
3/2 (2005), 257–281

Fuzzy Datalog with background

knowledge

Ágnes Achs

Abstract. In this paper we give a possible model for handling uncertain information. The
concept of fuzzy knowledge-base will be defined as a triplet of a background knowledge
defined by the similarity of predicates and terms; a deduction mechanism: a fuzzy
Datalog program, and a decoding set of the program, which help us to determine the
uncertainty level of the results.

Key words and phrases: fuzzy knowledge-base, fuzzy Datalog, evaluation of fuzzy know-
ledge-base.

ZDM Subject Classification: P05, P09, P25, P29, R45, R49, R55, R59.

1. Introduction

The study of inference systems is faced in literature with several and often

very different approaches. The large part of human knowledge can’t be modelled

by pure inference systems, because this knowledge is often ambiguous, incom-

plete and vague. When knowledge is represented as a set of facts and rules, this

uncertainty can be handled with the help of fuzzy logic. About the concept of de-

ductive databases and fuzzy logic can be read in the classical works, for example

in [5, 6, 7, 8, 11].

A few years ago in [3] and [1] there was given a possible combination of

Datalog-like languages and fuzzy logic. In these works there was introduced

the concept of fuzzy Datalog by completed the Datalog-rules and facts with an

Copyright c© 2005 by University of Debrecen

258 Ágnes Achs

uncertainty level and an implication operator. In [4] there was given an extension

of fuzzy Datalog to fuzzy relational databases.

Parallel with these works, there were researches of possible combination of

Prolog language and fuzzy logic also. Several solutions were arisen for this prob-

lem, some of them are mentioned for example in [10], [12] or [2]. These solutions

propose different methods for handling uncertainty. Most of them use the concept

of similarity, but in various ways. More essays deal with fuzzy unification and

fuzzy resolution, for example [2, 10, 12].

In this paper we give an other possible model for handling uncertain infor-

mation, based on the extension of fuzzy Datalog. We build the model of fuzzy

knowledge-base, which consists of a background knowledge – some similarity re-

lations; and a fuzzy deduction mechanism – the fuzzy Datalog.

2. The fuzzy Datalog

In Datalog one can make deductions. For example, if we know, that John

likes the beautiful girls, and Mary is beautiful, then we deduce that John likes

Mary. But what can we do, if Mary is not so beautiful, and the beautiful girls

are not so important in John’s life? In fuzzy Datalog, we can complete the rules

and facts with an uncertainty level. For example if Mary is only fairly beautiful,

this fact can be written as a Datalog fact completed with a level:

beautiful(’Mary’); 0.7,

which means, that Mary is beautiful at least 0.7 level.

The fact, that John only usually likes the beautiful girls, can be written by

a rule, but this rule is completed by an implication operator and an uncertainty

level:

likes(’John’,x)← beautiful(x);I;0.8.

This means, that the truth-value of this fuzzy implication according to the impli-

cation operator I, is at least 0.8.

Whether how does John likes Mary? If for example, this implication operator

is the Gödel-operator:

I(α, β) =

{

1, if α ≤ β,

α otherwise,

Fuzzy Datalog with background knowledge 259

then the level of the rule-head can be calculated as the minimum of the level of

the rule-body and the level of the rule. For John and Mary it does:

likes(’John’,’Mary’), 0.7,

that is John likes Mary at least 0.7 level.

This kind of extended Datalog is called fuzzy Datalog (fDATALOG). Now we

are going to summarise the concept of fDATALOG based on [3, 4]. The knowledge

of basic concepts (term, atom, literal, fuzzy set, implication operator) is supposed

according to for example [5, 6, 7, 8].

As it is the case for a Datalog program, also the fDATALOG program consists

of rules. The notion of fuzzy rule is given in definition below:

Definition 1. A fDATALOG rule is a triplet (r; I; β), where r is a formula

of the form

A← A1, . . . , An (n ≥ 0).

A is an atom (the head of the rule), A1, . . . , An are literals (the body of the rule);

I is an implication operator and β ∈ (0, 1] (the level of the rule).

In order to get finite result, all the rules in the program must be safe. A

fDATALOG rule is safe if

• all variables occurring in the head also occur in the body;

• all variables occurring in a negative literal also occur in a positive literal.

A fDATALOG program is a finite set of safe fDATALOG rules.

There is a special type of rule, called fact. A fact has the form (A← ; I; β).

In the next table we give the most frequent operators:

operator name truth value

I1(α, β) Gödel
1, if α ≤ β,

β otherwise

I2(α, β) Lukasiewicz
1, if α ≤ β,

1 − α + β otherwise

I3(α, β) Goguen
1, if α ≤ β,

β/α otherwise

I4(α, β) Kleene-Dienes max(1 − α, β)

I5(α, β) Reichenbach 1 − α + αβ

I6(α, β) Gaines-Rescher
1, if α ≤ β,

0 otherwise

260 Ágnes Achs

In our case the Herbrand universe of a program P , denoted by HP , is the set

of all possible ground terms constructed by substituting constants occurring in P .

The Herbrand base of P , denoted by BP , is the set of all possible ground atoms

whose predicate symbols occur in P and whose arguments are elements of HP . A

ground instance of a rule (r; I; β) in P is a rule obtained from r by replacing every

variable x in r by Φ(x) where Φ is a mapping from all variables occurring in r to

HP . The set of all ground instances of (r; I; β) are denoted by (ground(r); I; β).

