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Abstract. The article starts with a short introduction to finite (K, L)-geometry. Then a
lot of counting propositions is given and proved. Finally the famous theorem of Miquel
is investigated in classical and in finite geometry. At the end of the article there is a call
to all readers: Don’t forget (finite) geometry and don’t forget the outstanding geometer
Prof. Dr. F. Kárteszi!
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In 2007 Prof. Dr. Ferenc Kárteszi would have been 100 years old. During

his last years I had the opportunity to correspond with him. Doing so, I learned

to appreciate his exceptional mathematical qualities and his natural didactical

talent. All these motivated me to remember this outstanding mathematician.

Ferenc Kárteszi was born on 13 February 1907 at Cegléd. He studied at

the University of Budapest and here he earned the degree “doctor of sciences”.

During the years 1931–1940 he was a teacher at a high school in Győr. Later

he always kept strong connections with the school. So, for instance, he was a

coworker of a journal for pupils. He succeeded the jump to university – a very

exceptional event. In 1950 he took over a chair for geometry (projective and

descriptive geometry) and didactics at the University of Budapest. This position

he hold up to his retirement in 1977. His main mathematical subject was finite
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256 Herbert Zeitler

Figure 1. Professor Dr. Ferenc Kárteszi

geometry. In a worldwide appreciated book he presented this special field in a

remarkable way and proved with this book his extraordinary didactical talent. He

also was working in other fields as classical geometry, combinatorics, descriptive

geometry and graph theory. A lot of books and many different research papers

were published. Some years he spent as guest professor at the University of

Bologna and other Italian universities. After a life full of work he died on 9 May

1989 in Budapest.

The mathematical world had lost an enthusiastic and inspiring geometer.

1. What you should already know

1.1. Some algebra

Starting with a field K, a quadratic extension field L may be constructed by

adjoining a suitable element.

A well-known example:
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Miscellaneous topics in finite geometry 257

K = R, field of real numbers; f(x) = x2 + 1 polynomial irreducible in R;

C = {x1 + i x2 | x1, x2 ∈ R} with i2 = −1; the element i is adjoined; C is the field

of complex numbers. Mostly we restrict ourselves in this paper to the finite case

and start with a finite field (Galois field):

K = GF(q) = GF(pe), p prime, p > 2, e ∈ N.

(The condition p > 2 is sometimes denoted by Char K 6= 2. It means 1 + 1 6= 0,

where 1 is the neutral element of the multiplication.) There always exists a

polynomial f(x) = x2+b irreducible in K. Then it turns out that L = {x1 + εx2 |
x1, x2 ∈ K} with ε2 = −b /∈ (K∗)2 and K∗ = K \ {0} is a quadratic separable

extension field L = GF(q2). The element ε is adjoined.

Definition 1. X̄ = x1 − εx2 is the conjugate element of X = x1 + εx2 and

N(X) = XX̄ = x2
1 + b x2

2 is the norm of X .

1.2. Some geometry

In complete analogy to the geometry over C – more precisely over the pair

(R,C) – we now develop a geometry over the pair (K, L), the so-called (K, L)-

geometry – emphasizing always the finite case. We do not give any proofs. They

can be found in the book [1, 2].

Points: P = L ∪ {∞}, |P| = q2 + 1.

Lines: G =
{

X ∈ L | XM̄ + X̄M + d = 0
}

∪ {∞}
with M = m1 + εm2, X = x1 + εx2

=

{

x1, x2 ∈ K | x1m1 + b x2m2 +
1

2
d = 0

}

∪ {∞}.

We have M ∈ L∗ = L \ {0}, d ∈ K. Multiplication with a ∈ K∗ yields a new

equation but the same line (equivalence property).

