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Notes on the representational

possibilities of projective quadrics in

four dimensions

Sándor Bácsó and Zoltán Szilasi

Abstract. The paper deals with hyper-quadrics in the real projective 4-space. Accord-
ing to [1] there exist 11 types of hypersurfaces of 2nd order, which can be represented
by ‘projective normal forms’ with respect to a polar simplex as coordinate frame. By
interpreting this frame as a Cartesian frame in the (projectively extended) Euclidean
4-space one will receive sort of Euclidean standard types of hyper-quadrics resp., hy-
persurfaces of 2nd order: the sphere as representative of hyper-ellipsoids, equilateral
hyper-hyperboloids, and hyper-cones of revolution. It seems to be worthwhile to visu-
alize the “typical” projective hyper-quadrics by means of descriptive geometry in the
(projectively extended) Euclidean 4-space using Maurin’s method [4] or the classical
(skew) axonometric mapping of that 4-space into an image plane.

Key words and phrases: projective quadrics, Euclidean and projective spaces, Maurin’s
projection, axonometry.
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1. Introduction

In the professional training in descriptive geometry the treatment of conics

and quadrics in the 2 and 3 dimensional real projective space is of central impor-

tance. The classification of projective quadrics (based on the rank and signature

as projective invariants) can be carried out similarly in higher dimensions as well

[1]. A quadric in the four-dimensional real projective space is the set of points

Supported by National Science Research Fundation OTKA No. T 48878.

Copyright c© 2006 by University of Debrecen



i

i

“bacso” — 2006/6/22 — 18:13 — page 168 — #2
i

i

i

i

i

i
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whose homogeneous coordinates [x1, x2, x3, x4, x5] satisfy the equation

5
∑

I,K=1

aIKxIxK = 0

where (aIK) is a 5 × 5 symmetric real matrix.

According to the rank and the signature of the quadratic form Q(x) =
∑

5

I,K=1
aIKxIxK , we have the following types of projective quadrics in the four-

dimensional real projective space:

rank signature projective equation Euclidean equation

1. R = 5 S = 5 x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 0 x2 + y2 + z2 + t2 = −1

2. R = 5 S = 3 x2
1

+ x2
2

+ x2
3

+ x2
4
− x2

5
= 0 x2 + y2 + z2 + t2 = 1

3. R = 5 S = 1 x2
1

+ x2
2

+ x2
3
− x2

4
− x2

5
= 0 x2 + y2 + z2 − t2 = 1

4. R = 4 S = 4 x2
1

+ x2
2

+ x2
3

+ x2
4

= 0 x2 + y2 + z2 + t2 = 0

5. R = 4 S = 2 x2
1 + x2

2 + x2
3 − x2

4 = 0 x2 + y2 + z2 − t2 = 0

6. R = 4 S = 0 x2
1 + x2

2 − x2
3 − x2

4 = 0 x2 + y2 − z2 − t2 = 0

7. R = 3 S = 3 x2
1 + x2

2 + x2
3 = 0 x2 + y2 + z2 = 0

8. R = 3 S = 1 x2
1

+ x2
2
− x2

3
= 0 x2 + y2 − z2 = 0

9. R = 2 S = 2 x2
1

+ x2
2

= 0 x2 + y2 = 0

10. R = 2 S = 1 x2
1
− x2

2
= 0 x2 − y2 = 0

11. R = 1 S = 1 x2
1 = 0 x2 = 0

Column 4 shows the inhomogeneous equations of the standard hypersurfaces

of 2nd order with respect to a coordinate frame using the hyperplane x5 = 0 as

the ideal hyperplane at infinity. That will say that, in the regular cases 1, 2, 3, the

hyper-quadrics have a “centre” positioned at the origin of the frame; paraboloid

type hyper-quadrics are not listed up. Column 4 contains cones with the origin

as the vertex (cases 4, 5, 6), but no cylinders. The cases 7, 8 describe cones with

a one-dimensional vertex coinciding with the t-axis; the cases 9 and 10 mean a

pair of conjugate complex resp. real hyperplanes as ’cones’ with the zt-plane as

2-dimensional vertex. Finally, case 11 means a single hyperplane, which has to

be counted twice as a hyper-surface with singular points only.

