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Linear Clause Generation by

Tableaux and DAGs

Gergely Kovásznai

Abstract. Clause generation is a preliminary step in theorem proving since most of the
state-of-the-art theorem proving methods act on clause sets. Several clause generating
algorithms are known. Most of them rewrite a formula according to well-known logical
equivalences, thus they are quite complicated and produce not very understandable
information on their functioning for humans. There are other methods that can be
considered as ones based on tableaux, but only in propositional logic. In this paper,
we propose a new method for clause generation in first-order logic. Since it inherits
rules from analytic tableaux, analytic dual tableaux, and free-variable tableaux, this
method is called clause generating tableaux (CGT). All of the known clause generating
algorithms are exponential, so is CGT. However, by switching to directed acyclic graphs

(DAGs) from trees, we propose a linear CGT method. Another advantageous feature is
the detection of valid clauses only by the closing of CGT branches. Last but not least,
CGT generates a graph as output, which is visual and easy-to-understand. Thus, CGT
can also be used in teaching logic and theorem proving.

Key words and phrases: discrete mathematics, logic, graph theory, proof methods, arti-
ficial intelligence (theorem proving).

ZDM Subject Classification: N75, E35, K35, E55, R45.

1. Introduction

Most of the state-of-the-art theorem proving methods act on clause sets.

Some of them are resolution-based, like binary resolution [10] and hyper-resolution

[11], but there are other ones that are based on tableaux, like clause tableaux [4],

hyper tableaux [1], and multi-hyper (hyperS) tableaux [5]. Therefore, techniques
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110 Gergely Kovásznai

for generating clauses from arbitrary first-order formulas are required. Most of

the clause generating algorithms rewrite a formula according to well-known logical

equivalences, like the de Morgan rules, the rules for converting implication to

disjunction, and the rules of distributivity. A survey of such algorithms can be

found in [6]. As rare exceptions, there are other alternative methods. Some of

them are based on BDDs (Binary Decision Diagrams), also known as Shannon

graphs [6, 9]. These algorithms use BDDs as intermediate forms, i.e., a formula

is converted to a BDD at first, and then this latter one is converted to a set of

clauses. BDDs can basically be used in propositional logic, but they increasingly

attract attention in first-order logic in these days. Logicians often draw a parallel

between BDDs and tableaux [9], they are compared in clause generation and in

theorem proving.

Similarly, a parallel can be drawn between tableaux and clause generating

algorithms based on generalized conjunction and disjunction, the dual forms of

formulas, and embedded lists [3, 7]. However, these methods can only be used

in propositional logic, either. Such an algorithm can convert a formula to either

disjunctive normal form (DNF) or conjunctive normal form (CNF); this latter

one is called clause normal form as well. For instance, in the case of DNF it

generates a list [Q1, . . . , Qm] where each Qi is a list 〈L1, . . . , Lk〉 where each

Lj is a literal. That is, a list 〈. . . 〉 represents the conjunction of its elements,

and a list [. . . ] represents the disjunction of its elements. Consider that the list

[〈. . . 〉, . . . , 〈. . . 〉] constructed as DNF can be considered as an analytic tableau

(AT) [13]. In the case of CNF, a list 〈[. . . ], . . . , [. . . ]〉 is constructed and can be

considered as an analytic dual tableau (ADT)1. The connection between tableaux

and normal forms is well-known in literature, but only in propositional logic.

In this paper, we propose a novel algorithm for clause generation in first-order

logic, in Section 2. That algorithm is based on tableaux, and is exponential. In

Section 3, that algorithm is linearized by the use of DAGs (Directed Acyclic

Graphs). In Section 4, a simple technique is introduced for simplifying the clause

set generated by the latter method. In the followings, we assume that the reader

is familiar with the basic concepts of first-order logic.

1The rules of ADT can be formed by transposing the rules of AT: exchanging the α-rule and

the β-rule, and exchanging the γ-rule and the δ-rule.
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2. Clause Generation by Tableaux

Unfortunately, ADT cannot directly be used for generating CNF (i.e., clauses)

in first-order logic. It is prevented by the γ-rule and the δ-rule. As compared

to propositional logic, the definition of satisfiability is supplemented with the

concept of assignment, which prevents us from considering satisfiability (in AT)

to be the negation of unsatisfiability (in ADT) only by taking model generation

for basis. Thus, the adequate tableau rules for clause generation:

• the γ-rule and the δ-rule of AT, and

• the α-rule and the β-rule of ADT.