Elementary properties concerning lines:

Two distinct points A, B ∈ L determine exactly one line g(A, B); each line

has exactly q + 1 points; number of lines |G| = q(q + 1); P ∈ L is an element of

g(A, B) with A, B ∈ L if and only if A−P
B−P

∈ K; in any point P ∈ L there exist

q + 1 lines.
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258 Herbert Zeitler

Circles: K = {X ∈ L | N(X − M) = c}
=

{

X ∈ L | XX̄ − XM̄ − X̄M + MM̄ = c
}

with M = m1 + εm2, X = x1 + εx2

=
{

x1, x2 ∈ K | (x1 − m1)
2 + b (x2 − m2)

2 = c
}

.

We have M ∈ L, c ∈ K∗.

Elementary properties concerning circles:

Three distinct points A, B, C ∈ L determine exactly one circle k(A, B, C);

each circle has exactly q + 1 points; number of circles |K| = q2(q − 1); P ∈ L is

an element of k(A, B, C) with A, B, C ∈ L if and only if A−P
B−P

: A−C
B−C

∈ K and
A−C
B−C

/∈ K; in any point P ∈ L there exist q2 − 1 circles.

Cycles: Z = G ∪ K, |Z| = q(q2 + 1)

Cycle preserving mappings

Homographies Antihomographies

H X ′ =
SX + T

UX + V
H̄ X ′ =

SX̄ + T

UX̄ + V

We have S, T, U, V ∈ L and det = SV − TU 6= 0.

These mapping transform the set of all cycles onto itself. We have |H| =

|H̄| = q2(q4 − 1). The reflections in lines and circles are antihomographies.

The (K, L)-geometries are called Möbius-planes or inversive planes [1].

1.3. An example

K = GF(3), f(x) = x2+1 irreducible polynomial, L = {x1 + εx2 | x1, x2 ∈K}
with ε2 = −1 = 2. Points

P = { (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) }∪ {∞}
= {1, 2, 3, 4, 5, 6, 7, 8, 9}∪ {10}.

In the first line all pairs (x1, x2) are notated and in the second line we have simply

numerated one after the other.



i

i

“zeitler” — 2007/2/15 — 13:36 — page 259 — #5
i

i

i

i

i

i
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Lines equation points

x1 = 0 1, 2, 3, 10

x2 = 0 1, 4, 7, 10

x1 + x2 = 0 1, 6, 8, 10

2x1 + x2 = 0 1, 5, 9, 10

2x2 + 1 = 0 2, 5, 8, 10

x2 + 1 = 0 3, 6, 9, 10

2x1 + 1 = 0 4, 5, 6, 10

2x1 + 2x2 + 1 = 0 2, 4, 9, 10

2x1 + x2 + 1 = 0 3, 4, 8, 10

x1 + 1 = 0 7, 8, 9, 10

x1 + 2x2 + 1 = 0 2, 6, 7, 10

x1 + x2 + 1 = 0 3, 5, 7, 10

|G| = q(q + 1) = 12.