The ground instance of P is ground(P) = ∪(r;I;β)∈P (ground(r); I; β).

Definition 2. An interpretation of a program P , denoted by NP , is a fuzzy

set of BP :

NP ∈ F (BP), that is NP =
⋃

A∈BP

(A, αA).

Let αA denote the truth value of the ground atom A.

Then αA1∧...∧An
and α¬A for ground atoms A, A1, . . . , An is defined in the

following way:

αA1∧...∧An

def
= min(αA1

, . . . , αAn
)

α¬A
def
= 1− αA.

To be short, we sometimes denote αA1∧...∧An
by αbody and αA by αhead.

Definition 3. An interpretation is a model of P if for each case of

(A← A1, . . . , An; I; β) ∈ ground(P),

I(αbody, αhead) ≥ β is true.

That is for each ground rules the truth-value of the rule is at least the level

of the rule.

A model M is the least model, if for any model N , we have M ≤ N . A model

M is minimal if there is no other model N 6= M such that N ≤M .

The semantics of fDATALOG is defined as the fixpoints of consequence trans-

formations. Depending on these transformations we defined two kind of semantics

for fDATALOG. The deterministic semantics is the least fixpoint of a deterministic

transformation, the nondeterministic semantics is the least fixpoint of a nonde-

terministic transformation. With the aid of the deterministic transformation the

rules of a program are evaluated parallel, while in nondeterministic case the rules

Fuzzy Datalog with background knowledge 261

are considered independently one after another. Further on we deal only with

nondeterministic transformation, because we can’t use the deterministic seman-

tics when the program has any negation. This transformation is the following:

Definition 4. The consequence transformation NTP : F (BP) → F (BP) is

defined as

NTP (X) = {(A, αA)} ∪X,

where

(A← A1, . . . , An; I; β) ∈ ground(P), (|Ai|, αAi
) ∈ X, 1 ≤ i ≤ n,

αA = max(0, min{γ | I(αbody, γ) ≥ β}).

|Ai| denotes the kernel of the literal Ai, (that is it is the ground atom Ai, if Ai is

a positive literal, and ¬Ai, if Ai is negative).

We can define the powers of the transformations: For any T : F (BP)→F (BP)

transformation let

T0 = { ∪ {(A, αA)} | (A← ; I; β) ∈ ground(P),

αA = max(0, min{γ | I(1, γ) ≥ β})}

∪ {(A, 0) | ∃ (B ← . . .¬A . . . ; I; β) ∈ ground(P)},

and let

T1 = T (T0),

...

Tn = T (Tn−1).

In [4] it is proved, that starting from the set of facts (T0), both deterministic

and nondeterministic transformations have a fixpoint, which is the least fixpoint

in the case of negation-free program. The fixpoint of nondeterministic transfor-

mation is denoted by lfp(NTP).

It was also proved, that lfp(NTP) is model of program P . This proposition

is the background of the following definition:

Definition 5. We define lfp(NTP) to be the nondeterministic semantics of

fDATALOG programs.

262 Ágnes Achs

As it was mentioned above, the deterministic semantics is not suitable when

the program has any negation. In this case the nondeterministic semantics is

applicable under certain conditions. This condition is stratification. Stratification

gives an evaluating sequence in which the negative literals are evaluated first.

To stratify a program, it is necessary to define the concept of dependency

graph. This is a directed graph, whose nodes are the predicates of P . There is

an arc from predicate p to predicate q if there is a rule whose body contains p or

¬p and whose head predicate is q.

A program is recursive, if its dependency graph has one or more cycles.

A program is stratified if whenever there is a rule with head predicate p and

a negated body literal ¬q, there is no path in the dependency graph from p to q.

The stratification of a program P is a partition of the predicate symbols of

P into subsets P1, . . . , Pn such that the following conditions are satisfied:

(1) if p ∈ Pi, q ∈ Pj and there is an edge from q to p then i ≥ j,

(2) if p ∈ Pi, q ∈ Pj and there is a rule with the head p whose body contains ¬q,

then i > j.

A stratification specifies an order of evaluation. First we evaluate the rules

whose head-predicates are in P1 then those ones whose head-predicates are in P2

and so on. The sets P1, . . . , Pn are called the strata of the stratification.

A program P is called stratified if and only if it admits stratification.

In [5, 11] there is a very simple method for finding a stratification for a

stratified program. In [4] it is proved that for a stratified fDATALOG program P ,

there is an evaluation sequence, – this is the order of strata – in which lfp(NTP)

is minimal model of P . To be more precise, let P be a stratified fDATALOG

program with stratification P1, . . . , Pn. Let P ∗

i denote the set of all rules of P

corresponding to stratum Pi, namely the set of all rules, whose head-predicate is

in Pi.

Let

L1 = lfp(NTP∗

1
),

where the starting point of the computation is the set of facts.

L2 = lfp(NTP∗

2
),

where the starting point of the computing is L1,

. . .

Ln = lfp(NTP∗

n
),

where the starting point is Ln−1.

Fuzzy Datalog with background knowledge 263

In other words: at first we compute the least fixpoint L1, corresponding to

the first stratum of P . Then we can take a step to the next stratum, and so on.

It can be seen that Ln is a minimal fixpoint of P , that is Ln = lfp(NTP)

([4]).

