long code, but does not know if there

is a shorter solution. Hereunder we try to find a shorter one if there exists any.

The problem is as follows: Consider the W set of words on the A ⊇

{Q,L, V,R} = A4 alphabet and the relation → on W . For an arbitrary x ∈ W

let r(x) denote the reversed word (i.e. which contains the same letters in reversed

order). We know that → has the following properties:

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 186 — #4
i

i

i

i

i

i

186 Zoltán Kovács and István Hudi

(1) For any x ∈ W , x → QxQ.

(2) y → x implies

(a) Qy → Lx,

(b) r(y) → V x,

(c) yy → Rx.

The lock can be opened with the word w if and only if w → w.

In [10], Smullyan describes different methods on how one can get closer to

find the solutions of such puzzles. That chapter of his book is also an introduction

to Gödel’s theorems. He shows that the word RVLVQRVLVQ is a solution but he

does not tell more details about other solutions. In this paper we show a method

which can give us more solutions in reasonable time.

2.1. The first approach

To explain this problem to a non-expert audience, some examples should be

shown. E.g., C → QCQ stands for any letter C, if C is an allowed letter (C ∈ A).

We assume that only the A4 alphabet is used. It is clear that all possible

solutions can be derived to use only A4. So to show a really useful example,

consider V → QVQ, and now using the second properties, QV → LQVQ, V →

VQVQ and VV → RQVQ also stand. Now we gained three new relations that

generate further ones as well:

(1) From QV → LQVQ we gain QQV → LLQVQ, VQ → VLQVQ and QVQV →

RLQVQ.

(2) From V → VQVQ we gain QV → LVQVQ, V → VVQVQ and VV →

RVQVQ.

(3) Finally, from VV → RQVQ we gain QVV → LRQVQ, VV → VRQVQ and

VVVV → RRQVQ.

And so on, using the second properties, arbitrary many relations can be

found. Let us call each such three steps a turn. In each turn three new relations

are gained at most which means that the number of relations in the consecutive

turns are 3, 9, 27, . . ., 3n at most. This leads to an exponential calculation.

Fortunately, we only search for solutions that are shorter than Smullyan’s

published one, so there can be a limit for our calculation. It can be also seen that

the length of words on each side of the relations follow a monotonic behavior. In

addition, the right side is increasing in a strict way. Our first implementation,

a C++ code, 36 kilobytes (with many comments), works with string data types,

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 187 — #5
i

i

i

i

i

i

Brute force on 10 letters 187

can deduce all possible relations from a starting word if an upper limit for the

length of both sides are given. It must be emphasized that a starting word must

be included by the user. The following output shows the running behavior of the

program:

$ make

g++ -o montecarlo1 my_str.c rule.cpp struct.cpp

$./montecarlo1

Few number of arguments:1

Usage: ./montecarlo1 StartingWord MaximalWordLength.

MaximalWordLength is called ’maxlen_glb’ in the source of the program.

$./montecarlo1 V 4

The turn, numbered as 0, is finished.

The turn, numbered as 1, is finished.

The turn, numbered as 2, is finished.

The turn, numbered as 3, is finished.

The turn, numbered as 4, is finished.

After 5 turns:

QV LQVQ

QV QQVQ

VQ LQVQ

VQ QQVQ

V QVQ

V VQVQ

QV QVQQ

VQ QVQQ

VV QVVQ

VV RQVQ

List of invariant words:

The program intelligently filters out the repeated relations and clews up all

the possible cases. In the above mentioned example there is no invariant word

found. I.e. no w → w patterns occurred in the deduced word pairs.

All we had to do after creating this tool was to run it for all possible starting

words having the maximal length of 10 letters. After approximately 3 days of

full running time, we concluded that there is no shorter solution than Smullyan’s

one, however there is a second one which is also 10 letters long: VRLVQVRLVQ.

To check this, we should see that

(1) from the first property, VRLV → QVRLVQ.

(2) From 2b, VLRV → VQVRLVQ,

(3) from 2a, QVLRV → LVQVRLVQ,

(4) from 2c, QVLRVQVLRV → RLVQVRLVQ,

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 188 — #6
i

i

i

i

i

i

188 Zoltán Kovács and István Hudi

(5) and finally from 2b again, VRLVQVRLVQ → VRLVQVRLVQ.

Our program code is available on [13].