Circles

c = 1 m1 m2 equation points

0 0 x2
1 + x2

2 + 2 = 0 2, 3, 4, 7

0 1 x2
1 + x2

2 + x2 = 0 1, 3, 5, 8

0 2 x2
1 + x2

2 + 2x2 = 0 1, 2, 6, 9

1 0 x2
1 + x2

2 + x1 = 0 1, 5, 6, 7

1 1 x2
1 + x2

2 + x1 + x2 + 1 = 0 2, 4, 6, 8

1 2 x2
1 + x2

2 + x1 + 2x2 + 1 = 0 3, 4, 5, 9

2 0 x2
1 + x2

2 + 2x1 = 0 1, 4, 8, 9

2 1 x2
1 + x2

2 + 2x1 + x2 + 1 = 0 2, 5, 7, 9

2 2 x2
1 + x2

2 + 2x1 + 2x2 + 1 = 0 3, 6, 7, 8

c = 2 m1 m2 equation points

0 0 x2
1 + x2

2 + 1 = 0 5, 6, 8, 9

0 1 x2
1 + x2

2 + x2 + 2 = 0 4, 6, 7, 9

0 2 x2
1 + x2

2 + 2x2 + 2 = 0 4, 5, 7, 8

1 0 x2
1 + x2

2 + x1 + 2 = 0 2, 3, 8, 9

1 1 x2
1 + x2

2 + x1 + x2 = 0 1, 3, 7, 9

1 2 x2
1 + x2

2 + x1 + 2x2 = 0 1, 2, 7, 8

2 0 x2
1 + x2

2 + 2x1 + 2 = 0 2, 3, 5, 6

2 1 x2
1 + x2

2 + 2x1 + x2 = 0 1, 3, 4, 6

2 2 x2
1 + x2

2 + 2x1 + 2x2 = 0 1, 2, 4, 5

|K| = q2(q − 1) = 18.
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260 Herbert Zeitler

2. Lines and points with respect to a circle

Now we prove some elementary theorems and give definitions in our finite

geometry. Mostly we have only to count.

Theorem 1. Let k be a circle and g a line, then we have |k ∩ g| ∈ {0, 1, 2}.

Proof. We have to do some calculations.

Without loss of generality (performing a suitable homography) we start with

k : x2
1 + bx2

2 = 1, g : x1m1 + bx2m2 +
1

2
d = 0.

Because of the equivalence property we can choose m1 = 1 (or m2 = 1). Substi-

tution yields
(

bx2m2 +
1

2
d

)2

+ bx2
2 = 1

and further

x2 =
1

2(b2m2
2 + b)

[

−bdm2 ±
√

4b2m2
2 + 4b − d2b

]

=
1

2(b2m2
2 + b)

[

−bdm2 ±
√

D
]

.

With 2(b2m2
2 + b) 6= 0 we distinguish three cases

D















∈ (K∗)2 two intersection points,

= 0 one intersection point,

/∈ (K∗)2 no intersection point.

�

This result leads to the following definition.

Definition 2. With respect to a given circle k a line g is denoted by

secant (intersecting line)

tangent (touching line)

passant (avoiding line)







if and only if |k ∩ g| =







2

1

0.

Theorem 2. At each point of a circle k there exists exactly one tangent.



i

i

“zeitler” — 2007/2/15 — 13:36 — page 261 — #7
i

i

i

i

i

i
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Proof. We have only to count.

Let P be a point of the circle k. Connecting P with all the other points of

k we obtain exactly q secants. Since there exist totally q + 1 lines in P there

remains exactly one. Due to Definition 2 this is a tangent. �

Theorem 3. Concerning the number of lines in different classes in respect

of a circle k we have

• tangents: q + 1,

• secant: 1

2
q(q + 1),

• passants: 1

2
(q + 1)(q − 2).

Proof. The number of tangents follows immediately from Theorem 2 and

Subsection 1.2. This circle k contains q + 1 points and therefore
(

q+1

2

)

pairs of

points. So the number of secants is 1

2
q(q + 1). Due to Subsection 1.2 there exist

q(q + 1) lines. Then there remain

q(q + 1) − (q + 1) − 1

2
q(q + 1) =

1

2
(q + 1)(q − 2)

passants. �

2.1. Mixed items, concerning parallels

Definition 3. Two lines g, h are parallel if and only if they are either equal

or they have exactly the point ∞ in common. As usual we write:

g ‖ h ⇐⇒ g = h or g ∩ h = {∞}.

The set of all lines parallel to a line g is denoted as pencil of parallels.

Theorem 4. Let g be a line and P a point P /∈ g. Then in P there exists

exactly one line h parallel to g.

Proof. Connecting P with any point X ∈ g, X 6= ∞ we get exactly q lines.

As we know (Subsection 1.2) there are exactly q + 1 lines in P . So one line h

remains with g ∩ h = {∞}. �

Remark 1. The set of all points different from ∞, together with the set of all

lines forms the so-called “derived (in ∞)” plane. Because of Theorem 4 and some

other qualities mentioned in [1] it turns out that this is an affine plane.
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Theorem 5. In each pencil of lines we have exactly q lines and totally we

get q + 1 such pencils.