Example 1. Given the next fDATALOG program:

r(a) ← ; I1; 0.8

p(x) ← r(x),¬q(x); I1 ; 0.6

q(x) ← r(x); I1; 0.5

p(x) ← q(x); I1; 0.8

The stratification is: P1 = {r, q}, P2 = {p}, so the evaluation order is: 1., 3.,

2., 4. (Precisely: firstly 1. and 3. in arbitrary order, then 2. and 4. in arbitrary

order.) Then lfp(NTP) = {(r(a), 0.8); (p(a), 0.5); (q(a), 0.5)}.

3. Background knowledge

The facts and rules of a fDATALOG program can be regarded as any kind of

knowledge, but sometime – as in the case of our model – we need other information

in order to get answer for a query. For example if John likes the beautiful girls,

and Mary is a pretty woman, then we know, that John maybe likes Mary, because

the concept of “beautiful” and “pretty”, or “girl” and “woman” are similar.

In this paragraph we give a model of background knowledge. We define simi-

larity between predicates and between constants and these structures of similarity

will serve for the background knowledge.

Definition 6. A similarity on a domain D is a fuzzy subset SD : D ×D →

[0, 1] such that the following properties hold:

SD(x, x) = 1 for any x ∈ D (reflexivity),

SD(x, y) = SD(y, x) for any x, y ∈ D (symmetry).

A similarity is transitive if

SD(x, z) ≥ min(SD(x, y),SD(y, z)), for any x, y, z ∈ D.

264 Ágnes Achs

Let us denote, that in most of practical cases the similarity is not transitive.

However, there is a method for deciding transitivity, using similarity matrix for

describing similarity. A similarity matrix is a matrix containing the similarity

values of each pair of elements in D.

Let S be a similarity matrix. The similarity is transitive if and only if

S ≥ S · S,

where in the matrix-multiplication instead of multiplying elements the minimum

of elements are constitute and instead of summaries the maximums are form.

In our model the background knowledge is a set of similarity sets.

Definition 7. Let d ∈ D any element of domain D. The similarity set of d

is a fuzzy subset over D:

SDd = {(d1, λ1), (d2, λ2), . . . , (dn, λn)},

where di ∈ D and SD(d, di) = λi for i = 1, . . . , n.

Sometimes we are not interested in similarity when two elements are too

different, namely the value of similarity is too small. Therefore we introduce the

concept of the λ-cut of similarity set:

Definition 8. Let d ∈ D any element of domain D and 0 < λ ≤ 1. The

λ-cut of similarity set Sd is:

Sd,λ = {(di, λi) ∈ Sd | λi ≥ λ}.

It can be shown:

Proposition 1. If the similarity is transitive, it defines λ-equivalence clas-

sifications over D.

Example 2. Let us consider the following similarity matrix:

a b c d e

a 1 0.7 0.8 0.7 0.8

b 0.7 1 0.7 0.9 0.7

c 0.8 0.7 1 0.7 0.8

d 0.7 0.9 0.7 1 0.7

e 0.8 0.7 0.8 0.7 1

Fuzzy Datalog with background knowledge 265

It can be easily checked that the similarity defined by this matrix is transitive.

Let λ = 0.8. The λ-cuts of similarity sets of D = {a, b, c, d, e} are:

Sa,λ = {(a, 1), (c, 0.8), (e, 0.8)}

Sb,λ = {(b, 1), (d, 0.9)}

Sc,λ = {(a, 0.8), (c, 1), (e, 0.8)}

Sd,λ = {(b, 0.9), (d, 1)}

Se,λ = {(a, 0.8), (c, 0.8), (e, 1)}

These sets may define a λ-equivalence relation over D. Two elements d1, d2 ∈ D

are in λ-equivalence relation if SD(d1, d2) ≥ λ. According to this relation we can

define the next equivalence classes over D:

E0.8 = {a, c, e}, {b, d}.

Based on similarities we can construct the background knowledge, which is

an information about the similarity of terms and predicate symbols.

Definition 9. Let C be any set of ground terms and R any set of predi-

cate symbols. Let SC and SR any similarity over C and R respectively. The

background knowledge is:

Bk = {SCt | t ∈ C} ∪ {SRp | p ∈ R}

4. Fuzzy knowledge-base

A fuzzy knowledge-base consists of a background knowledge, a fuzzy deduc-

tion mechanism, and a function, which computes the final value of the uncertainty.

4.1. Modified fDATALOG program

Let P be a fuzzy Datalog program, and let Bk be any background knowledge.

With the similarities of the background knowledge we can define the modified

fDATALOG program, mP : Let us replace each predicate symbol p of the program

P by SRp, each ground term t ∈ Hp by SCt and each variable x by X = {x}.

(Note: it may be occur, that SRp or SCt is not in Bk, in this case SRp = {(p, 1)}

or SCt = {(t, 1)}.)

266 Ágnes Achs

Algorithm 1

1: procedure modification(P)

2: while not(empty(P)) do

3: (r; I; β) := first rule of P

4: (R; I; β) := (replace(r); I; β)

5: P := P − {(r; I; β)}

6: end while

7: end procedure

8: procedure replace(r)

9: Predr := set of r’s predicates

10: Termr := set of r’s ground terms

11: Varr := set of r’s variables

12: while not(empty(Predr)) do

13: q := first predicate of r

14: Q := SPq

15: Predr := Predr − {q}

16: end while

17: while not(empty(Termr)) do

18: t := first ground term of r

19: T := STt

20: Termr := Termr − {t}

21: end while

22: while not(empty(Varr)) do

23: x := first variable of r

24: X := {x}

25: Varr := Varr − {x}

26: end while

27: end procedure

The modified fDATALOG program is evaluable as an ordinary fDATALOG

program. There are only two problems:

(1) How can one compute the uncertainty level of the results?

