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On four-dimensional crystallographic

groups

Eszter Horváth

Abstract. In his paper [12] S. S. Ryshkov gave the group of integral automorphisms
of some quadratic forms (according to Dade [6]). These groups can be considered as
maximal point groups of some four-dimensional translation lattices in E

4. The maximal
reflection group of each point group, its fundamental domain, then the reflection group
in the whole symmetry group of the lattice and its fundamental domain will be discussed.
This program will be carried out first on group T . G. Maxwell [9] raised the question
whether group T was a reflection group. He conjectured that it was not. We proved
that he had been right. We shall answer this question for other groups as well. Finally
we shall give the location of the considered groups in the tables of monograph [4]. We
hope that our elementary method will be useful in studying linear algebra and analytic
geometry. Futhermore, 4-dimensional geometry with some visualisation helps in better
understanding important concepts in higher-dimensional mathematics, in general.

Key words and phrases: four-dimensional crystallographic groups, fundamental domain,
point groups, quadratic form, reflectiongroups.

ZDM Subject Classification: G40, G50, G70, H40, H60.

1. Introduction

The topic of geometric transformations creates connections between group

theory, linear algebra and geometry. Geometric transformations form a group

with successive application as the product operation. Reflections have high prior-

ity among the congruence transformations. In two- and three-dimensional space

Copyright c© 2006 by University of Debrecen
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392 Eszter Horváth

every congruence transformation can be produced as a product of some reflec-

tions. When we generalize the concept of affine space, vector space and crystal

structure we can draw up multidimensional geometric problems applying meth-

ods of linear algebra. The question arises in higher dimensions if we can generate

some congruence groups by reflections or not. In this paper we discuss a prob-

lem in four-dimensional space which throws light on the fact that there exist

transformation groups which are not reflection groups.

S. S. Ryshkov [12] gave the maximal group of integral linear automorphisms

of the following quadratic form:

q(x) = 4x1x1 + 4x2x2 + 4x3x3 + 4x4x4 + 2x1x2 − 4x1x3 −

− 4x1x4 − 4x2x3 − 4x2x4 + 2x3x4.
(T )

The similar problem was discussed by Dade [6] for:

q(x) = 4x1x1 + 4x2x2 + 4x3x3 + 4x4x4 − 2x1x2 − 2x1x3 −

− 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4,
(P4)

q(x) = x1x1 + x2x2 + x3x3 + x4x4 − x1x2 − x2x3 − x3x4. (S4)

This latter is equivalent [4] with the quadratic form:

q(x) = x1x1 + x2x2 + x3x3 + x4x4 + x1x2 + x1x3 +

+ x1x4 + x2x3 + x2x4 + x3x4.
(S4)

Futhermore, we have the following forms:

q(x) = x1x1 + x2x2 + x3x3 + x4x4 − x1x2 − x3x4, (B)

q(x) = x1x1 + x2x2 + x3x3 + x4x4 (C4)

q(x) = x1x1 + x2x2 + x3x3 + x4x4 + x1x2 − x1x3 −

− x1x4 − x2x3 − x2x4 .
(Q4)

This is again equivalent with the quadratic form in [4]:

q(x) = x1x1 + x2x2 + x3x3 + x4x4 + x1x2 + x1x4 +

+ x2x3 − x3x4.
(Q4)

Let e1, e2, e3, e4 denote the basis vectors of any above lattice Λ. The qua-

dratic form q(x) expresses the length square of the vector x = x1 · e1 + x2 · e2 +

+ x3 · e3 + x4 · e4. G. Maxwell [9] raised the question whether the group T above

was a reflection group. In this paper we answer this question in the negative. Our

method will be carried out in detail only for the quadratic form of T , however, in

the tables of Section 6 we summarize the results for other cases as well.



i

i

“horvath” — 2007/2/16 — 12:15 — page 393 — #3
i

i

i

i

i

i

On four-dimensional crystallographic groups 393

2. Basic concepts and notation

E: real affin and Euclidean space of finite dimension.

V : the vector space of translations in E.

