
3/2 (2005), 221–240

“Upperview” algorithm design in

teaching computer science in high

schools

Zoltán Kátai

Abstract. In this paper we are going to present a teaching/learning method and suggest a
syllabus that help the high school students look at the algorithm design strategies from a
so called “upperview”: greedy, backtracking, divide and conquer, dynamic programming.
The goal of the suggested syllabus is, beyond the presentation of the techniques, to
offer the students a view that reveals them the basic and even the slight principal
differences and similarities between the strategies. In consensus with the Comenius
principle this is essential, if we want to master this field of programming (“To teach

means scarcely anything more than to show how things differ from one another in their

different purposes, forms, and origins. . . . Therefore, he who differentiates well teaches

well.”).

Key words and phrases: teaching method, algorithm design strategies, algorithm design
techniques.

ZDM Subject Classification: B20, B50, B70, C70, P00, P50, Q00.

1. Introduction

Comenius, considered the founder of modern teaching, made the following

statement regarding teaching methods: “To teach means scarcely anything more

than to show how things differ from one another in their different purposes, forms,

and origins. . . . Therefore, he who differentiates well teaches well.”

We are going to present a teaching/learning method and suggest a syllabus

that help the high school students look at the algorithm design strategies from a so

Copyright c© 2005 by University of Debrecen

222 Zoltán Kátai

called “upperview”: greedy, backtracking, divide and conquer, dynamic program-

ming. We are in some places referring to these strategies as algorithm design

techniques (short: techniques). The official Romanian curriculum does not in-

clude the strategy of dynamic programming, but in the programming contests

high school students often have to deal with tasks which assume its use. The pre-

sented method offers the teacher the possibility to introduce the basic elements of

this technique at the level of the whole class. The goal of the suggested syllabus

is, beyond the presentation of the techniques, to offer the students a view that

reveals them the basic and even the slight differences and similarities between the

strategies. In consensus with the Comenius principle this is essential, if we want

to master this field of programming.

Several issues of the bibliography compare the techniques. For example the

authors Cormen, Leiserson and Rivest in their book “Introduction to Algorithm”

[1] compare the dynamic programming and the greedy strategy. Some books (for

example [2]) discuss how the backtracking and greedy techniques can complement

each other. In other books (for example [3]) we can find a comparing analysis

concerning the strategies of divide and conquer and dynamic programming. In

the present paper we have developed this idea and we are presenting a method

which makes it possible to discuss uniformly all the above mentioned techniques.

We tried to establish such an “upperview” where each technique can be seen in

the same time next to each other. By this means it becomes possible to integrate

all the four techniques into a frame which forms a whole. If the students recognize

the position of certain techniques related to the others, then the so called “more

difficult” strategies become available for them.

Firstly we give a general description of the “upperview-method” and then

we apply it in the field of algorithm design techniques. Thereafter we present

a possible syllabus which offers the possibility to use the “upperview-method”

in teaching. Eventually we report about an experiment in which we prove the

efficiency of the method in an empirical way.

General description of the “upperview-method”

What does it mean to see something from above?

Imagine the following situations: at the police they pin the evidence coming

from different sources regarding a criminal case on the notice board. Why? The

town planning department of the mayor’s hall produce a model and they stand

“Upperview” algorithm design in teaching computer science in high schools 223

round it. Why? To get a general picture of the whole and also the similarities,

differences and the connections between different parts to be more perceptible.

In the two situations the involved parties carried out the “upperview” in a

different way. The policemen needed a “platform” (the notice board) where they

could see the pieces of evidence displayed next to each other. The architects used

reducation and abstraction in producing the model. The abstraction is important

because it disregards from those aspects which are not important.

From the joint of the two methods it can be noticed that, in order to carry

out an “upperview”, a so called “abstract platform” might be necessary, where

the entities being analyzed can be laid down next to each other in such a manner

that the features and connections essential for the analysis become obvious.

We use the notion of “upperview” in our article in the following sense:

(1) We can see the entities being analyzed “next to each other”.