(2) What can we do with the huge mass of results obtained due to the similarities?

Fuzzy Datalog with background knowledge 267

4.2. The decoding function

The uncertainty level of the results can be obtained by using decoding func-

tions. As the uncertainty level of the result depends on the level of the suitable

result in modified program and the similarity values of the suitable predicates and

the suitable terms, therefore the decoding function is a (n + 2)-variable function

defined below.

Definition 10. A decoding function is an (n + 2)-ary function:

ϕ(α, λ, λ1, . . . , λn) : (0, 1]× (0, 1]× (0, 1]× · · · × (0, 1]→ [0, 1]

so that

ϕ(α, λ, λ1, . . . , λn) ≤ min(α, λ, λ1, . . . , λn) and

ϕ(α, 1, 1, . . . , 1) = α.

Example 3.

ϕ1(α, λ, λ1, . . . , λn) = min(α, λ, λ1, . . . , λn);

ϕ2(α, λ, λ1, . . . , λn) = min(α, λ, (λ1 · · ·λn));

ϕ3(α, λ, λ1, . . . , λn) = α · λ · λ1 · · ·λn

are decoding functions.

We have to order decoding functions to all predicates of the program. The

set of decoding functions will be the decoding set of the program:

Definition 11. Let P be a fuzzy Datalog program, and FP be the set of the

program’s functors. (A functor is characterized by the predicate symbol and the

arity of an atom, that is for example in the case of p(t1, t2, . . . , tn), the functor is

p/n). The decoding set of P is:

ΦP = {ϕq(α, λ, λ1, . . . , λn) | ∀ q/n ∈ FP }

Now there are all together to define the concept of a fuzzy knowledge-base.

Definition 12. A fuzzy knowledge-base (fKB) is a triplet (Bk, P, ΦP), where

Bk is a background knowledge, P is a fuzzy Datalog program, and ΦP is a decoding

set of P .

268 Ágnes Achs

Now with the similarities of the background knowledge we can define the

modified fDATALOG program, mP . Evaluating this program we get a fuzzy set

of the ground atoms of mP ’s Herbrand base. Applying the decoding functions to

these atoms, we get the consequence of the knowledge-base. More precisely we

have:

Definition 13. Let (Bk, P, ΦP) a fuzzy knowledge-base. The consequence

of the knowledge-base is given in the form

C(Bk, P, ΦP) = {(q(t1, t2, . . . , tn); ϕq(α, λq , λt1 , . . . , λtn
,)) | for each

(Q(T1, T2, . . . , Tn); α) ∈ lfp(NTmP),

(q, λq) ∈ Q, (ti, λti
) ∈ Ti, 1 ≤ i ≤ n}.

Proposition 2.

lfp(NTP) ⊆ C(Bk, P, ΦP).

Proof. It is obvious according to the definitions above, because if

(q(t1, t2, . . . , tn); α) ∈ lfp(NTP)

then (Q(T1, T2, . . . , Tn); α) = (SPq(STt1 ,STt2 , . . . ,STtn
); α) ∈ lfp(NTmP), and

ϕq(α, 1, 1, . . . , 1) = α. �

4.3. Evaluation strategies

In [1] the author deals with the evaluation strategies of fuzzy Datalog. A

fDATALOG program can be evaluated under different strategies.

The bottom-up evaluation starts from the facts, applies the rules, so it can

deduce all computable facts, that is it can determine lfp(NTP).

However in many cases, there is no need for all facts of the least fixpoint, we

want to get an answer only for a concrete question. If a goal is specified together

with a fDATALOG program, it is enough to consider only the rules and facts

which are necessary to reach the goal. The top-down evaluation starts from the

goal, and applies the suitable rules to reach the given facts of the program.

In the case of modified fuzzy Datalog program the bottom-up evaluation

seems to be unreal in practical respect because of the huge mass of results obtained

due to the similarities.

Fuzzy Datalog with background knowledge 269

4.3.1. Top down evaluation strategy of fDATALOG programs

A goal is a pair (q(t1, t2, . . . , tn); α), where q(t1, t2, . . . , tn) is an atom, α is

the level of the atom. It is possible, that among the arguments of q there are

variables or constants, and α can be either a given or a wanted value. A fuzzy

Datalog extended with a goal is a query.

A goal is evaluated through sub-queries. This means, that all of the rules,

whose head-predicate can be unificated with the given goal-predicate are selected,

and the predicates of the body are considered as new sub-goals. This procedure

continues until obtaining the facts. This kind of evaluation is the top-down eval-

uation.

To apply this strategy, we need further ideas.

Definition 14. A substitution θ is a finite set of the form {x1 |t1, . . . , xn |tn},

where xi (i = 1, . . . , n) are distinct variables and ti 6= xi (i = 1, . . . , n) are terms.

The set of variables {x1, . . . , xn} is called the domain of θ. If all terms

t1, . . . , tn are constants, then θ is called a ground substitution. The empty sub-

stitution is denoted by ε.

If θ is a substitution and t is a term, then tθ denotes the term which is defined

as follows (it works, because we consider only the function-free case):

tθ =

{

ti, if t | ti ∈ θ,

t otherwise.

If L is a literal, then Lθ denotes the literal which is obtained from L by

simultaneously replacing each variable xi that occurs in L by the corresponding

term ti, iff xi | ti is an element of θ.