Proof. Without loss of generality we start with the line g : x1 = 0, the

x2-axes. Because of Theorem 4 the set of lines x1 = c with c ∈ K forms the

corresponding pencil of lines. With |K| = q the first part of our theorem is already

proved. The second part follows immediately from the fact |G| = q(q + 1). �

Theorem 6. Let t1 be a tangent to the circle k. Then there exists exactly

one other tangent t2, with t1 6= t2, t1 ‖ t2. The pencil determined by t1 and t2
contains exactly 1

2
(q − 1) secants and 1

2
(q − 3) passants.

Proof. We are working with a very special configuration. This means no

loss of generality – always the same trick.

Pencil of parallels: x1 = c with c ∈ K.

Circle k: x2
1 + bx2

2 = 1.

Substituting we get x2
2 = 1−c2

b
.

We are looking for tangents, for touching points. Therefore we get 1−c2 = 0,

c = ±1.

So there exist exactly two parallel tangents t1, t2: x1 = ±1 and two touching

points A(1, 0), B(−1, 0).

All the other lines of the pencil are either secants or passants with respect of

the circle k. Besides A, B the circle contains q− 1 points and that’s why we have

exactly 1

2
(q − 1) secants in the pencil. Subtraction finally yields the number of

passants in the pencil:

q − 1

2
(q − 1) − 2 =

1

2
(q − 3).

�

Definition 4. With respect to a given circle k we divide the set of points

in three classes as follows:

• on-points: all points on k,

• ex-points: all points on tangents without the corresponding touching points,

• in-points: all the remaining points.

Theorem 7. If X is an ex-point of a circle k, then in X there exist exactly

two tangents of k, through X .
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Proof. Let t be a tangent to k, P the corresponding touching point and

X ∈ t, X 6= P (Figure 2).

X P
t

k

Figure 2. Tangents from ex-points

Besides P we have q points on k. It cannot happen that all the connecting

lines of these points with X are secants, because q is an odd number. Therefore

in X exist at least two tangents to k. This holds for all points X ∈ t, X 6= P .

Together with t in this way we have at least q + 1 tangents. Due to Theorem 3

there exist exactly q+1 tangents. That’s why in each point X ∈ t we have exactly

two tangents.

This proof is working for all ex-points of k.

(Naturally Figure 2 and also Figures 5, 6, 7 are only visualizations of algebraic

facts.) �

Theorem 8. Concerning the number of points in different classes with re-

spect to a circle k we have

• on-points: q + 1,

• ex-points: 1

2
(q2 + 1),

• in-points: 1

2
(q2 − 2q − 1).

Proof. According to Definition 4 the number of on-points is immediately to

see.

The ex-point ∞ is a very special point. It contains more than two tangents

with respect to k. Therefore the point ∞ is at first deleted.

Besides ∞ and the corresponding touching point each tangent possesses

exactly q − 1 ex-points. There exist q + 1 tangents and in respect of The-

orem 7 each ex-point is counted twice. For the number of ex-points we get
1

2
(q + 1)(q − 1) = 1

2
(q2 − 1). Finally we must add the point ∞ again and it
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follows 1

2
(q2 − 1) + 1 = 1

2
(q2 + 1). Totally there exist q2 + 1 points. With this,

subtraction yields the number of in-points

(q2 + 1) − (q + 1) − 1

2
(q2 + 1) =

1

2
(q2 − 2q − 1).

�

Theorem 9. Concerning the number of lines of different classes through

points of different classes – all with respect to a circle k – we have

points tangents T secants S passants P

on 1 q 0

ex 6= ∞ 2 1

2
(q − 1) 1

2
(q − 1)

in 0 1

2
(q + 1) 1

2
(q + 1)

Proof. In the case of on-points everything is clear.

