
i

i

“machova” — 2006/6/22 — 18:00 — page 131 — #1
i

i

i

i

i

i

tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

4/1 (2006), 131–142

An improvement of the classification

algorithm results

Krist́ına Machová, Miroslav Puszta and Peter Bednár

Abstract. One of the most important aspects of the precision of a classification is the
suitable selection of a classification algorithm and a training set for a given task. Ba-
sic principles of machine learning can be used for this selection [3]. In this paper, we
have focused on improving the precision of classification algorithms results. Two kinds
of approaches are known: Boosting and Bagging. This paper describes the use of the
first method – boosting [6] which aims at algorithms generating decision trees. A mod-
ification of the AdaBoost algorithm was implemented. Another similar method called
Bagging [1] is mentioned. Results of performance tests focused on the use of the boosting
method on binary decision trees are presented. The minimum number of decision trees,
which enables improvement of the classification performed by a base machine learning
algorithm, was found. The tests were carried out using the Reuters 21578 collection of
documents and documents from an internet portal of TV Marḱıza.

Key words and phrases: classification algorithms, boosting, binary decision trees, text
categorization.

ZDM Subject Classification: P80, R40.

1. Introduction

Nowadays, information and data are stored mainly on the Internet. To serve

us, this information had to be transformed into the form, which people can un-

derstand, i.e. into the form of knowledge. This transformation involves a number

of machine learning algorithms, mainly classification ones. The quality of the

Copyright c© 2006 by University of Debrecen

i

i

“machova” — 2006/6/22 — 18:00 — page 132 — #2
i

i

i

i

i

i

132 Krist́ına Machová, Miroslav Puszta and Peter Bednár

transformation heavily depends on the precision of classification algorithms in

use.

The precision of classification depends on many facts. Two of most important

aspects are the selection of a classification algorithm for a given task and the

selection of a training set. In this paper, we have focused on experiments with

training set samples, with the aim to improve the precision of classification results.

At present, two kinds of approaches are known. The first approach is based on

an idea of taking different samples of the training set. A classifier is generated

for each of these training set samples by a selected machine learning algorithm.

In this way, for k variations of the training set we get k resulting classifiers.

The result will be given as a combination of individual classifiers. This method

is called Bagging in the literature [1]. Another similar method called Boosting

[6, 7] performs experiments over training sets as well. This method works with

weights of training examples. Higher weights are assigned to incorrectly classified

examples. That means, that the importance of these examples is emphasized.

After the weights are updated, a new classifier is generated. A final classifier is

calculated as a combination of base classifiers. The present paper focuses on this

method.

2. Boosting

In case of classification into two classes, an algorithm of the boosting creates

on the basis of a training set of documents D a classifier H : D → {−1, 1}.

The boosting method creates a sequence of classifiers Hm, m = 1, . . . , M in

respect to modifications of the training set. These classifiers are combined into a

resulting classifier. The prediction of the resulting classifier is given as a weighted

combination of individual classifier predictions:

H(di) = sign

(

M
∑

m=1

αmHm(di)

)

Parameters αm, m = 1, . . . , M are determined in such way that more precise clas-

sifiers influence the resulting prediction more than less precise ones. Precision of

the base classifiers Hm > random classification. That is why these classifiers Hm

are called weak classifiers. Boosting method tends to over fit in these situations,

when the base classifiers are week. If they were strong, there would be no need

for boosting method.

i

i

“machova” — 2006/6/22 — 18:00 — page 133 — #3
i

i

i

i

i

i

An improvement of the classification algorithm results 133

The training set is modified by a weight distribution over individual docu-

ments di ∈ D. The set of weights is assigned uniformly before learning of the first

classifier. For each next iteration, the weights of training examples, which were

classified incorrectly by the previous classifier Hm−1, are increased. The weights

of those training examples, which were classified correctly, are decreased. In this

way, the learning of the next classifier focuses on incorrectly classified training

examples.

We do not intend to present all boosting algorithms, we experimented with.

Only the AdaBoost.MH2 [6] algorithm will be presented in this paper. This

algorithm represents a generalisation of the basic form of the algorithm for mul-

tiple classification into more than two classes. This algorithm creates classifier

Hm : D × C → R
|C|, which defines prediction for each class cj ∈ C. Similarly

to the classification into two classes, H classifies documents into a class cj ∈ C

according to the decision function sign[H(dj , cj)]. The difference from basic al-

gorithm is, that a weight distribution is assigned to combinations of training

examples and classification classes.

A boosting algorithm for multiple classification into several classes:

1. Initialise the weight distribution w1(i,j) = 1/(|D| · |C|), i = 1, . . . , |D|, j =

1, . . . , |C|.

2. For m = 1, . . . , M

2.1. Create the classifier Hm : D × C → R using a given algorithm for actual

weight distribution wm(i,j).