Besides, existential quantifiers must be eliminated by introducing Skolem-func-

tions [12]. Furthermore, universal quantifiers must be taken to the beginning

of the formula by introducing new parameters, like in free-variable tableaux [3].

These transcriptions have to be done on the fly. The required tableau rules can

be seen in Figure 1.

γ-rule:

γ(x)

γ

x is a new variable

δ-rule:

δ
(

f(x1, . . . , xk)
)

δ

f is a new Skolem-function and

FV (δ) = {x1 . . . , xk}

α-rule:
α1 α2

α

β-rule:

β2

β1

β

Figure 1. Clause generating tableau – Rules

Definition 1. Let A be a formula. A clause generating tableau (CGT) for

A is defined inductively as follows:

(1) A tableau consisting of one single node labeled by A is a CGT for A.

(2) If T is a CGT for A then so is T ′ where T ′ is the result of applying any rule

in Figure 1 to T .
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In contrast with tableaux in theorem proving, it is sufficient to apply a rule

only once to the same node2. In order to force this, erase each label to which a

rule has already been applied. A CGT is called finished iff all of its labeled nodes

are labeled by literals. It should be proven that the clause set specified by a CGT

for a formula A is satisfiable iff so is A. The following definition and lemma pave

the way for that proof.

Definition 2. Let us define the function cnf () on branches and tableaux,

as follows:

(1) If B is a branch consisting of the formulas A1, . . . , Ak (k ≥ 1) then

cnf (B) = (A1 ∨ . . . ∨ Ak)

(2) If T is a tableau consisting of the branches B1, . . . ,Bk (k ≥ 1) then

cnf (T ) = cnf (B1) ∧ . . . ∧ cnf (Bk)

Lemma 3. Let T be a CGT. cnf (T ) is satisfiable iff cnf (T ′) is also satisfiable

where T ′ is the result of applying a CGT rule to T .

Proof. Let the proof divide in two according to the rule applied.

(1) If either the α-rule, the β-rule, or the γ-rule is applied:

Suppose cnf (T ) to be satisfiable. Since there is a model M such that

M |= cnf (T ), for all branches B of T M |= cnf (B). When applying a rule,

only one branch changes, but the other ones remain unchanged. It is sufficient

to focus on the branch that changes, which is denoted by B and regarded as

a set of its formulas in the followings. Similarly, let T be regarded as a set

of its branches.

(a) If B = X ∪ {(A ∨ B)}, i.e., M |= cnf (X) ∨ (A ∨ B):

The β-rule is applied to (A∨B), which results in branch B′ = X∪{A,B}.

Since cnf (B′) = cnf (X) ∨ A ∨ B,

M |= cnf (B) iff M |= cnf (B′).

(b) If B = X ∪ {(A ∧ B)}, i.e., M |= cnf (X) ∨ (A ∧ B):

2For a complete calculus in first order logic, it must be allowed to apply the γ-rule of AT and

the δ-rule of ADT several times. The method of CGT is not a calculus.
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The α-rule is applied to (A∧B), which results in branches B′

1
= X∪{A}

and B′

2
= X ∪ {B}.

Since cnf (B′

1
) = cnf (X) ∨ A and cnf (B′

2
) = cnf (X) ∨ B,

M |= cnf (B) iff M |= cnf (B′

1
) ∧ cnf (B′

2
).

(c) If B = X ∪ {∀xA(x)}, i.e., M |= cnf (X) ∨ ∀xA(x):

The γ-rule is applied to ∀xA(x), which results in branch B′ = X∪{A(y)}.

The variable y is new, i.e., y /∈ FV (T ). Thus, y /∈ B and y /∈ X.

Since cnf (B′) = cnf (X) ∨ A(y),

M |= cnf (B) iff M |= cnf (B′).

