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Understanding the spatiotemporal

sample: a practical view for teaching

geologist students

Ilona Kovácsné Székely

Abstract. One of the most fundamental concept of statistics is the (random) sample.
Our experience – acquired during the years of undergraduate education – showed that
prior to industrial practice, the students in geology (and, most probably, in many other
non-mathematics oriented disciplines as well) are often confused by the possible multiple
interpretation of the sample. The confusion increases even further, when samples from
stationary temporal, spatial or spatio-temporal phenomena are considered. Our goal in
the present paper is to give a viable alternative to this overly mathematical approach,
which is proven to be far too demanding for geologist students.

Using the results of an environmental pollution analysis we tried to show the notion
of the spatiotemporal sample and some of its basic characteristics. On the basis of
these considerations we give the definition of the spatiotemporal sample in order to be
satisfactory from both the theoretical and the practical points of view.

Key words and phrases: spatiotemporal sample, random phenomenon, non-mathematics
students.

ZDM Subject Classification: K10, K40.

1. Introduction

Comprehension and proper application of the basic notions and methods of

statistics assumes good establishment in probability theory. One of the most

fundamental concepts of statistics is the (random) sample [1, 3].

In the industrial practice the “sample” is neither defined uniquely nor in full

extent. In many cases only one element of the mathematical sample is regarded
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as “the sample”. On the contrary, sometimes the mean of certain parameters

measured or analyzed at the same time and location under the same circumstances

may also be called “sample”. E.g. in geology, an averaged quality parameter,

weighted by the thickness at a certain location, given by its x and y coordinates,

constitutes a “sample” [2, 4].

Our experience during the undergraduate education showed that prior to

industrial practice, the students in geology (a most probably in many other non-

mathematics oriented disciplines as well) are often confused by the possible mul-

tiple interpretation of the sample. The reason is that when a real life (e.g. geo-

chemical) application is given, the student encounter a realization of the sample,

and they often identify it with the theoretical sample itself. The descriptive sta-

tistics (mean and variance most commonly) computed from the sample appear

for them as single parameters, or single values and do not understand why should

they be regarded as random variables. As in most cases the replication of the

sample is not possible, or at least not in a straightforward way, they ignore the

fact that the realisations vary, and so will vary the statistics computed from the

realisations. The confusion increases even further, when samples from stationary

temporal, spatial or spatio-temporal phenomena are considered.

In this case the student encounters e.g. the averaging of measurements taken

only at one occasion but at different times and/or location, while he/she learnt

up to now, that the statistics summarises the information of samples taken under

identical and independent conditions. The ergodic theorem dissolves the virtual

contradiction, but how should it be explained to the geologist students. A way

how shouldn’t is for sure: forget about introducing the ergodic theorem! Our goal

in the present paper is to give a viable alternative to this mainly mathematical

approach, which is proven to be far too demanding for geologist students.

2. Theoretical definition of the sample

In the simplest and most common situation a random phenomenon is char-

acterized by a certain random variable X with known distribution, and one can

observe its values at n independent occasions under theoretically identical con-

ditions. As it is often said an independent sample of size n is drawn from the

distribution of X .

So, the independent statistical sample from a one dimensional distribution

QX consists of n independent identically distributed random variables denoted

by (X1, X2, . . . , Xn) whose common distribution is QX . This applies to the mean
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and the variance (the existence of which we suppose all throughout this paper),

too: E(Xi) = E(X) = m; D2(Xi) = D2(X) = σ2 where i = 1, 2, . . . , n.

The realisation of the (independent statistical) sample consists of n real num-

bers (x1, x2, . . . , xn), the actually observed values of those random variables:

X1 = x1, X2 = x2, . . . , Xn = xn.

This formulation, based on the duality of random variables and numbers,

is rather difficult for non-mathematics students to understand. And this is the

point where the confusion increases, when one turns to temporal, spatial or spatio-

temporal phenomena.

The full analogue of the above definition of i.i.d. sample for the case of a

random phenomenon dependent on location and time characterised by a random

spatio-temporal process Z(s, t), would require several independent measurements

at every single location and time-point. But more often than not we have only one

chance to measure. It is a nonsense to measure several times independently e.g.

the aluminium oxide concentration at a certain location in a mine or the water

discharge of a river at a gauge station at a given time. It is the time-shift or the

location-shift invariance, that enables us to use the information collected at other

sites or at other times. And this is what the student has to understand well, and

can serve as the starting point for understanding the sampling of a stationary

phenomenon.