B: symmetric, non-degenerate, positive definite bilinear form on V . B makes

E above a Euclidean space. B(v,v′) expresses the scalar product of vectors

v,v′ ∈ V.

q: quadratic form on V . For v ∈ V put q(v) = B(v,v).

|v|: defines of the length of vector v. |v| = q(v)
1

2 .

H : hyperplane of E.

Definition 1. If the vector n 6= 0 in V is orthogonal to H with respect

to B, then the transformation:

s(x) = x − 2 ·
B(x,n)

B(n,n)
· n, x ∈ V

is called the orthogonal reflection in H .

The orthogonal reflection s preserves B and it is identity on H .

Definition 2. Groups generated by orthogonal reflections in some hyper-

planes are called reflection groups or Coxeter groups.

Definition 3. Let H be a locally finite set of hyperplanes of E. W denotes

the group generated by the orthogonal reflections in the hyperplanes of H . A

(closed) fundamental domain of the group W is a subset C of E if:

a) For every x ∈ E, there exists ω ∈ W such that ω(x) ∈ C.

b) If x,y ∈ C and ω ∈ W are such that y = ω(x), then y = x.

Definition 4. If W is a group generated by the set S of orthogonal reflections

in the hyperplanes (walls) of a fundamental domain, then the relations of types

s2
i = 1 and (si · sj)

m(si,sj) = 1, si, sj ∈ S

determine the group. These are the defining relations of the group.

Definition 5. Let C be a fundamental domain. S denotes the set of orthog-

onal reflections in the walls of the fundamental domain C. The vertices of the
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Coxeter graph represent the elements of S. If m(si, sj) = 2, then si and sj are

not connected, if m(si, sj) 6= 2, then m(si, sj) is written on the edge connecting

si and sj . When m(si, sj) = 3, then we can omit 3 from the edge.

3. The maximal reflection group of the point group T

Further on we use the former quadratic form T in the form

q(x) = (x1 + x2 − x3 − x4)2 + (x1 − x3)2 + (x1 − x4)2 +

+ (x2 − x3)2 + (x2 − x4)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2.
(1)

The appropriate bilinear form is:

B(x,y) = 4x1y1 + 4x2y2 + 4x3y3 + 4x4y4 + x1y2 + x2y1 − 2x1y3 −

− 2x3y1 − 2x1y4 − 2x4y1 − 2x2y3 − 2x3y2 − 2x2y4 −

− 2x4y2 + x3y4 + x4y3.

(2)

First we determine those hyperplane reflections that transform the lattice

onto itself. Let e1, e2, e3, e4 be the basis vectors of the lattice and let O be any
point of E as origin,

−−→
OEi := ei (i = 1, 2, 3, 4). In the following we simply write

plane instead of hyperplane.

Let H1 be a possible reflection plane and let the reflection in H1 map the
origin O to O1. The vector

−−→
OO1 belongs to the lattice Λ. The translation by

vector 1
2

−−→
O1O maps H1 onto the plane H through O. Then the reflection in H

is equal to the product of the translation by vector
−−→
OO1 and the reflection in

H1. If the translation by 1
2

−−→
OO1 maps H1 onto the plane H2, then H2 obviously

is a possible reflection plane, too. Thus all the suitable reflection planes can be

obtained in the following steps:

• we determine the reflection planes through the origin O,

• then we determine all the reflection planes by translations from the former

planes.

The latter happens as follows: Let H be a reflection plane through O and let

n = (n1, n2, n3, n4) be a normal vector of H with respect to the scalar product

derived by (2), where the greatest common divisor (n1, n2, n3, n4) = 1. Clearly,

by translations of vectors k
2 ·n (k is an arbitrary integer) we can get all the possible

reflection planes.