For example, let L = ¬p(a, x, y, b) and θ = {x | c, y | x}, then

Lθ = ¬p(a, c, x, b).

If (r; I; β) is a fDATALOG rule, then (rθ; I; β) denotes the rule, which is

obtained simultaneously applying the substitution θ for all literals of r. The

substitution can result the same atoms in the body of rθ, but they are considered

with single multiplicity.

Definition 15. Let θ = {x1 | t1, . . . , xn | tn} and σ = {y1 | u1, . . . , yn | un}

be two substitutions. The composition θσ of θ and σ if it exists is obtained from

270 Ágnes Achs

the set

{x1 | t1σ, . . . , xn | tnσ, y1 | u1, . . . , ym | um}

by eliminating each component of the form z | z and by eliminating each compo-

nent for which yi = xj for some j.

The partial composition of substitutions θ and σ is θσ, if both of them are

defined and is not defined if any of substitutions is not defined.

If (r; I; β) is a rule, then applying θσ to the rule has the same effect as first

applying θ to r, yielding (rθ; I; β), and then applying σ to rθ.

For example, let L = ¬p(a, x, y, b) and θ = {x | c, y | x}, σ = {x | d} then

Lθσ = ¬p(a, c, d, b).

Definition 16. If for a pair of literals L and M a substitution θ exists, such

that Lθ = Mθ, then we say that L and M are unifiable and the substitution θ is

called a unifier.

Let θ and λ be substitutions. θ is more general than λ iff there exists a

substitution σ such that θσ = λ.

Let L and M be two literals. The most general unifier of L and M (mgu(L,M))

is a unifier which is more general than any other unifier.

The concept of mgu has been introduced in much more general contexts,

where terms may contain function symbols. There are different algorithms for

determining mgu ([9, 11]). As now we deal with function-free fDATALOG, there-

fore it is practical to give a simple algorithm, which generates a mgu for each

pair of literals L and M if they are unifiable, or tells if they are not. Algorithm 2

shows this simpler method.

Let L = p(t1, . . . , tn) and M = p′(t′1, . . . , t
′

m) be two literals. The function

mgu(L, M) can be generated in the following way:

Algorithm 2

1: function mgu(L, M)

2: if p 6= p′ or n 6= m then

3: L and M are not unifiable

4: else

5: θ := ε

6: k := 1

Fuzzy Datalog with background knowledge 271

Algorithm 2 continued

7: unifiable := true

8: while k ≤ n and unifiable do

9: if tiθ 6= t′iθ then

10: if t′iθ is a variable then

11: θ = θ{t′iθ | tiθ}

12: else if tiθ is a variable then

13: θ = θ{tiθ | t′iθ}

14: else

15: unifiable := false

16: end if

17: end if

18: k := k + 1

19: end while

20: if unifiable then

21: mgu(L, M) := θ

22: else

23: L and M are not unifiable

24: end if

25: end if

26: end function

From the algorithm it can be seen, that mgu(L, M) 6= mgu(M, L). Because

of this asymmetry we have to be very careful during the top-down evaluation.

For working out the top-down evaluation process, it may occur, that only

some of the variables have to be substituted. For that purpose we introduce the

notion of the projection of a substitution onto a set of variables.

Definition 17. Let θ = {x1 | t1, . . . , xn | tn} be a substitution and let

H = {xi1 , . . . , xik
} be a set. The projection of θ to H is the substitution θH =

{xi1 | ti1 , . . . , xik
| tik
}.

Since rules can be joint together through their predicates in common, form

one’s body to another head, also substitution must be applied sometimes through

common variables.

Definition 18. Let θ = {x1 | t1, . . . , xn | tn} and σ = {y1 | u1, . . . , yn | un}

be substitutions. Let us suppose that for each pair xi | ti, yj | uj for which xi = yj,

272 Ágnes Achs

also ti = uj. Then the join of θ and σ is the set θ⊗σ = {x1 | t1, . . . , xn | tn, y1 | u1,

. . . , ym | um}, from which the repeated components are omitted. If for any pair

xi | ti, yj | uj, xi = yj , but ti 6= uj, then the join of θ and σ is not defined.

First we deal with the evaluation of negation-free fDATALOG programs. For

that purpose an evaluation tree is constructed. This is a special hyper-graph,

based on the AND/OR tree concept. Every odd edge of the evaluation tree is an

n-order hyper-edge with the set-node of n elements, and every even edge is an

ordinary edge with one node.

The root is the goal-atom, the leaves are the symbols © and §, and the nodes

are defined recursively, as follows.

Let the level of the root be 0. On every even level of the graph there are

sub-goals, on every odd level there are bodies of rules.

Let the atom L be a node of level k = 2i, and let us suppose, that there are

m rules in the form

M ←M1, . . . , Mn; I; β,

whose heads are unifiable with L. Then this node has m children, and these

children are in the form

M1θ, . . . , Mnθ,

where θ = mgu(L, M), if n > 0; if n = 0, then the child is the symbol ©.

If there are not any unifiable rule, then the child is the symbol §.

We have to pay special attention to rename the variables, since the variables

in the body of a unified rule must be different from the former unifications. To

solve this problem, we will identify these variables by subscribing them with the

level of the evaluation tree.

Let us attach labels to the even edges of the graph. The label of edge L →

M1θ, . . . , Mnθ is a triplet (θ; I; β).

The odd hyper-edges do not have labels.