(2) If the δ-rule is applied, i.e., there is a branch B ∈ T such that B = X ∪

{∃xA(x)}:

The δ-rule is applied to ∃xA(x), which results in branch B′ = X ∪

{A(f(x1, . . . , xk))}. According to Skolem [12], a formula is satisfiable iff

it remains also satisfiable after eliminating one of its existential quantifiers

by introducing a new Skolem-function. Thus, cnf (T ) is satisfiable iff so is

cnf (T ′).

�

Theorem 4. Let A be a formula, and let T be a CGT for A. A is satisfiable

iff so is C = {cnf (B) | B ∈ T }.

Proof. By Lemma 3, A is satisfiable iff so is cnf (T ). And by the definition

of C, cnf (T ) is satisfiable iff so is C. �

Consider that if T is finished then C is a clause set. I.e., the branches of a

finished CGT represent the required clauses.

3. Linear algorithm by DAGs

All the known clause generating algorithms are exponential, which is caused

by the rewritings according to distributivity. The worst case is the one when the

original formula is in DNF. In this case, the number of the generated clauses is

lc at most where c is the number of disjuncts in the DNF, and l is the maximal

number of literals within those disjuncts. Of course, that number cannot be

reduced. Nevertheless, the number of steps of the generation can be.
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CGT is exponential, too. The problem is that some formulas are duplicated

in the CGT, so they must be processed separately, although they are the same.

This problem originates in distributivity and manifests itself in the α-rule. It is

easy to consider that the tree as data structure causes the problem since a tree

cannot contain a node with a degree greater than 1. This latter restriction should

be eliminated, i.e., directed acyclic graphs (DAGs) are needed instead of trees.

DAGs are well-known for logicians. Robinson’s exponential unification algorithm

was linearized by Paterson and Wegman in the 70s, by the use of DAGs [8]. The

key idea was the replacing of all occurrences of a variable by references to the

original variable. I.e., a variable is stored and substituted only in one spot, and

not in all of its occurrences. DAGs are widely used in logical applications where

duplications are to be prevented. Moreover, DAGs are used not only for the sake

of efficiency: e.g., the relation between worlds in Kripke’s modal semantics can

be represented quite naturally by DAGs, as considered by Castilho et al. [2], who

constructed their own modal tableaux based on DAGs.

In the case of CGT, the introduction of DAGs is motivated for the sake of

efficiency, and the fact that the resulting CGT produces a more expressive output.

As Paterson and Wegman linearized the unification algorithm by changing the

data structure only, so do we in the case of CGT. As mentioned above, the

problematic α-rule has to be changed, as shown in Figure 2. It can be seen that

every junction is immediately closed in an unlabeled node.

α-rule: α1 α2

α

Figure 2. Clause generating DAG – α-rule changed

The way that the rules are applied is also important. The traditional way

of applying tableau rules to a node N is that the new formulas are appended at

the end of each branch containing N . Now, in the case of CGT they get inserted

right below N . Consider that such a CGT is really a DAG and always contains

exactly one leaf. This algorithm is obviously linear in terms of the number of

logical connectives in the original formula.

In Figure 3, a finished CGT as a DAG can be seen which has been generated

for the formula in the root.
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¬R(c, v)

Q(c)

¬Q(c) ⊃ ¬R(c, v)

∀v
(

¬Q(c) ⊃ ¬R(c, v)
)

∃u∀v
(

¬Q(u) ⊃ ¬R(u, v)
)

R(x, f(x)) P (f(x))

¬
(

R(x, f(x)) ⊃ ¬P (f(x))
)

¬∀y
(

R(x, y) ⊃ ¬P (y)
)

Q(x)

¬P (x)

P (x) ⊃ Q(x)

¬
(

(

P (x) ⊃ Q(x)
)

⊃ ∀y
(

R(x, y) ⊃ ¬P (y)
)

)

¬∃x
(

(

P (x) ⊃ Q(x)
)

⊃ ∀y
(

R(x, y) ⊃ ¬P (y)
)

)

∃x
(

(

P (x) ⊃ Q(x)
)

⊃ ∀y
(

R(x, y) ⊃ ¬P (y)
)

)