2.2. The second approach

The thoughts above show that we search for a way in a graph from all existing

x → QxQ entry points to find a possible w → w end in fact. It looks like a

labyrinth which has many entrances but just a very few exits. So our second

approach is based on the well known maze solving strategy which also occurs in

artificial intelligence, namely in heuristic methods: finding a route between two

distant points of a “big” graph. The idea is to begin the search at the end of

the maze and continue the search towards the entrances. (The following figure

shows a maze with several entrances, but only one exit. This picture is a modified

version of an auto-generated output published on [14].)

Now our consideration follows. Assume that we have a solution w. This

possible end point can be w = wn = Lwn−1 or wn = V wn−1 or wn = Rwn−1

where each possible wn−1 (as right side of a relation) belongs to an appropriate

vn−1 (as left side of that relation), vn−1 → wn−1. To see an example, take

Smullyan’s solution, wn = RVLVQRVLVQ. Now clearly wn−1 = VLVQRVLVQ

(with vn−1 = RVLVQ) and the last turn had to be based on 2c. But now this

consideration can be used again: wn−2 = LVQRVLVQ (with vn−2 = QVLVR) and

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 189 — #7
i

i

i

i

i

i

Brute force on 10 letters 189

this turn had to be based on 2b. Respectively we get wn−3 = VQRVLVQ (with

vn−3 = VLVR), based on 2a, and wn−4 = QRVLVQ (with vn−4 = RVLV), based

on 2b. Now the starting letter of wn−4 is none of L, V or R, but wn−4 = QsQ

for some s ∈ W . It means that we can only use the first property now. So

s = RVLV = vn−4 which means that we can deduce the solution w with the

starting word s. Summarizing the above, in general, a solution w can be deduced

from a starting word s if and only if finally we reach the first property, w1 = QsQ,

while using the steps described.

Obviously for a given candidate w this is a reasonably fast process to decide

whether w is a solution or not. There is nothing exponential in this algorithm, it is

purely linear, i.e. in at most n steps we can find out if w → w stands for w or not.

In each (kth) step we can decide if the ending w is still valid or not, depending on

the starting letter of wn−k and the possibility of constructing vn−k. The final step

must always be based on the first property. Our second implementation, written

in C, exactly 1500 bytes of code (without comments), runs within 1 second and

gives both solutions for the word length at most of 10. In addition, we also gain

additional solutions within 20 minutes:

• VLRVQVLRVQQ, VLVRQVLVRQQ (11 letters),

• RVVVLVQRVVVLVQ, VRVVLVQVRVVLVQ,

VVRVLVQVVRVLVQ, VVVRLVQVVVRLVQ,

RVLVVVQRVLVVVQ, VRLVVVQVRLVVVQ (14 letters)

• and VLRVVVQVLRVVVQQ, VLVRVVQVLVRVVQQ,

VVVLRVQVVVLRVQQ, VLVVRVQVLVVRVQQ, VVVLVRQVVVLVRQQ,

VLVVVRQVLVVVRQQ (15 letters)

if we multiply the underlined constant (
∑10

k=1
4k+1) by 1000 in the program code:

#define MAX_LENGTH 30

#define SHOW_ROUTE 0

int is_double(char *a) {

int i, l, m;

l = strlen(a);

if (l & 1)

return 0; // no

m = l / 2;

if (strncmp(a, a + m, m) == 0)

return 1; // yes

return 0; // no

}

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 190 — #8
i

i

i

i

i

i

190 Zoltán Kovács and István Hudi

void reverse(char *a) {

int i, l, m;

char c;

l = strlen(a);

m = l / 2;

for (i = 0; i < m; ++i) {

c = a[i];

a[i] = a[l - i - 1];

a[l - i - 1] = c;

}

}

int is_correct(char *a) {

char *b = malloc(strlen(a) + 1);

strcpy(b, a);

void *b_ = b;

int c = 1; // continue?

while (c == 1) {

if (SHOW_ROUTE == 1)

printf("%s %s\n", a, b);

c = 0;

if (b[0] == ’L’ && a[0] == ’Q’) {

a++;

b++;

c = 1;

continue;

}

if (b[0] == ’V’) {

reverse(a);

b++;

c = 1;

continue;

}

if (b[0] == ’Q’ && b[strlen(b) - 1] == ’Q’) {

b++;

b[strlen(b) - 1] = ’\0’;

if(strcmp(a, b) == 0)

c = 2; // solution found

continue;

}

if (b[0] == ’R’ && is_double(a) == 1) {

b++;

a[strlen(a) / 2] = ’\0’;

c = 1;

continue;