An answer for the query can be got from the labels of the evaluating tree.

The path ending in the symbol § doesn’t give solution. If there is a path

from one node of a hyper-edge to the symbol §, all of the nodes belonging to

this hyper-edge and their descendants are cancelled. The resulting graph is called

searching graph.

A solution can be achieved along the path ending in the symbol © in the

searching graph. The union of these solutions is the answer to the given query.

The levels of the atoms in the answer can be computed by the uncertainty-level

function, defined next.

Fuzzy Datalog with background knowledge 273

Definition 19. The function

f(I, α, β) = min({γ | I(α, γ) ≥ β})

is called uncertainty-level function.

In the case of the studied implication operators f(I, α, β) is the following:

f(I1, α, β) = min(α, β),

f(I2, α, β) = max(0, α + β − 1),

f(I3, α, β) = α · β,

f(I4, α, β) =

{

0, if α + β ≤ 1,

β, if α + β > 1,

f(I5, α, β) = max(0, 1 + (β − 1)/α), α 6= 0,

f(I6, α, β) = α.

The substitution θ along the hyper-path leading to the symbol © can be

determined in the following way (containing hyper-edges, a path may end in

more leaves):

For each hyper-node the join of the substitutions of the body’s atoms is taken.

Ordering this joins to the nodes of even levels (that is, to the nodes of the heads),

the partial composition of these substitutions gives the substitution along the

hyper-path.

One answer to the query (L, α) is (Lθ, αgoal), where αgoal can be computed

recursively by the uncertainty-level function f(I, α, β) in the following way:

Starting at the leaves, we order to them the value α = 1. In such away we go

backward to the root. If the uncertainty level of a node on the odd level of the

graph is α, then the uncertainty level of the parent node is α = f(I, α, β), where

I; β are the values in the label of the edge. If the uncertainty level of the children

of a node on the odd level of the graph is α1, . . . , αk, then let the uncertainty

level of the node be α = min(α1, . . . , αk). Finally we order an uncertainty level

to the root. This level is the αgoal.

The uncertainty level of the goal (q(t1, t2, . . . , tn); α) is either constant or a

variable. If it is a variable, this variable gets value during the evaluation. If

α is a constant, then the uncertainty level received during the execution of the

algorithm is a solution only in that case, if this level is greater then α. In this

case, however, it is unnecessary to consider all the rules of the program. It is

274 Ágnes Achs

enough to take the rules, whose uncertainty factors are greater then α. Thus, the

size of the evaluation graph can be reduced.

Example 4. Suppose we want to get an answer for query (q(x, y); α) from

the fDATALOG program below:

p(a) ← ; I1; 0.8

p(b) ← ; I2; 0.7

r(c) ← ; I3; 0.6

q(x, y) ← p(x), r(y); I2; 0.7

q(x, y) ← q(y, x); I3; 0.8

s(x) ← q(x, y); I3; 0.9

The searching tree for this query:

q(x, y)

p(x), r(y) q(y, x)

p(x) r(y) q(y, x)

p(y), r(x) q(x, y)

p(y) r(x)

q(a, c), 0.3; q(b, c), 0.3

q(c, a), 0.24; q(c, b), 0.24

. . .

© © ©

© © ©

ε, I2, 0.7 ε, I3, 0.8

x | a, I1, 0.8 x | b, I2, 0.7 y | c, I3, 0.6 x | y, y | x, I2, 0.7 x | y, y | x, I3, 0.8

y | a, I1, 0.8 y | b, I2, 0.7 x | c, I3, 0.6

According to the above AND/OR graph, the solution is:

{(q(a, c), 0.3), (q(b, c), 0.3), (q(c, a), 0.24), (q(c, b), 0.24)}

It can be seen, that in the case of finite evaluation graph the bottom-up and

the top-down strategy give the same result. More exactly, as in [1] is proven:

Fuzzy Datalog with background knowledge 275

Theorem 1. For a given goal and in the case of finite evaluation graph, the

top-down evaluation gives the same result as the fixpont query.

In [1] there is an algorithm to evaluate this graph. The algorithm consists of

two procedures calling each other, one of these procedures evaluating a goal or a

sub-goal, the other evaluating a rule-body.

The goal evaluation procedure determines all of the unified bodies in the

case of unificable rules, and evaluating these bodies gives the answer to the goal.

The rule evaluation procedure evaluating the sub-goals of the body gives the

substitution belonging to the body and the uncertainty level of the body.

The order of the unificable rules in the goal evaluation and that of the sub-

goals in the rule evaluation are determined by a selection function (rule se-

lection and atom selection respectively). This order doesn’t have an effect

on the result, but it has influence on the efficiency of evaluation. The special

symbols, © and § are not in the set of evaluable sub-goals, because they are not

evaluable. (In the case of § there is no unificable rule, in the case of © we get an

empty node after unifying, so we can determine the answer immediately.)

It is practical to solve the join of the substitutions in a top-down manner,

that is, not to consider the sub-goals as independent evaluations, but to narrow

the size of the graph by a “sideways information passing”. This means, that

the substitution getting by evaluation of a sub-goal, can be applied immediately

to the other members of the body, so the number of examinable paths can be

reduced.

During the evaluation of a sub-goal, it is enough to consider only the projec-

tion of the substitution to the variables of the sub-goal.

If it is necessary, the variables can be renamed using the set of substituting-

terms. The set of substituting-terms of substitution θ = {x1 | t1, . . . , xn | tn} is

the set {t1, . . . , tn}.