Having a real valued spatially and temporally changing random process, it

can be decomposed theoretically into random variables on an infinite number of

elementary units having zero volume in the original state space by restricting it

to a fixed space-time point. Consequently in the investigation of certain variable

(parameter in the geological terminology) of the phenomenon we obtain, in princi-

ple, a sample realisation of infinite size. Under the assumption of stationarity (or

more strictly, ergodicity) this sample realisation will be a realisation of identically

distributed random variables. Disregarding of the trivial case of an independent

value noise, however, independence will not be satisfied for this sample. This data

set can then be regarded as the one to be analysed. So, the realisation is informa-

tive on the statistical characters of the distribution, like the expectation and the

variance, and the mean will converge to the theoretical value of the expectation,

however, because of the correlated samples, the usual statistical properties of the

corrected empirical variance estimator does not remain valid in full extent. We

illustrate the infinite manifold on Figure 1. In this figure we divided the “area” of

the observation domain into “infinite” number of elementary units of zero volume.
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Figure 1. Isoline figure of a “parameter” of a theoretical phenomenon.

Mainly because of financial and/or technical reasons, in concrete projects

there is seldom a chance for taking a really large (eventually thousands of) sam-

pling, that would provide great accuracy in estimating the statistical characteris-

tics. In addition, in practice there appears another problem as well, namely that

the volume of the elementary units is not zero but greater. In the majority of

cases there is no chance to take a nearly infinite number of samples, or to repeat

the samples several times for a smaller size. So, the situation is that V ≫ 0,

but compared to the magnitude of the phenomenon V ≈ 0, that is the variability

within the elementary units is ignorable compared to the variability on the larger

scale, but N ≪ ∞. This raises the question, whether a sample of this kind can be

regarded as representative, does it really reflects the property of the manifold it

has been taken from. Figure 2 illustrates a possible sample realisation for N < ∞

and V > 0.

Figure 2. A possible sample realisation for N <∞ and V > 0.
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The most important property of a variable (geological parameter) of a phe-

nomenon – supposing uniform placement and sufficient number of samples – the

probability distribution. In practice the type of the distribution is not

known, its identification is an important task. According to experience at

least a sample size of 50 is needed in order to draw conclusions on the type of

distribution from the histogram of the variable. On the basis of the sample an

estimation can be given for the main characteristics of the sample, e.g. for the

expectation and the variance.

3. The notion of sample and some of its properties illustrated in an

example

In practice the need for creating a sufficiently large spatiotemporal sample

that can fulfil the role of the basic example of a manifold under study, encounters

almost unresolvable financial difficulties. Therefore it is a great advantage, that

the dataset of measured chemical components of an infamous really-happened

environmental pollution can be used for clarifying the notion of the sample, the

computation of its parameters and the identification of its distribution.

From the start of the 1900’s in the 22nd district of Budapest, in the densely

populated Nagytétény area a factory worked as a constant source for pollution

emitting harmful substances into the air. Considerable heavy metal pollution

befell the area, and by the cultivation of the land it penetrated into the deeper

layers of the soil, too. An environment-protectional fact-finding action was carried

out by soil analysis, taking samples on the 3.5 km2 private properties and land

by 20 cm layers. This means more than 1000 soil sample for the uppermost 0–20

cm layer to be analysed for 24 chemical elements or components. We choose 3 of

this 24: calcium, phosphor, and arsenic that are random variables in the present

model. The measurement unit is mg/kg for every element.

We consider the measurement results for chemical components as elements

of the statistical manifold. In our opinion the 1026 and 1100 sample size in the

given case is large enough to approximate an infinite sample and it is appropriate

to illustrate the tracted statistical concepts, without breaking the requirements

of the mathematical theory considerably.

However, as we obtained a finite manifold, the variances and means of the

random variables became computable. They are given in Table 1.
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Table 1. The parameters of the manifold.

Sample size Mean Std. deviation

Ca 1026 71429.79 25301.74

As 1110 17.16 23.33

P 1026 1652.86 1014.58

In order to demonstrate that the individual sample elements are random

variables, we took random 100 long resampled observations 1000 times from the

manifold of Ca, As and P variables. Table 2 shows parts from the realisations of

Ca-samples. It is clear that the realisations of the 100 long samples vary from

sample to sample.