One ex-point 6= ∞ contains exactly two tangents (Theorem 7) and therefore
1

2
(q − 1) secants. By subtraction this yields (q + 1) − 1

2
(q − 1) − 2 = 1

2
(q − 1)

passants.

An in-point never lies on a tangent. That’s why we obtain 1

2
(q + 1) secants

and as many passants.

If we consider the ex-point ∞, then we encounter quite another, a very strange

situation. Each pair (Theorem 6) of parallel tangents determines a pencil of

parallel lines. In this way we get 1

2
(q + 1) pencils with two tangents and 1

2
(q − 1)

secants each. The remaining q − 1

2
(q − 1) − 2 = 1

2
(q − 3) lines in each pencil are

passants. �

Theorem 10. Concerning the number of points of different classes on lines

of different classes – all with respect to a circle k – we have

Lines on ex in

Tangents T 1 q 0

Secants S

S1 2 1

2
(q + 1) 1

2
(q − 3)

S2 2 1

2
(q − 1) 1

2
(q − 1)

Passants P

P1 0 1

2
(q + 3) 1

2
(q − 1)

P2 0 1

2
(q + 1) 1

2
(q + 1)
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Proof.

T Tangents: This case is clear.

P Passants p: We distinguish two cases.

P1 No tangent is parallel to p

This means that any tangent intersects the passants p in a point 6= ∞.

Let w be the number of ex-points on p different from ∞. Then it follows

w = 1

2
(q + 1). Point ∞ is also an ex-point on p. Then it turns out that

the total number x of ex-points lying on p is x = w + 1 = 1

2
(q + 1)+ 1 =

1

2
(q + 3). Subtracting finally yields the number y of in-points on p

y = (q + 1) − x = (q + 1) − 1

2
(q + 3) =

1

2
(q − 1).

The notations x, y, w are used in the same meaning in all the following

proofs of Section 2.

P2 One tangent is parallel to p

Due to Theorem 6 in this case we have even a second tangent parallel

to p. All other tangents intersect p in an ex-point 6= ∞.

So it follows w = 1

2
(q − 1) and x = w + 1 = 1

2
(q + 1).

Subtracting yields y = (q + 1) − 1

2
(q + 1) = 1

2
(q + 1).

S Secants s with s ∩ k = {A, B}
S1 No tangent is parallel to s

Every tangent intersects s in a point. Considering the special situation

of the tangents in A and B it turns out, that w = 1

2
(q − 1) and x =

w + 1 = 1

2
(q + 1). A and B are on-points. Subtraction yields y =

(q + 1) − 1

2
(q + 1) − 2 = 1

2
(q − 3).

S2 One tangent is parallel to s

We then have two tangents parallel to s. They intersect s in ∞. Us-

ing the same ideas as in the last cases we obtain w = 1

2
(q − 3), x =

w + 1 = 1

2
(q − 1). We take into account, that A, B are on-points. Then

subtraction yields

y = (q + 1) − 1

2
(q − 1) − 2 =

1

2
(q − 1).

�

Naturally we now are interested how often the different special cases in The-

orem 10 really occur.
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Theorem 11. Concerning the number of lines within the four classes S1, S2,

P1, P2 we have

S1 : 1

4
(q + 1)2 P1 : 1

4
(q2 − 1)

S2 : 1

4
(q2 − 1) P2 : 1

4
(q + 1)(q − 3)

S : 1

2
q(q + 1) P : 1

2
(q2 − q − 2)

Proof.

S Secants s

S2 The two tangents and s determine (Theorem 6) a pencil with exactly
1

2
(q − 1) secants. Each of these secants is usable and leads to the case

S2. We have 1

2
(q + 1) pairs of parallel tangents and therefore the case

S2 occurs 1

2
(q − 1) · 1

2
(q + 1) = 1

4
(q2 − 1) times.

S1 Due to Theorem 3 there exist 1

2
q(q + 1) secants. We take away all the

secants already used in the last case S2. There remain 1

2
q(q + 1) −

1

4
(q2 − 1) = 1

4
(q + 1)2 secants, leading straightaway to S1.