This algorithm provides the answer in the case of a given program and a given

goal.

Algorithm 3

1: Evaluation:

2: begin

3: solution := ∅

4: goalanswer := ∅

276 Ágnes Achs

Algorithm 3 continued

5: goal evaluation(goal, goalanswer) ⊲ goalanswer is the set of

⊲ all possible result pair of substitution and uncertainty level

6: while not empty(goalanswer) do

7: (θ, αgoal) := first element (goalanswer)

8: goalanswer := goalanswer− {(θ, αgoal)}

9: solution := solution ∪ {(goal’s atomθ, αgoal)}

⊲ the result substitutions are applied for the atom of the goal

10: end while

11: end

12: procedure goal evaluation(goal, goalanswer)

13: goal variables := {the set of the variables of the goal}

14: R := {(r; I; β) | rule’s head(r) is unificable with the goal}

15: if R = ∅ then return

16: end if

17: while not empty(R) do

18: (r; I; β) := rule selection(R)

19: R := R− {(r; I; β)}

20: body := rule’s body(r)

21: for all variable ∈ r do

22: if variable ∈ substituting terms(θ) then

23: variable := newname(variable)

24: end if

25: end for

26: θ := mgu(goal’s atom, rule’s head(r))

27: body := bodyθ

28: αbody := 1

29: θbody := ε

30: if body = ∅ then

31: goalanswer := goalanswer∪ {(θ, f(I, αbody, β))}

32: else

33: rule evaluation(body, αbody, θbody, goalanswer, goal variables, I, β)

⊲ the body of the rule is evaluated

34: end if

35: end while

36: end procedure

Fuzzy Datalog with background knowledge 277

Algorithm 3 continued

37: procedure rule evaluation(body, αbody, θbody, goalanswer, goal variables,I, β)

38: atom := atom selection(body)

39: newbody := body− {atom}

40: answer := ∅

41: goal evaluation(atom, answer)

42: if answer = ∅ then return

43: end if

44: while not empty(answer) do ⊲ the remaining part of the body

⊲ is evaluated for all possible substitution

45: (θ, αatom) := element(answer)

46: answer := answer− {(θ, αatom)}

47: θbody := θbodyθ

48: αbody := min(αbody, αatom)

49: if newbody 6= ∅ then

50: newbody := newbodyθ

51: rule evaluation(newbody, αbody, θbody, goalanswer, goal variables, I, β)

52: end if

53: if newbody = ∅ then

54: θ := projection(θbody, goal variables)

55: goalanswer := goalanswer∪ {(θ, f(I, αbody, β))}

56: end if

57: end while

58: end procedure

In the case of recursive programs, the top-down evaluation may not terminate

(as in the case of Example 4). But if we order a depth limit to each recursive

atom, the procedure can be stopped. [1] determines a suitable depth limit. Of

course, a bad limit can cause result-loss.

It is easy to apply the top-down evaluation for stratified fDATALOG. In the

case of stratified fDATALOG, the head-predicate of a rule is at least as high

stratum as the predicates of the body. In other words, during the top-down

evaluation we approach from the higher strata to the lower ones, that is, in the

evaluation graph the stratum of a parent node is not lower than the stratum of the

children. Therefore, when we compute the uncertainty level, we are starting at the

lowest stratum. This observation can be used to handle the negated predicates.

If a sub-goal is negated, let us indicate this sub-goal, and pay attention to this

278 Ágnes Achs

marking during the computation of the uncertainty level. If the atom is marked

and the uncertainty level α is computed up to this point, then the computation

continues with value 1− α.

4.3.2. Top down evaluation strategy of fuzzy knowledge-base

A query over the fuzzy knowledge-base (Bk, P, ΦP) can be defined also.

According to Algorithm 1 program P can be turned into mP . Similarly we

can modify the goal (q(x1, x2, . . . , xn); α) into (Q(X1, X2, . . . , Xn); α).

The modified fDATALOG program is evaluable as an ordinary fDATALOG

program, so we get answer for the modified goal. Applying the decoding function

the answers for the query over the fuzzy knowledge-base can be obtained.

The next algorithm gives the set of answers to the goal (q(t1, t2, . . . , tn); α)

by decoding the answers for the query (Q(X1, X2, . . . , Xn); α):

Algorithm 4

1: procedure decoding(Q,SP,ST, ΦP)

2: S := set of answers for the query (Q; α)

3: Answers := ∅

4: while not(empty(S)) do

5: (Q(T1, T2, . . . , Tn); α) := first element of S

6: Answers := Answers ∪ decoded((Q(T1, T2, . . . , Tn); α)) ⊲ all of the

⊲ decoded answer for the goal (q(t1, t2, . . . , tn); α) is produce

7: S := S − {(Q(T1, T2, . . . , Tn); α)}

8: end while

9: end procedure

10: function decoded((Q(T1, T2, . . . , Tn); α))

11: Decoded set := ∅

12: while not(empty(Q)) do

13: (q, λq) := first element of Q

14: q set := ∅

15: for each (ti, λti
) ∈ Ti do

16: q set := q set ∪ {(q(t1, t2, . . . , tn); ϕq(α, λq, λt1 , . . . , λtn
))}

17: end for

18: Decoded set := Decoded set ∪ q set ⊲ all of the

⊲ decoded answer for the goal (Q(T1, T2, . . . , Tn); α) is produce

19: Q := Q− {(q, λq)}

Fuzzy Datalog with background knowledge 279

Algorithm 4 continued

20: end while

21: return Decoded set

22: end function

Algorithm 4 ensures the following statement:

Proposition 3. Let Answers be the set of evaluated goals by Algorithm 4.