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 191 — #9
i

i

i

i

i

i

Brute force on 10 letters 191

}

}

free(b_);

return c;

}

const char *c[4] = { "L", "V", "Q", "R" };

void nth_case(long n) {

char a[MAX_LENGTH], a_[MAX_LENGTH];

int n_ = n;

strcpy(a, "");

do {

strcat(a, c[n % 4]);

n /= 4;

} while (n > 0);

strcpy(a_, a);

int answer = is_correct(&a);

if (answer == 2)

printf("case %d: %s\n", n_, a_);

}

main() {

long n;

for (n = 0; n < 1398101000; ++n)

nth_case(n);

}

Finally we leave to the reader to try to answer the following questions:

(1) Are there infinitely many solutions?

(2) Can we show a solution which contains a letter outside of A4?

(3) Is there a way to speed up this program code even more?

3. Conclusion

Brute force algorithms can be smart and quick despite the fact that we usually

shrink from considering all cases. Sometimes a well written brute force code can

save many hours of case investigation. However, finding a really good technique

among the brute force alternatives may still be a challenge for today’s mathemati-

cians and programmers. The two example illustrations above can also give ideas

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 192 — #10
i

i

i

i

i

i

192 Zoltán Kovács and István Hudi

for today’s teachers in mathematics and computer science to show the students

when and how it is suggested to use brute force.

A general discovery of the current state of mathematical problem solving is

that careful combination of human thinking and effective computer algorithms

may increase effectivity in research. Today, 30 years after the personal computer

boom, many university professors still avoid using computers in their teaching

courses to protect students of possible abuse of automatism. Indeed, human

thinking remains a creative process and it cannot be replaced with computer

methods. In addition, the opposite group of teachers sometimes use computers

also in such cases when pure thinking has much more advances in developing

thinking skills. An ultimate example of such puritanism is Jakob Steiner who

held his geometry lectures in a dark hall to build up the creative fantasy of his

audience.

Our investigations show that finding a harmony between the two parties is

not always easy, but it can really be fruitful. As we already have been having

the technological background for three decades, we should still learn when and

how to use it to gain all its advantages without stepping back from any points of

view, especially in education. Our two illustrations above confirm that a “dumb”

computer algorithm strengthened by crafty human consideration can be a step

forward in both researching and stimulating student thinking as well.

4. Acknowledgments

The authors are grateful to Géza Makay for his kind advices which helped us

making our codes even shorter and more effective. We also thank Dániel Molnár

for his gentle encouragement.

References

[1] The Online Encyclopedia of Integer Sequences, A108551 (Self-descriptive numbers
in various bases represented in base 10), updated June 7 2005,
http://www.research.att.com/~njas/sequences/?q=A108551.

[2] M. Aigner, G. M. Ziegler, K. H. Hofmann, Proofs from THE BOOK, 3/e, Springer,
2004, ISBN 3-540-40460-0.

[3] http://en.wikipedia.org/wiki/Proofs from THE BOOK.

[4] http://en.wikipedia.org/wiki/Self-descriptive number.

[5] http://planetmath.org/encyclopedia/SelfDescriptiveNumber.html.

i

i

“kovacshudi” — 2007/8/10 — 12:05 — page 193 — #11
i

i

i

i

i

i

Brute force on 10 letters 193

[6] http://brainyplanet.com/index.php/Self%20Ref%20Solution.

[7] http://www.mateklap.hu/forum.php?cmd=olv&f=16&eltol=3 (in Hungarian).

[8] http://begghilos2.ath.cx/~jyseto/Academia/Math-Problem-1.php.

[9] http://mathworld.wolfram.com/GoldbachConjecture.html.

[10] R. Smullyan, The Lady or the Tiger? and Other Logic Puzzles: Including a Math-

ematical Novel That Features Godel’s Great Discovery, Times Books, 1992, ISBN
0812921175.

[11] http://www.sudokupuzz.com.

[12] http://www.perplexcity.com.

[13] http://www.math.u-szeged.hu/~kovzol/montecarlo1.zip.

[14] http://www.billsgames.com/mazegenerator/.

ZOLTÁN KOVÁCS

BOLYAI INSTITUTE

UNIVERSITY OF SZEGED

ARADI VÉRTANÚK TERE 1.

H–6720 SZEGED

HUNGARY

E-mail: kovzol@math.u-szeged.hu

ISTVÁN HUDI

PALÁNK 1.

H–6720 SZEGED

HUNGARY

E-mail: h1963istvan@freemail.hu

(Received March, 2007)