P Passants p: The proof is running exactly as with S.

P2 The two tangents and p determine a pencil (Theorem 6) with exactly
1

2
(q− 3) passants. Each of these passants is usable and leads to case P2.

We have 1

2
(q + 1) pairs of parallel tangents and therefore the case P2

occurs exactly 1

2
(q − 3) · 1

2
(q + 1) = 1

4
(q2 − 2q − 3) times.

P1 Due to Theorem 3 there exist 1

2
(q + 1)(q − 2) passants. We take away

all the passants already used in the last case P2. There remain 1

2
(q + 1)

(q − 2) − 1

4
(q + 1)(q − 3) = 1

4
(q2 − 1).

�

Now it would be interesting to verify all our results using the special (K, L)-

geometry with q = 3 described in Subsection 1.3. For instance you could start

with the circle (2, 3, 4, 7) and find out the corresponding special lines and points.

With this it is possible to check all our counting results. We leave this as an

exercise to the reader.

Counting, counting! For students this was boring. They did the work some-

times in a reluctant way. Therefore: Enough with counting! Let’s go to geometry!
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3. To play around with Miquel’s theorem

3.1. The theorem in elementary geometry

In older books about classical elementary geometry you can find as a “fossil”

the theorem of Miquel. Meanwhile this theorem has got fundamental importance

within the foundations of geometry.

We start with a “basic configuration” which is easy to construct. It consists

of four circles with eight intersection points as shown in Figure 3. The circles:

(P, Q, A, B), (P, S, A, D), (Q, R, B, C), (R, S, C, D).

P

Q

R

S B

C

D

A

Figure 3. Theorem of Miquel

Theorem of Miquel. If in the basic configuration the points P , Q, R, S

are on a circle then the points A, B, C, D have the same property.
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Proof. Proving this theorem we use a well-known trick and perform a

reflection in a circle with center P (inversion). Then the circles (P, Q, A, B),

(P, S, A, D), (P, Q, R, S) are mapped into straight lines through the picture A′ of

A and the circles (Q, R, B, C), (R, S, C, D) again into circles. In this way we get

a figure, often called as Pivot-configuration (Figure 4).

S′D′

R′

C ′

Q′

A′

B′ α

α

α

Figure 4. The Pivot-configuration

We prove our theorem within this new configuration. It is sufficient to show

that the points A′, B′, C′, D′ are elements of a circle.

We need a theorem from school geometry. It consists of two parts.

(a) If a quadrangle is inscribed in a circle then the measures of its opposite angles

add up to 180◦.

Vice versa we have:

(b) If the measures of the opposite angles of a quadrangle add up to 180◦, then

its vertices are lying on a circle.
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Sometimes the notion “chord-quadrangle” is used.

Now let us have a look in Figure 4. With ∢(A′D′C′) = α we take from the

chord-quadrangle (D′S′R′C′) the supplementary angle ∢(C′D′S′) = 180◦ − α

and further with (a) ∢(S′R′C′) = α. In the same way the chord-quadrangle

(C′R′Q′B′) yields ∢(C′R′Q′) = 180◦−α, ∢(Q′B′C′) = α and finally ∢(C′B′A′) =

180◦−α. Because of (b) then (A′D′C′B′) is a chord-quadrangle – the four points

A′, B′, C′, D′ are on a circle.

Now the complete Pivot-configuration is reflected backwards – and with this,

the proof of Miquel’s theorem is done. �

We explain once more the whole procedure:

The trick is to find a much simpler constellation using a suitable transforma-

tion (here a reflection in a circle). Then the new problem is solved. Finally all

is – full of remorse – transformed backwards. Naturally, all the properties of the

transformation must be known.

The operation is to compare with the translation from one language to an-

other one.

Some remarks:

(1) Who was Miquel and who was Pivot? Where they are coming from? No

people we asked had an answer.