Then

Answers ⊆ C(Bk, P, ΦP).

For better understanding Example 5 illustrates the concepts discussed above.

Example 5. Let us see the program of Example 4:

p(a) ← ; I1; 0.8

p(b) ← ; I2; 0.7

r(c) ← ; I3; 0.6

q(x, y) ← p(x), r(y); I2; 0.7

q(x, y) ← q(y, x); I3; 0.8

s(x) ← q(x, y); I3; 0.9

The background knowledge is given as follows:

SP =

p q r s

p 1 0.8

q 0.8 1 0.7

r 0.7 1

s 1

ST =

a b c

a 1 0.9

b 1 0.7

c 0.9 1

The decoding functions are defined as:

ϕp(α, λ, λ1) = min(α, λ, λ1);

ϕq(α, λ, λ1, λ2) = α · λ ·min(λ1, λ2);

ϕr(α, λ, λ1) = min(α, λ, λ1);

ϕs(α, λ, λ1) = α, λ, λ1.

Let the goal be the same as it is in Example 4: (q(x, y); α).

280 Ágnes Achs

The necessary part of modified fDATALOG for (Q(X, Y); α) goal is:

P (A) ← ; I1; 0.8

P (B) ← ; I2; 0.7

R(C) ← ; I3; 0.6

Q(X, Y) ← P (X), R(Y); I2; 0.7

Q(X, Y) ← Q(Y, X); I3; 0.8

where

P = {(p, 1), (q, 0.8)}; Q = {(q, 1), (r, 0.7), (p, 0.8)}; R = {(r, 1), (q, 0.7)};

A = {(a, 1), (c, 0.9)}; B = {(b, 1)}; C = {(c, 1), (a, 0.9)}.

According to Example 4, the answer for this query is:

{(Q(A, C), 0.3), (Q(B, C), 0.3), (Q(C, A), 0.24), (Q(C, B), 0.24)}

Applying the decoding algorithm, these modified atoms can be decoded:

{(q(a, c), 0.3), (q(a, a), 0.27), (q(c, a), 0.243), (q(c, c), 0.27), (r(a, c), 0.21), (r(a, a),

0.189), . . . etc.}; {(q(b, c), 0.3), . . . etc.}; etc.

This example shows, that even a case of simple knowledge-base and a simple

query, we can obtain a huge mass of resulting facts. To reduce the number of

these, we can extend the query with the levels of desirable similarities, so the

wanted goal is:

(q(t1, t2, . . . , tn); α; λR; λC),

where q(t1, t2, . . . , tn) is the goal-atom, α is the uncertainty level of the goal

(constant or variable), λR, λC are the acceptable similarity degree of predicates

and terms respectively.

Evaluating this goal – in case of given λR, λC – in the modified fDATALOG

the similarity sets are replaced by their λR or λC -cuts.

Note: In case of transitive similarities the number of rules and facts to be evalu-

ated is reduced significantly and therefore so does the number of resulting facts.

Fuzzy Datalog with background knowledge 281

5. Summary

In this paper a possible model of handling uncertain information was given by

defining fuzzy knowledge-base as a triplet of a background knowledge, a deduction

mechanism and a decoding set, and a possible evaluation strategy was shown.

By this model one can not handle all kind of uncertainty. Therefore develop-

ments of further models are desirable.

References

[1] Ágnes Achs, Evaluation Strategies of Fuzzy Datalog, Acta Cybernetica 13, Szeged
(1997), 85–102.

[2] F. Arcelli, F. Formato and G. Gerla, Fuzzy Unification as Foundations of Fuzzy
Logic programming, in: Logic Programming and Soft Computing, RSP–Wiley, Eng-
land, 1998.

[3] Ágnes Achs and Attila Kiss, Fixpoint query in fuzzy Datalog, Annales Univ. Sci.

Budapest, Sect. Comp. 15 (1995), 223–231.

[4] Ágnes Achs and Attila Kiss, Fuzzy extension of Datalog, Acta Cybernetica 12,
Szeged (1995), 153–166.

[5] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Springer-Verlag,
Berlin, 1990.

[6] Didier Dubois and Henri Prade, Fuzzy sets in approximate reasoning, Part 1: In-
ference with possibility distributions, Fuzzy Sets and Systems 40 (1991), 143–202.

[7] J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, 1987.

[8] Vilém Novák, Fuzzy sets and their applications, Adam Hilger, Bristol and Philadel-
phia, 1989.

[9] Pásztorné Varga Katalin, A matematikai logika és alkalmazásai, Tankönyvkiadó,
Budapest, 1986.

[10] Maria I. Sessa, Approximate reasoning by similarity-based SLD resolution, Theo-

retical Computer Science 275 (2002), 389–426.

[11] J. D. Ullman, Principles of database and knowledge-base systems, Computer Science
Press, Rockville, 1988.

[12] Harry E. Virtanen, Fuzzy unification, 5th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, Paris,
1994. July 4–8.

ÁGNES ACHS

UNIVERSITY OF PÉCS, FACULTY OF ENGINEERING, DEPARTMENT OF COMPUTER SCIENCE

H–7624 PÉCS, BOSZORKÁNY U. 2

HUNGARY

E-mail: achs@witch.pmmf.hu

(Received June, 2005)