2.2. Determine the parameter αm ∈ R, αm = log(1 − rm/rm), where rm is the

weighting error rate.

2.3. Modify the weight distribution according to the rule

wm+1(i,j) =
wm(i,j) exp(−αmyi,jHm(di, cj))

Zm

where Zm is a normalisation constant ensuring that
∑|D|

i=1

∑|C|
j=1 wm+1(i,j) =1

holds.

3. The output is the decision function of the final classifier in the form:

H(di, cj) = sign

(

M
∑

m=1

αmHm(di, cj)

)

Variable yi,j is defined as yi,j = +1 if di ∈ cj and as yi,j = −1 if di /∈ cj .

i

i

“machova” — 2006/6/22 — 18:00 — page 134 — #4
i

i

i

i

i

i

134 Krist́ına Machová, Miroslav Puszta and Peter Bednár

In our experiments we used a modified version of the algorithm. This mod-

ification has an implementing character and it solves minor numerical problems.

The advantage of this modified version is that weight calculation does not depend

on precision of calculations, and there are no problems with number rounding.

Therefore, this algorithm is suitable for document classification, which this paper

is devoted to.

We decided to base our experiments with boosting on the text categorisa-

tion task [7]. The aim is to find an approximation of an unknown function

Φ: D×C → {true, false}|C| where D is a set of documents and C = {c1, . . . , c|C|}

is a set of predefined categories. The value of the function Φ is for a pair

〈di, cj〉 true if document di belongs to the category cj . The learned function
Φ̂ : D × C → {true, false} which approximates Φ̂ is called a classifier. Definition

of text categorisation is based on these additional suppositions:

• Categories are only nominal labels and there is no (declarative or procedural)

knowledge about their meaning.

• Categorisation is based solely on knowledge extracted from text of the docu-

ments.

This definition is a general one and does not require availability of other

resources. These constraints may not hold in operational conditions when any

kind of knowledge can be used to make the process of categorisation more effective.

Based on a particular application it may be possible to limit the number of

categories for which the function Φ has the value true for a given document di. If

the document di can be classified exactly into one class cj ∈ C, it is the case of the

classification into one class and C represents the set of disjoint classes. The case

when each document can be classified into an arbitrary number k = 0, . . . , |C| of

classes from the set C represents multiple classification and C represents the set

of overlapping classes.

Binary classification represents a special case when a document can be clas-

sified into one of two classes. Algorithms for binary classification can be used

for multiple classification as well. If classes are independent from each other (i.e.

for each pair of classes cj, ck and j 6= k is the value of Φ(di, cj) independent

from the value Φ(di, ck)), the problem of multiple classification can be decom-

posed into |C| independent binary classification problems into classes {ci, ci}

for i = 0, . . . , |C|. In this case a classifier for cj category stands for the func-
tion Φ̂j : D → {true, false}, which approximates unknown function Φj : D →

{true, false}. With respect to the above mentioned decomposition, we used bi-

nary decision tree [4] in the role of a base classifier.

i

i

“machova” — 2006/6/22 — 18:00 — page 135 — #5
i

i

i

i

i

i

An improvement of the classification algorithm results 135

3. Evaluation of classifiers efficiency

We were using precision and recall for evaluation of classifier efficiency. These

measures are widely used in information retrieval, in particular for document re-

trieval. These two measures together provide more information about the effi-

ciency of multiple classification. For classification of documents from class cj it

is possible to define precision πj as conditional probability Pr(Φ(di, cj) = true |
Φ̂(di, cj) = true). Similarly, recall ρj can be defined as conditional probability
Pr(Φ̂(di, cj) = true | Φ(di, cj) = true). Probabilities πj and ρj can be estimated

from a contingence table Table 1.

πj =
TPj

TPj + FPj

, ρj =
TPj

TPj + FNj

where TPj and TNj (FPj and FNj) is the number of correctly (incorrectly)

predicted positive and negative examples of the class cj .

Table 1. The contingence table for category cj .

Φ(di, cj) = true Φ(di, cj) = true

Φ̂(di, cj) = true TPj FPj

Φ̂(di, cj) = false TNj FNj

Overall precision and recall for all classes can be calculated in two ways.