Note that column 4 does not give a complete affine or Euclidean classification

of hyper-quadrics!
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From the viewpoint of classical descriptive geometry we have to distinct real

objects from those which are essentially imaginary. Thus only the classes 2, 3, 5,

6, 8 have real branches. Of course the set of singular points of the hypersurfaces

always is a real linear subspace. A “real” visualization of an imaginary hyper-

quadric Φ usually is based on the product of the (real) elliptic polarity to Φ and

the reflection at the centre of Φ, which is a hyperbolic polarity such that the set of

self conjugate points is a real hyper-quadric Φr. It is called the “real substitute” of

Φ. Taking this into consideration it is sufficient to treat the visualization problem

for regular hyper-quadrics only in the cases 2 and 3.

In this paper we will use Maurin’s generalization of Monge’s method [4] as

well as (skew) axonometry to visualize a hyper-quadric Φ of type 2 (hyper-sphere)

and 3 (equilateral hyper-hyperboloid).

In our opinion the students of mathematics and informatics faculties take an

interest in the computer aided representation of geometric figures. At the same

time, the fourth and higher dimensions are still quite mysterious for an average

student. We hope our paper will demonstrate that there is no mystery; figures

in four (and higher) dimensions can also be efficiently represented by the tools of

descriptive geometry. An excursion into four dimensions has another advantage:

it promotes a better understanding of our three-dimensional universe.

2. Representation of the 4-dimensional sphere in 2-space by

Maurin’s method

Monge’s method of representing the Euclidean 3-spce in two dimensions was

extended to the Euclidean 4-space by J. Maurin [4]; see also [5, 6, 7, 8]. A very

clear account of Maurin’s method is available in L. Gyarmathi’s paper [2]. To

make our paper as self-contained as possible, we also present a brief description

of Maurin’s projection. The starting configuration is a perpendicular coordinate

tetrahedron (0xyzt) in the 4-dimensional Euclidean space. The role of planes of

projections is played by the three coordinate planes [xy], [xz], [xt]. A point of

the 4-dimensional Euclidean space is represented as follows:

(1) We construct the orthogonal projections P ′, P ′′, P ′′′ of P onto [xy], [xz] and

[xt] respectively.

(2) We rotate around the axes two of the image planes into the remaining one.

Then the three projections P ′, P ′′ and P ′′′ of P will be located on a straight line

perpendicular to the x-axis. Thus a point P (x, y, z, t) is represented by the triplet
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P ′(x, y), P ′′(x, z) and P ′′′(x, t). The three planes of projection will be denoted

by K1, K2 and K3 in the following.

P ′

P ′′′

2

P ′′

2

P ′′′

1

P ′′

1

k′′′

3

k′′

2

k′

1

x123

Figure 1

Now we turn to the representation of the three-dimensional real sphere be-

longing to the class 2 of projective quadrics given by the equation

x2 + y2 + z2 + t2 = 1

by Maurin’s method. The intersection of the sphere and the [xy]-plane is the

circle given by the equation

x2 + y2 = 1 (z = 0, t = 0).

The first projections of the other points of the sphere are interior points of this

circle. Indeed, if z2 + t2 > 0, then the relation

x2 + y2 = 1 − z2 − t2
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implies that x2 +y2 < 1. Similarly, the second and third projections of the points

of the sphere also constitute discs of radius 1.

It is clear from the construction that the three projections of a sphere whose

center differs of the origin are also three circles k′

1, k′′

2 , k′′′

3 of the same radius with

centers on the same ordering line. Given a point P ′ in the interior of circle k′

1
one

can determine those points of the sphere whose first projection is the point P ′.

The problem can be reduced to the three dimensional case since projecting the

sphere to the three-dimensional hyperplane [K1, K2] spanned by the first and the

second planes of projection we obtain a two-dimensional sphere. In this sphere,

by the well-known method of parallel circles, one can construct two points P ′′

1
,

P ′′

2 such that their first projection is the given point P ′. In the next step we

project our four-dimensional sphere to the hyperplane [K1, K3], and repeat the

preceding process; this leads to the points P ′′′

1 , P ′′′

2 . The triples

(P ′, P ′′

1
, P ′′′

1
), (P ′, P ′′

1
, P ′′′

2
), (P ′, P ′′

2
, P ′′′

1
), (P ′, P ′′

2
, P ′′′

2
)

so obtained represent the points of the three-dimensional sphere.