Thus we determine all the reflection planes through the origin O. Let H be

one of these planes. Reflecting E1 in the plane H we get E′

1. For E′

1 it holds
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|
−−→
OE1| = |

−−→
OE′

1|, that is, by the quadratic form |
−−→
OEi| = |ei| = 2. If

−−→
OE′

1 = e′1 =

= k1 · e1 + k2 · e2 + k3 · e3 + k4 · e4, then we have:

(k1 + k2 − k3 − k4)2 + (k1 − k3)2 + (k1 − k4)2 + (k2 − k3)2 +

+ (k2 − k4)2 + (k1)2 + (k2)2 + (k3)2 + (k4)2 = 4.
(3)

The sum of 9 square numbers can be equal to 4 if and only if:

• eitheir one of them is equal to 4, the others are equal to 0;

• or four of the 9 numbers are equal to 1, the others are equal to 0.

All of (k1)2, (k2)2, (k3)2, (k4)2 cannot be 0. If one (ki)2 = 4, then the right-

hand side of (3) would be 16. Hence only the second case is possible. Thus we

get the values for ki in Table 1.

Table 1. e
′

1 = k
1
· e1 + k

2
· e2 + k

3
· e3 + k

4
· e4

k1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

k2 1 −1 0 0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0

k3 1 −1 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 1 −1

k4 1 −1 0 0 0 0 0 0 1 −1 1 −1 0 0 1 −1 0 0

Then a normal vector of plane H (if E1 6= E′

1) will be:

−−−→
E1E1

′ = (k1 − 1) · e1 + k2 · e2 + k3 · e3 + k4 · e4.

We determine the normal vector n = n1 · e1 + n2 · e2 + n3 · e3 + n4 · e4, where

(n1, n2, n3, n4) = 1.

The possible values for ni are in Table 2.

Table 2. n = n
1
· e1 + n

2
· e2 + n

3
· e3 + n

4
· e4

n1 0 2 1 −1 1 −1 1 −1 1 −1 1 −1 1 0 2 0 2

n2 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0

n3 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1

n4 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0

We look for those coordinates ni, for which vectors e′i (i = 1, 2, 3, 4) can

be expressed as an integral linear combination of e1, e2, e3, e4 in the reflection
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formula (4) below:

e′i = ei −
2 · B(ei,n)

B(n,n)
· n. (4)

Thus
2 · B(ei,n)

B(n,n)
· nj (5)

must be integer for all i = 1, 2, 3, 4 and j = 1, 2, 3, 4.

By using the bilinear form (2) we shall see there exist four such n vectors

(Table 3).

Table 3. n = n
1
· e1 + n

2
· e2 + n

3
· e3 + n

4
· e4

n1 0 −1 1 1

n2 1 1 1 1

n3 1 0 0 1

n4 1 0 1 0

We still would have to examine those reflections which map E1 onto itself.

Then we apply this method for each of the other points Ei (i = 2, 3, 4). So

we get two more possible normal vectors. The suitable coordinates are collected

in Table 4.

Table 4. n = n
1
· e1 + n

2
· e2 + n

3
· e3 + n

4
· e4

n1 0 1 1 1 −1 0

n2 1 0 1 1 1 0

n3 1 1 0 1 0 −1

n4 1 1 1 0 0 1

Finally we have obtained six reflections:

σ1: the reflection plane is H1, its normal vector is n1 = (0, 1, 1, 1),

σ2: the reflection plane is H2, its normal vector is n2 = (1, 0, 1, 1),

σ3: the reflection plane is H3, its normal vector is n3 = (1, 1, 0, 1),

σ4: the reflection plane is H4, its normal vector is n4 = (1, 1, 1, 0),

σ5: the reflection plane is H5, its normal vector is n5 = (−1, 1, 0, 0),

σ6: the reflection plane is H6, its normal vector is n6 = (0, 0,−1, 1).
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At the reflection σ1:

e′1 = e1 + e2 + e3 + e4

e′2 = e2

e′3 = −e2 − e4

e′4 = −e2 − e3,

or by row-column multiplication:











e′1
e′2
e′3
e′4











=











1 1 1 1

0 1 0 0

0 −1 0 −1

0 −1 −1 0











·











e1

e2

e3

e4











by Coxeter’s convention [5], or in transpose form:

(

e′1 e′2 e′3 e′4
)

=
(

e1 e2 e3 e4

)

·











1 0 0 0

1 1 −1 −1

1 0 0 −1

1 0 −1 0











or simply:

σ1 :











1 0 0 0

1 1 −1 −1

1 0 0 −1

1 0 −1 0











as in tables of [4].