Micro averaging is defined in the following way

πµ =
TP

TP + FP
=

∑|C|
j=1 TPj

∑|C|
j=1(TPj + FPj)

ρµ =
TP

TP + FN
=

∑|C|
j=1 TPj

∑|C|
j=1(TPj + FNj)

while macro averaging is given by the following equations

πM =

∑|C|
j=1 πj

|C|
ρM =

∑|C|
j=1 ρj

|C|

The selection of a particular way of averaging depends on a given task. For

example, micro averaging reflects mainly classification of cases belonging to fre-

quently occurring classes while macro averaging is more sensitive to classification

of cases from less frequent classes.

i

i

“machova” — 2006/6/22 — 18:00 — page 136 — #6
i

i

i

i

i

i

136 Krist́ına Machová, Miroslav Puszta and Peter Bednár

Precision and recall can be combined into one measure, for example according

to the following formula

Fβ =
(β2 + 1)πρ

β2π + ρ

where parameter β expresses trade off between π and ρ. Possible values for

β: β ∈ [0,∞], where β = 0 represents π and β = ∞ represents ρ. Finally

β = 1 represents harmonic average between π and ρ. Very often the function F1

combining precision and recall using equal weights can be seen.

In the case of lacking training data (when it is not possible to select a suf-

ficiently representative test set), it is possible to estimate classification efficiency

using cross validation when Ω is divided into k test subsets T1, . . . , Tk. For each

subset a classifier Φ̂i is learned using Ω \ Tk as a training set. Final estimation

can be calculated by averaging results of classifiers Φ̂i, relevant to all test subsets.

Cross validation can be employed for parameter optimisation instead of validation

set.

4. Experiments

A series of experiments was carried out using a binary decision tree as a base

classifier. Data from two sources were employed. The first one was the Reuters-

21578 1 document collection, which comprises Reuter’s documents from 1987. The

documents were categorised manually. To experiment, we used a XML version

of this collection. The collection consists of 674 categories and contains 24242

terms. The documents were divided into a training and test sets – the training

sets consists of 7770 documents and 3019 forms the test set. After stemming and

stop-words removal, the number of terms was reduced to 19864.

The other document collection, used to perform experiments, was formed

by documents from an Internet portal of the Markiza broadcasting company.

The documents were classified into 96 categories according to their location on

the Internet portal http://www.markiza.sk. The collection consists of 26785

documents in which 280689 terms can be found. In order to ease experiments,

the number of terms was reduced to 70172. This form of the collection was divided

into the training and test sets using ratio 2 : 1. The training set is formed by 17790

documents and the test one by 8995 documents. Documents from this collection

are in the Slovak language unlike the first collection, which is in English.

1Most experiments were carried out using this document collection, if not given otherwise.

i

i

“machova” — 2006/6/22 — 18:00 — page 137 — #7
i

i

i

i

i

i

An improvement of the classification algorithm results 137

In order to create decision trees, the famous C4.5 algorithm was used. This

algorithm is able to form perfect binary trees over training examples for each

decision category. To test the boosting method, weak classifiers (not perfect) are

necessary. Therefore, the trees generated by the C4.5 method were subsequently

pruned.

We used a pruning method, which estimates accuracy using the training set

for parameter setting. The method is based on the pessimistic error estimation.

Namely, C4.5 algorithm constructs the pessimistic estimation by calculating stan-

dard deviation of estimated accuracy given binomial distribution.

4.1. Boosting efficiency testing

Experiments have proven that one of the best classifiers, based on the boost-

ing algorithm, is the one for generating decision trees with pruning on confidence

level CF = 0.4. Results achieved by this classifier were compared with those

generating perfect decision trees. Figure 1 depicts differences between precisions

of the boosting classifier and the perfect decision tree generating one. Data are

shown for each classification class separately (the x-axis label represents classes,

which are ordered decreasingly according their frequency).

Figure 1. The precision differences between boosting-based classifier
and a perfect decision tree for data from the Reuters collection.

i

i

“machova” — 2006/6/22 — 18:00 — page 138 — #8
i

i

i

i

i

i

138 Krist́ına Machová, Miroslav Puszta and Peter Bednár

Similar experiments were carried out using data from the Internet portal

of the Markiza company. The results are illustrated on Figure 2. The same

parameter setting was used for both the boosting based classifier and decision

tree classifier.

Figure 2. Precision differences between boosting-based classifier and
a perfect decision tree for data from the Markiza collection (the x-axis
label represents classes, which are ordered decreasingly according their
frequency).

There are great differences in some cases in Figure 1 and Figure 2. Extreme

differences between the classifiers for rare categories are caused by the instable

estimation of recall/precision on the very small number of the testing examples

(less than 10). The results can be interpreted in such a way, that the boosting

method provides better results while for frequent classes the difference is minimal.

4.2. Experiments with different number of classifiers

In order to explore dependence of boosting classifier efficiency on the number

of classifiers, additional experiments were carried out for different ways of pruning.

First, a set of classifiers with different pruning values was trained. The number

of iterations (i.e. the number of generated binary decision trees) of the boosting

i

i

“machova” — 2006/6/22 — 18:00 — page 139 — #9
i

i

i

i

i

i

An improvement of the classification algorithm results 139

algorithm was limited by 100 classifiers. That means, each category was classified

by a weighted sum of not more than 100 classifiers. Subsequently, the number

of used classifiers was reduced and implications on the classifier efficiency were

studied. In order to enable comparison with non-boosting classifier, the efficiency

of a perfect binary decision tree was depicted on the following figures as a broken

line.