The parallel circles applied in the process have a clear geometric meaning also

in four-space, since the three-dimensional sphere, as a hypersurface of revolution

in R
4, is built up of two-dimensional ‘parallel spheres’.

3. Representation of projective quadrics of class 3 by Maurin’s

method

We can obtain a more clear picture also of the other classes of hyperquadrics

in R
4 determining their intersections with the hyperplanes spanned by pairs of

planes of projections. In this section we apply a version of the above technique to

the third class of projective quadrics. By this method we can have a more vivid

picture on the other classes as well.

The inhomogeneous equation of a quadric belonging to the class 3 is

x2 + y2 + z2 − t2 = 1. (1)

Intersecting with the hyperplane

[K1, K3] : z = 0, (2)

we get a hyperboloid of one sheet with equation

x2 + y2 − t2 = 1. (3)
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The projection of our quadric on [K1, K2] is just the hyperboloid given by (3).

Indeed the relation

x2 + y2 − t2 = 1 − z2

implies that the coordinates of the points with nonzero z-coordinate of the quadric

satisfy the inequality

x2 + y2 − t2 < 1.

Thus in order to represent our quadric, first we have to represent a hyperboloid of

one sheet in the Monge system given by K1 and K3. The first projections of the

points of this hyperboloid are the exterior points of a circle of radius 1, while their

third projections constitute the exterior of a hyperbola. Our claim can be seen

immediately. In case of t = 0 we obtain the circle of the equation x2 + y2 = 1 in

the image plane. If t 6= 0, then x2 + y2 = 1 + t2 > 1, so the first contour is indeed

a circle. The intersection of our hyperboloid with the 2-plane of equation y = 0

is the hyperbola of equation x2 − t2 = 1. The points with nonzero y-coordinate

of the hyperboloid satisfy the inequality x2 − t2 = 1− y2 < 1, therefore the third

contour is a hyperbola, as we claimed.

It can be shown analogously that the intersection of the quadric (1) with the

hyperplane [K2, K3] of equation y = 0 is also a hyperboloid of one sheet. Thus

the second projection of the quadric is also a circle with the same radius as the

first projection.

To get a more expressive visualization it is worth to translate the centre of

the quadric from the origin, then the individual images become more separate

from each other. Thus we get two circles of the same radius whose centers are

located on the same ordering line, and a hyperbola.

Now we describe how to construct the projections of a point of this quadric.

Suppose first that P ′ is an exterior point of the first contour circle k′

1. We

determine the second and the third projections of those points which are situated

on the quadric and whose first projection is the point P ′. The projection on

the hyperplane [K1, K3] is a hyperboloid of one sheet. This hyperboloid may be

represented in the Monge system given by K1 and K3, thus we obtain just the first

and the second projection of our quadric. Thus in the well-known manner, we

can construct points P ′′′

1
and P ′′′

2
such that (P ′, P ′′′

1
) and (P ′, P ′′′

2
) are the points

of the hyperboloid of one sheet obtained by the projection on the hyperplane

[K1, K3]. In the construction we use the fact that the hyperboloid in question

is a hyperboloid of revolution. Thus it is enough to construct those points of its

generator lines which are situated in the first trace curve and on the circle k, and
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to determine the points of the parallel circle which has the same radius as k. Due

to this special location, the projection of the parallel circle in question is also k.

We also utilize that the first projections of the generators are tangent to the least

parallel circle (k′

1) of the hyperboloid of revolution. Thus the generators passing

through a wanted point P can be obtained on the first projection as tangent lines

from P ′ to k′

1. Their second projections can be constructed with the help of

parallel circles. Finally, using an ordering line, we can intersect the wanted point

P ′′′

1
, P ′′′

2
from the generators.