Similarly, in this latter matrix forms:

σ2 :











1 1 −1 −1

0 1 0 0

0 1 0 −1

0 1 −1 0











σ3 :











0 −1 1 0

−1 0 1 0

0 0 1 0

−1 −1 1 1










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σ4 :











0 −1 0 1

−1 0 0 1

−1 0 1 1

0 −1 0 1











σ5 :











0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1











σ6 :











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











It is easy to verify that:

σ5 = σ2 · σ1 · σ2

σ6 = σ4 · σ3 · σ4

(σ1 · σ2)
3 = (σ3 · σ4)

3 = I.

(I denotes the identity map).

Thus the reflection subgroup, mapping O onto itself, can be generated by

σ1, σ2, σ3, σ4. The group generated by σ1 and σ2 above is denoted by A2 (see the

notation in [1]) and the same holds for σ3 and σ4 as well. Therefore the maximal

reflection subgroup of the point group of T can be denoted as a direct product

A2 × A2, since H1, H2 ⊥ H3, H4. The Coxeter graph of this group is shown in

Figure 1.

σ1 σ2

σ3 σ4

3

3

Figure 1. The Coxeter graph of the maximal reflection subgroup of
the point group of T



i

i

“horvath” — 2007/2/16 — 12:15 — page 399 — #9
i

i

i

i

i

i

On four-dimensional crystallographic groups 399

4. The point group of T is not a reflection group

We determine the fundamental domain of A2 × A2 above, that is FA2×A2
.

This can be obtained as the intersection of suitable half spaces determined by

planes H1, H2, H3, H4, respectively. The inequalities below determine the points

x = (x1, x2, x3, x4) of the fundamental domain:

H+
1 : −x1 + x3 + x4 ≥ 0 (B(x,n1) ≥ 0),

H+
2 : x2 − x3 − x4 ≥ 0 (B(x,−n2) ≥ 0),

H+
3 : x1 + x2 − x3 ≥ 0 (B(x,n3) ≥ 0),

H+
4 : −x1 − x2 + x4 ≥ 0 (B(x,−n4) ≥ 0).

The intersection line of planes Hi, Hj , Hk will be denoted by fijk. The direc-

tion vectors of f123, f124, f134, f234 are (1, 1, 2,−1), (1, 1,−1, 2), (2,−1, 1, 1),

(−1, 2, 1, 1), respectively. Using these we get the 2-dimensional faces of the fun-

damental domain. Aij denotes the intersection of Hi and Hj (Figure 2).

f124

f134

A14

f124

f234

A24

f134

f234

A34

60◦

f123

f124

A12

60◦

f123

f134

A13

f123

f234

A23

Figure 2. The 2-dimensional faces of the fundamental domain of the
maximal reflection subgroup of the point group of T

We still have to detect whether the fundamental domain can be mapped

onto itself by other symmetry operations or not. Of course, we look for those

transformations which map the lattice onto itself as well.

Further on we give such transformations:
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(1) Transformation f1 maps the half space H+
1 onto H+

3 , and H+
2 onto H+

4 ,

f1 :











0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0











f1 · f1 = I. f1 is a reflection in a 2-dimensional plane.

(2) Transformation f2 maps the half space H+
1 onto H+

4 , and H+
2 onto H+

3 ,

f2 :











0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0











f2 · f2 = I. f2 is a reflection in a 2-dimensional plane.

(3) Transformation f1 · f2 = f2 · f1:










0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0











By the Coxeter graph it would be possible to have a transformation which

maps the half space H+
1 into H+

2 and the half spaces H+
3 and H+

4 are stable under

this transformation. Howewer, this would be a reflection in a three-dimensional

plane bisecting the angle of H+
1 and H+

2 . But we have already found all con-

venient reflections, it means that this reflection does not map the lattice onto

itself. Similarly there is no such transformation which maps the half space H+
3

into H+
4 and leaves H+

1 and H+
2 invariant. After all there are no more such

transformations.