Figure 3. Relationship between precision and the number of trees in
the boosting classifier.

The last three figures illustrate that efficiency of classifiers based on the boost-

ing method does not depend on the quality of particular classifiers (represented

by the pruning values), since the graphs are almost the same for every pruning

method.

As far as different parameters are concerned, Figure 5 presents that boosting

is superior for the number of classifiers greater than 5. Using 20 or more classifiers,

F1 is practically constant and better by 5% than perfect binary tree. Considering

precision (Figure 3), the situation slightly differs. For very small number of

classifiers (1 or 2), precision of the boosting-based classifier is better – it proves a

hypothesis that precision of decision trees can be increased by pruning. Increasing

the number of classifiers implicates decreasing of the precision first (but still better

than that of the perfect classifier) with subsequent increasing (up to a constant

i

i

“machova” — 2006/6/22 — 18:00 — page 140 — #10
i

i

i

i

i

i

140 Krist́ına Machová, Miroslav Puszta and Peter Bednár

Figure 4. Relationship between recall and the number of trees in the
boosting classifier.

Figure 5. Relationship between F1 parameter and the number of trees
in the boosting classifier.

i

i

“machova” — 2006/6/22 — 18:00 — page 141 — #11
i

i

i

i

i

i

An improvement of the classification algorithm results 141

value around using 35 classifiers). Recall is depicted in Figure 4. Small number

of classifiers clearly does not suffice and cannot compete with the perfect binary

tree. The value of the recall parameter increases with using bigger number of

classifiers – the number 10 was sufficient to compete with perfect tree. The next

increase in the number of used classifiers prefers boosting over the perfect tree.

In fact we could achieve statistically better estimation of efficiency by cross

validation. However, Reuters-21578 2 document collection is used usually in text

categorization as a standard database with predefined division of training set on

training and testing part. It enables direct comparison with other methods.

5. Conclusion

The boosting algorithm is a suitable mean for increasing efficiency of these

algorithms, which have low values of precision and recall3. Both mentioned pa-

rameters can be increased. Considering the same efficiency for a perfect tree

and boosting (with minimum number of classifiers necessary to achieve this effi-

ciency), it would be possible to compare complexity of both decision schemes. As

far as disadvantages of boosting are considered, the loss of simplicity and illustra-

tive ness of this classification scheme can be observed. Increased computational

complexity is a bit discouraging as well.

In the future, we would like to make some experiments with boosting in com-

bination with some algorithm generating threshold units, for example Heuristic

Criteria Table [2], or Inductive Inference Algorithm [5].

The work presented in this paper was supported by the Slovak Grant Agency

of Ministry of Education and Academy of Science of the Slovak Republic within

the 1/1060/04 project “Document classification and annotation for the Semantic

web”.

References

[1] L. Breiman, Bagging predictors, Machine Learning 26 (1996), 123–140.

[2] P. Langley, Elements of Machine Learning, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996, 419 pp..

2Most experiments were carried out using this document collection, if not given otherwise.
3Mainly recall for binary trees.

i

i

“machova” — 2006/6/22 — 18:00 — page 142 — #12
i

i

i

i

i

i

142 K. Machová, M. Puszta and P. Bednár : An improvement of the class. algorithm results

[3] K. Machová, J. Paralič, Basic Principles of Cognitive Algorithms Design, Proc. of

the IEEE International Conference Computational Cybernetics, Siófok, Hungary
(2003), 245–247, ISBN 963 7154 175.

[4] J. R. Quinlan, Bagging, boosting and C4.5., Proc. of the Fourteenth National Con-

ference on Artificial Intelligence (1996).

[5] L. Samuelis, L. Fasianok, The role of Inductive Inference in the Design of Intelli-
gent Tutoring Systems, Acta Elektrotechnica et Informatica 4, no. 4, Košice (2004),
54–58, ISSN 1335-8243.

[6] R. E. Schapire, Y. Singer, Improved Boosting Algorithms Using Confidence-rated
Predictions, Machine Learning 37, no. 3 (1999), 297–336.

[7] R. E. Schapire, Y. Singer, BoostTexter: A Boosting-based System for Text Catego-
rization, Machine Learning 39, no. 2/3 (2000), 135–168.

KRISTÍNA MACHOVÁ

DEPARTMENT OF CYBERNETICS AND ARTIFICIAL INTELLIGENCE

TECHNICAL UNIVERSITY

LETNÁ 9

04200 KOŠICE

SLOVAKIA

E-mail: Kristina.Machova@tuke.sk

(Received October, 2005)