Table 2. Realisations of Ca-samples.

Realisations of samplesCalcium
X1 X2 X3 X4 . . . X99 X100

1. sample 58339.44 52771.68 59438.88 44729.46 . . . 80643.21 73601.96

2. sample 78266.18 82664.06 59843.29 61782.66 . . . 55465.67 47424.37
...

1000. sample 51623.78 59682.54 45447.23 50109.89 . . . 8806.80 8452.38

Descriptive statistics can be computed from the samples of Table 2, of which

the most important, the mean is presented in Table 3. We extended Table 3 for

the other two chemical components As and P. The values displayed in the table

present illustratively the statement, that the mean is also a random variable, it

changes from sample to sample and its values vary around the grand mean, that

is the mean of the complete original sample (Table 1).

Table 3. Realisations of the sample means.

Sample mean

As Ca P

1. sample 20.94 66420.70 1741.25

2. sample 15.77 69815.47 1775.85
...

1000. sample 14.36 74512.84 1542.36
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The average of all possible sample means gives the mean of the manifold, that

is the expected value. This property means the unbiasedness of the estimation

E(X) = m. Could we take into account all possible sample means, only then it

would be possible to demonstrate this theoretical statement. However, this leads

to enormous difficulties, because e.g. in the case of Ca, from the 1026 element

that we regarded as manifold, it is possible to choose a 100 long subsample in

9.51 · 10140 different ways. In other words we can resample from this manifold

this many 100 long realisations, consequently this many means can be computed.

To carry it out in practice is simply impossible. (There are 1.288 · 10307 ways to

select a 500 long subsample.) It is possible to demonstrate only that the sample

means approximate the grand mean (the mean of the complete manifold) well,

and the error of the approximation is decreasing as the sample size increases.

The results presented in Table 4 demonstrate the validity of our statement. We

carried out this program by taking 100, 300, 500 long subsamples 1000 times

from the manifold, and computing the averages and the standard error of the

sample means. Consider the distribution of the sample means of the Ca, As and

P variables as in Table 4. The histograms in Figures 3(a), 4(a), 5(a) show the

distribution of the complete Ca, As and P manifolds. The empirical probability

density estimations of the sample averages for 1000–1000 subsamples, 100, 300

and 500 long each, are displayed in Figures 3(b), 4(b), 5(b); 3(c), 4(c), 5(c); 3(d),

4(d), 5(d) respectively.

Table 4. Averages and standard errors of the sample means.

Random variable –
Sample size

Average of Standard error of
sample realisation sample means sample means

Ca-100 1000 71498.90 74.72

Ca-300 1000 71399.45 39.01

Ca-500 1000 71444.89 25.12

As-100 1000 17.26 0.07

As-300 1000 17.12 0.04

As-500 1000 17.16 0.03

P-100 1000 1658.98 2.98

P-300 1000 1652.99 1.60

P-500 1000 1652.09 1.00
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It can be seen very clearly in all cases, that the sample mean follows a normal

probability law independently from the distribution of the original manifold. The

distributions get closer to normal as the sample size increases.

(a) (b)

(c) (d)

Figure 3

The observations of Ca were regarded in the preceedings as 1026 samples.

In fact we treated these observations as if they were independent identically dis-

tributed ones. However, an other approach is also viable. We can also consider
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the spatial dependence structure. In this case we have only one sample of 1026

dimensions. It is worth to display it as a map, like in Figure 2. This approach

requires the use of various spatial models, but detailed elaboration on this topic

goes beyond the framework of the present paper.

(a) (b)

(c) (d)

Figure 4
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(a) (b)

(c) (d)

Figure 5

4. Conclusion

Using the results of an environmental pollution analysis we tried to show the

notion of the spatiotemporal sample and some of its basic characteristics. On the

basis of these considerations we give the definition of the spatiotemporal sample
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in order to be satisfactory from both the theoretical and the practical points of

view. We propose the following definition:

In practical sense the values of a parameter of certain phenomenon that can

be associated with x, y, z, t coordinates and either measured in situ, analysed or

computed are called a spatiotemporal sample. The practice doesn’t use the ad-

jective spatiotemporal, but we should here, in order to distinguish the present

considerations from the classical theory. The sample in the practical sense corre-

sponds to one element of the mathematical sample, with the difference that it is

associated with a space-time unit with non-zero volume.
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