(2) Naturally a lot of degenerate cases (coinciding points, point C′ in Figure 4 is

situated outside the triangle (A′S′Q′), . . . ) must be investigated. Using the

notion of “oriented angle” a proof can be given, which includes all exceptions.

(3) In the literature of 19. and 20. century we find a lot of theorems – especially

in the geometry of triangles – strongly connected with the Miquel theorem.

3.2. The theorem in (K,L)-geometry

The field K and the quadratic extension field L must not be finite in this

section. We only require Char K 6= 2. We start immediately with the Pivot-

configuration. This means that the existence of a “basic configuration” is as-

sumed, we take it already for constructed. Because of writing technics we use

– as you can see in Figure 5 – other notions for the points. With a translation

(homography) we bring one point into the origin 0.

The classical theorems concerning the “chord-quadrangle” do not work here.

So we use theorems from (K, L)-geometry already mentioned in Section 1. Here

they are once more:

P ∈ L is an element of a line g(A, B) with A, B ∈ L if and only if A−P
B−P

∈ K.
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O

y3

x1

x2

y1

y2

x3

Figure 5. Again the Pivot-configuration

P ∈ L is an element of a circle k(A, B, C) with A, B, C ∈ K if and only if
A−P
B−P

: A−C
B−C

∈ K and A−C
B−C

/∈ K. From Figure 5 we take out the corresponding

ratios respectively cross-ratios. Here they are:

Points on lines Points on circles

m1 =
y3 − x1

y3 − x2

n1 =
x2 − y3

x2 − y1

:
y3 − 0

y1 − 0
=

y3 − x2

y1 − x2

· y1

y3

m2 =
y1 − x2

y1 − x3

n2 =
x3 − y1

x3 − y2

:
y1 − 0

y2 − 0
=

y1 − x3

y2 − x3

· y2

y1

m3 =
y2 − x3

y2 − x1

n3 =
x1 − y2

x1 − y3

:
y2 − 0

y3 − 0
=

y2 − x1

y3 − x1

· y3

y2

What exactly we have to show?

Using the two theorems cited above it is enough to prove the following: If

five ratios are elements of K, then the sixth must have this property, too.

We multiply all six ratios.

n1 · n2 · n3 · m1 · m2 · m3 =

=
y3 − x1

y3 − x2

· y1 − x2

y1 − x3

· y2 − x3

y2 − x1

· y3 − x2

y1 − x2

· y1

y3

· y1 − x3

y2 − x3

· y2

y1

· y3 − x1

y3 − x1

· y3

y2

= 1.
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This result is very surprising and includes the proof of Miquel’s theorem within

the Pivot-configuration.

Transforming back as in Subsection 3.1 the general proof is also done.

3.3. The theorem in finite (K,L)-geometry

K = GF(q) = GF(pe), p prime, p > 2, e ∈ N. In elementary geometry (Sub-

section 3.1) the existence of basic configurations can be shown by construction.

For (K, L)-geometries (Subsection 3.2) we had assumed such an existence in

a very audacious way. With this requirement the theorem of Miquel then was

proved.

In the case of finite qeometries we investigate the existence of basic configu-

rations more precisely.

Theorem 12. In finite geometries with q > 3 basic configurations exist.

Proof. We go back to Section 2.

Given a circle k and one ex-point A. Due to 9 we have exactly two tangents

in A and exactly 1

2
(q−1) secants (Figure 6). In case q = 3 only one secant exists.

A

P

Q

S R

k

t1

t2

s0

si

Figure 6. Lines in an ex-point

Now we perform a reflection σs0
(antihomographie) in a secant s0. Using

the properties of line reflections in (K, L)-geometry we obtain (with the notions



i

i

“zeitler” — 2007/2/15 — 13:36 — page 272 — #18
i

i

i

i

i

i

272 Herbert Zeitler

in Figure 7) σs0
(k) = k′, σs0

(si) = s′i, s0 is a fixed point-line, σs0
(P ) = P ′,

σs0
(Q) = Q′.

s0A
S R

si

s′i

Q

Q′

P

P ′

k

k′

Figure 7. Reflection in a secant

The lines si, s′i together with the circles k, k′ form a base configuration within

the Pivot-figure.