Thus the elements of group F = {1, f1, f2, f1 ·f2} in point group T map both

the fundamental domain of the maximal reflection subgroup and the lattice onto

itself. Clearly, all elements of T can uniquely be obtained as a product f ·d, where

f ∈ F and d ∈ A2×A2. The reason of this is the following: Let the transformation

t ∈ T map the point P into P ′. Let P be a point of the fundamental domain F1

and P ′ in the fundamental domain F2. By product of some reflections we can get

F1 from F2. Then the image of P ′ is the point P1. Thus there is a transformation

f ∈ F which maps the point P onto P1. Hence the transformation t is the product

of f and some reflections. F has 4 elements, A2 × A2 has 6 · 6 = 36 elements, so

the order of the point group T is 4 · 36 = 144.
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5. The maximal reflection subgroup

We shall determine the maximal reflection subgroup in the whole symmetry

group of the lattice Λ of T as follows.

The fundamental domain F ∗ of the reflection subgroup will be a polyhedron

which is a subset of FA2×A2
. The group will be generated by reflections in the

3-dimensional walls of F ∗. Therefore we get the fundamental domain F ∗ in the

following steps:

• We shift the plane Hi by the vector 1
2ni or − 1

2ni (i = 1, 2, 3, 4, 5, 6), the image

of Hi will be denoted by Hi′ . We choose the plane that intersects the corner

domain FA2×A2
.

• We choose the half spaces above that contain the origin O.

• The intersection of these half spaces and FA2×A2
will be determined.

The inequalities below determine the fundamental domain F ∗:

H+
1 : −x1 + x3 + x4 ≥ 0,

H+
2 : x2 − x3 − x4 ≥ 0,

H+
3 : x1 + x2 − x3 ≥ 0,

H+
4 : −x1 − x2 + x4 ≥ 0,

H+
5′ : x1 − x2 + 1 ≥ 0,

H+
6′ : x3 − x4 + 1 ≥ 0.

A 2-dimensional axonometric projection of the fundamental domain is shown in

Figure 4. Bijkl denotes the common point of the corresponding planes Hi, Hj , Hk,

Hl. The maximal reflection subgroup in the whole symmetry group of the lattice

Λ is generated by reflections σ1, σ2, σ3, σ4, σ5′ , σ6′ in planes H1, H2, H3, H4, H5′ ,

H6′ , respectively. The Coxeter graph of this group is shown in Figure 3. It is the

group denoted by Ã2 × Ã2 (see the notation in [1]).

σ1 σ5′

σ2

3

3 3

σ3 σ6′

σ4

3

3 3

Figure 3. The Coxeter graph of the maximal reflection group of the
whole symmetry group of the lattice Λ
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O = B1234

B1236′ B235′6′

B2345′

B1246′ B245′6′

B1345′

B135′6′

B145′6′

Figure 4. The 2-dimensional axonometric projection of the fundamen-
tal domain F

∗

6. Results for other cases

We apply the method above for each quadratic form. Table 5 and Table 6

contain the data for all mentioned cases. The location in monograph [4] (see its

tables) gives the crystal family, the crystal system, the Q-class, and the Z-class

of the groups by their numberings.

Table 5. Results for the different cases I. (see [1, 4])

The group in

Introduction
T P4 S4

The maximal reflection

group of point group
A2 × A2 A4 A4

Is the group a pure

reflection group?
NO NO NO

The location in the

tables of monograph [4]
XXI.29/09/01 XXII.31/07/01 XXII.31/07/02

The reflection subgroup

in the whole symmetry

group

Ã2 × Ã2 Ã4 Ã4
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Table 6. Results for the different cases II. (see [1, 4])

The group in

Introduction
B C4 Q4

The maximal reflection

group of point group
G2 × G2 C4 F4

Is the group a pure

reflection group?
NO YES YES

The location in the

tables of monograph [4]
XXI.30/13/01 XXIII.32/21/01 XXIII.33/16/01

The reflection subgroup

in the whole symmetry

group

G̃2 × G̃2 C̃4 F̃4
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