To determine the second projection, we use the fact that the projection of our

quadric on the hyperplane [K2, K3] is a hyperboloid of one sheet congruent to the

previous one. Thus, for example, the possible second projection of P ′′′

1 has to be

situated on a parallel circle with the same radius as in the previous construction.

In this way we can also obtain the wanted points P ′′

1 and P ′′

2 on the ordering line

used before.

Figure 2
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To sum up, it can be stated that, as in the case of hyperspheres, there exist

four points on the quadric whose first projection is P ′, namely (P ′, P ′′

1
, P ′′′

1
),

(P ′, P ′′

1
, P ′′′

2
), (P ′, P ′′

2
, P ′′′

1
), (P ′, P ′′

2
, P ′′′

2
).

4. The image of the quadric of equation x
2
1 + x

2
2 + x

2
3 − x

2
4 − x

2
5 = 0

under an axonometry

As in the traditional three-dimensional descriptive geometry, the axonometric

method is also a well suited tool to visualize an object of 4-space. An axonometry

is well defined by the image of an orthonormal basis of the 4-space onto a drawing

plane. The image of a point under this kind of axonometry can be constructed in

the same way as under an axonometric mapping of the 3-space. According to the

fundamental theorem of axonometry, any axonometric mapping is the product of

a parallel projection onto the drawing plane and an affine transformation of the

drawing plane. A very expressive visualization of a hypersphere of the 4-space via

axonometry was presented by J. Szabó in his paper [9]. An excellent analytical

treatment of axonometric mappings of higher dimensional Euclidean spaces, as

well as the contour of their hyperspheres can be found in [10].

In this paragraph first we are going to represent the intersections of the

quadric of equation

x2 + y2 + z2 − t2 = 1

with the projecting planes. It can be seen at once that the intersections with the

first and the second projecting planes are unit circles, while the intersection with

the third projecting plane is the hyperbola of equation

x2 − t2 = 1 (y = z = 0). (4)

We represent the hyperplane of equation z = 0 in Cavalier axonometry, i.e. we

use equally distorted and orthogonal axes. The hyperbola given by (4) is situated

in this hyperplane, and, due to the special location, it can be seen in true length.

The intersection of the quadric with the coordinate plane [x, y] is a circle. Its

image under the axonometry is an ellipse, determined by the unit segments of the

axes x and y as conjugate half-diameters.

Analogously, we also represent the hyperplane of equation y = 0 in Cavalier

axonometry. In this hyperplane the intersection of the quadric with the coordinate

plane [x, z] is again a circle, whose image under the axonometry is the ellipse with

half-diameters as the unit segments of the axes x and z.
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Figure 3

Finally we construct the axonometric image of the quadric. It can easily be

seen that the map f given by

f(u, v, w) :=
(

√

1 + u2 · cos v · sin w,
√

1 + u2 · cos v · cosw,
√

1 + u2 · sin v, u
)

,

u ∈ R, v, w ∈ [0, 2π]

parametrizes the quadric. Holding u constant, the parameter surface is a sphere of

radius
√

1 + u2 in the 3-space. It is also clear that our quadric is a hypersurface of

revolution in the 4-space, obtained by rotating a hyperboloid of one sheet of the 3-

space. Thus the parallel circles used for representing points can be endowed with

a four-dimensional meaning: these are the projections of the ‘parallel spheres’ of

the hypersurface.

A possible axonometric image of the quadric can be constructed via the rep-

resentation of the parameter surfaces u = const., i.e., representing the spheres

of center (0, 0, 0, u), radius
√

1 + u2. We use Cavalier axonometry determined by

the frame ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)). The image of the unit sphere is just
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the image of the parameter surface u = 0. The axonometric image of a parameter

surface u = t0 can be obtained as follows. First, we translate the previous frame

to the point (0, 0, 0, t0). Next, we construct the axonometric image of the sphere

of radius
√

1 + t2
0

in the Cavalier-axonometry determined by the new frame.

Figure 4

The hyperspheres can be represented with the help of the images of their great

circles; these are ellipses whose conjugate half-diameters are the unit segments.

Figure 5
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Using computer, and plotting the spheres obtained as the parameter surfaces

of the quadric, we get a more decorative picture (Figure 5), but it reflects the

four-dimensional character of the quadric less suggestively.
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