Together with the proof in Subsection 3.2 the theorem of Miquel is proved in

our finite geometry for all q > 3. �

In case q = 3 our construction does not work, because we have only one

secant in A. There is a strong suspicion that then no base configuration exists.

Indeed, we have the following theorem.

Theorem 13. In case q = 3 basic configurations can’t exist.

Therefore, the theorem of Miquel cannot hold. This is easy to understand.

Because the geometry with q = 3 is too poor – there exist not enough points.

Proof. It is advantageous to have a nice visualization for our basic config-

urations and the theorem of Miquel. The cube model seems to be the best.
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The six circles of Miquel’s theorem correspond the circumcircles of the six

faces of a cube.

The opposite faces of this cube – for instance (PQBA), (SRCD) are parallel.

They have no point in common, but they include all the eight vertices of the cube

(Figure 8).

Now we like to complete these two corresponding circumcircles by two new

ones. This should be performed such that a basic configuration develops. The

missing circles must be embedded in parallel faces of the cube and they must

contain all eight vertices of the cube. In our example we have (QRCB), (PSDA).

P Q

B
A

S
R

CD

Figure 8. Cube model: basic configuration

Now we are going back to the (K, L)-geometry with q = 3, represented in the

tables 1.3. Doing so, we have the cube model always at the back of our mind.

In a first step we sort out all pairs of avoiding circles. Transfering to the

model this means to consider parallel faces of the cube. We discover, that besides

∞ for any such pair of circles remains a rest-point, not element of the concerning

circles in the pair.
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Pairs of circles rest-points

(2, 3, 4, 7)–(5, 6, 8, 9) 1

(1, 3, 5, 8)–(4, 6, 7, 9) 2

(1, 2, 6, 9)–(4, 5, 7, 8) 3

(1, 5, 6, 7)–(2, 3, 8, 9) 4

(2, 4, 6, 8)–(1, 3, 7, 9) 5

(3, 4, 5, 9)–(1, 2, 7, 8) 6

(1, 4, 8, 9)–(2, 3, 5, 6) 7

(2, 5, 7, 9)–(1, 3, 4, 6) 8

(3, 6, 7, 8)–(1, 2, 4, 5) 9

We are coming to the next step. Given an avoiding pair – for instance (2347),

(5689) with rest-point 1. This means that in the model we have the cube vertices

2, 3, 4, 5, 6, 7, 8, 9. Now we must find another pair of avoiding circles with

exactly the same points. Parallel faces with the same vertices – therefore without

the point 1. A look in the table shows that this is not possible. Each other pair

contains 1.

This idea holds for all pairs of avoiding circles. �

4. Abstraction and application, an outlook

4.1. The road of abstraction

Geometry has developed step by step from visual, intuitive geometry to an-

alytic geometry over the real or complex numbers and then to (K, L)-geometry.

A certain summit of abstraction was reached with finite geometries.

A similar development is going on in painting. Starting with realism the road

leads up to modern painting where only abstract structures and marks of colours

are important.

4.2. The road of application

Students believe that finite geometry is a mere game with glass beads, played

only in the brains of some elitist mathematicians. They would greatly be surprised

if they learned that there exist applications in our real world. Here we restrict

ourselves to name some fields of such applications. We give only catchwords:

Cosmology, theory of elementary particles, creation of molecule clusters, geometry

within the atomic nucleus, statistics, coding theory, . . .

All these fields can no longer work without finite geometry.
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Let me finish this paper with an appeal:

Do not forget geometry, especially finite geometry (as well in school as in

university too)!

Do not forget the important work of Prof. Dr. Ferenc Kárteszi!
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