⊃ ∃u∀v
(

¬Q(u) ⊃ ¬R(u, v)
)

Figure 3. Example for CGT as DAG

Consider that if a formula B was the result of applying a rule to a formula A

then B is located right below A. Two Skolem-functions were introduced: f and

c. In the figure, we have not erased the compound formulas, but have framed the

nodes that are really located in the finished CGT. These latter nodes (literals)

form the required clauses:

¬P (x) ∨ Q(x) ∨ Q(c) ∨ ¬R(c, v)

R(x, f(x)) ∨ Q(c) ∨ ¬R(c, v)

P (f(x)) ∨ Q(c) ∨ ¬R(c, v)



i

i

“kovasznai” — 2007/8/10 — 11:27 — page 116 — #8
i

i

i

i

i

i

116 Gergely Kovásznai

4. Simplifying Clause Set by Closure

In the generated clause set the clauses that are valid can be eliminated since

they do not have an effect on the satisfiability of the clause set. It is quite easy to

detect valid clauses in a CGT. In an ADT a branch can be proven to be valid by

closure. So can it be in a CGT, since it inherits the α-rule and the β-rule from

ADT. If a branch of a finished CGT can be closed, then that branch as a clause

does not get in the generated clause set.

The closing of CGT branches can be done as in the MGU Atomic Closure

Rule in [3], i.e., by generating most general unifiers (MGUs), as follows:

(1) Looking for an MGU for two oppositely negated literals in the branch.

(2) If such an MGU exists then the given branch (as a clause) does not get in

the generated clause set.

In the case of the finished CGT in Figure 3 the clause R(x, f(x))∨Q(c)∨¬R(c, v)

does not get in the clause set, since the branch consisting of its literals can be

closed by the MGU {x/c, v/f(c)}, which is in fact the MGU of the oppositely

negated literals R(x, f(x)) and ¬R(c, v).

5. Conclusion

In this paper, a novel algorithm for clause generation is proposed and is called

clause generating tableaux (CGT). CGT is based on tableaux, namely on both

analytic tableaux and analytic dual tableaux. CGT is exponential like all the

close generating algorithms, but it can easily be linearized by switching to DAGs

from trees. Another advantage of using tableaux is that valid clauses can be

eliminated very easily only by detecting the closure of branches. CGT is a very

clear, simple, and easy-to-implement algorithm for clause generation, and it is

linear in contrast with all the known algorithms for the same purpose.

At the University of Debrecen, theorem proving was introduced to education

in 1994. Currently, in the Bologna process, the following courses are held in

connection with theorem proving:

• “The Logical Bases of Informatics”: In this compulsory and foundation

course, students acquire the basics of the classical propositional and first-

order logic (syntax and semantics), logical laws, normal forms, etc.
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• “The Basics of Artificial Intelligence”: Logical puzzles are represented by

graphs, and are solved with numerous graph search methods (e.g., backtrack-

ing, deep-first, breadth-first, heuristic).

• “Automated Theorem Proving”: Analytic tableaux and resolution are intro-

duced in propositional logic, as well as several resolution strategies. In first-

order logic, after useful methods for automating tableaux and resolution are

proposed (e.g., unification and skolemization), first-order tableaux and first-

order resolution are introduced.

• “Logic Programming”: Linear input resolution and Prolog. Several puzzles

are represented by clause sets, solved with resolution, and implemented in

Prolog by students.

Since clause generation is already introduced in the foundation course “The Log-

ical Bases of Informatics”, and is essential in the courses “Automated Theorem

Proving” and “Logic Programming”, it is worth to show a linear and easy-to-

implement algorithm for this problem to students (besides the method in [6]).

Especially as students get acquainted with graph representation and graph meth-

ods in the course “The Basics of Artificial Intelligence”, teaching the CGT method

in the courses “Automated Theorem Proving” and/or “Logic Programming” is

quite useful, since

• it is a simple and linear algorithm for clause generation (i.e., it performs a

preliminary task for resolution);

• it is based on analytic tableaux;

• it checks closure of branches and uses unification in order to eliminate valid

clauses;

• and it produces a DAG as output, which is graphic, and therefore very ex-

pressive for humans.
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