(2) Only those elements can be seen which are essential for the analysis.

(3) The similarities and differences are obvious, the connections are striking.

The purpose of the method is to offer the student a position where to have

such a view to the analyzed object. Of course several “upperviews” could be

produced depending on how we make the mentioned steps. This is desirable, too,

as each new “upperview” means a different point of view. One of the strengths of

the method is that it enables the students to assess the “value” of the analyzed

entities related to each other. For example in the case of the study of algorithm

design strategies the strong and weak points of certain techniques become obvious,

as well as the fact that in a given situation which is the most efficient to be used

and why.

The basic principle illustrating the efficiency of the method can be checked

with the following simple experiment: let’s show a sheet of paper and ask the

students to name as many of its characteristics as they can. Then – in an other

classroom – we repeat the experiment, but this time we show them another shape

together with the sheet of paper (for example, something made of wood, not a

plane figure, not one single colour etc.).

What are we going to experience? In the second class the students can express

considerably more characteristics of the sheet of paper. For example, it is not sure

that in the first class they notice that the sheet is one-coloured, it is a plane figure,

it can be crumpled, it is made of wood etc. This simple experiment proves a well-

known truth: The contradictions call our attention on the differences but also on

the similarities.

224 Zoltán Kátai

What was the role of the teacher in this experiment? To establish the “up-

perview” in the student’s mind. It presumed to select the object laid next to the

sheet of paper in such a manner to make those criteria striking, based on which

he would like the students to make the comparison.

“Upperviews” in teaching computer science

How can we carry out “upperviews” at the Computer Science classes? Most

of the teachers are doing it – even if they might not call it like this – when teaching

sorting algorithms. At the end of the chapter we take a sequence of numbers, on

which we mime or have mimed all the taught sorting algorithms by the students,

drawing their attention to the similarities and differences. Doing so, we form

“upperviews” in the students, as:

• We lay the sorting algorithms “next to each other” by miming them on the

same sequence of numbers.

• We draw the students’ attention to what is essential and what is not from a

certain “upperview”. For example in the case of sorting algorithms based on

comparison, the students can concentrate on the kinds of strategies used to

compare the elements from a certain “upperview”.

• We help the students to see the similarities and differences, the strong and

weak points of the algorithms.

There are excellent computer simulations which make the production of the

“upperview” easier concerning the sorting algorithms.

Design of Algorithms from “upperview”

How can we carry out “upperviews” when teaching algorithm design strate-

gies? The challenge consists in the fact that while the sorting algorithms solve

the same problem, each algorithm design strategy has – more or less – its own ter-

ritory. The picture below shows this (see Figure 1). The certain circles describe

the set of those problems, which can be “solved” with the respective strategy, no

matter whether they offer an optimal solution or not, is the algorithm efficient or

not.

“Upperview” algorithm design in teaching computer science in high schools 225

Greedy

Backtrack Divide and conquer

Dynamic programming

Figure 1

The fact that the circles intersect each other shows that there are problems

which can be “solved” with several techniques, even more, some of them with all

the techniques. Therefore we can conclude that there must be a “plane” where

the sets of problems of certain techniques have basic similarities. Which is that

“plane”?

An “Abstract Platform”

The backtracking and the divide and conquer techniques usually approach

the problem in a recursive way. The sequence of ideas in a recursion is the

following: How can the problem be reduced to similar, simpler subproblems, then

later again reduce these ones to similar, even simpler subproblems, until we get

trivial subproblems? This type of break-down presumes that the problem – in

its construction – should have the structure of a tree. The whole tree obviously

represents the problem itself; the first level subtrees represent those subproblems

the original problem can be reduced to in the first step, and so on. Eventually

the leaves of the tree will represent the trivial subproblems resulted from the

break-down.

The common characteristic of the greedy and dynamic programming tech-

niques is that we usually apply them for problems that can be regarded as se-

quences of decisions. This leads again to a tree structure, where the root rep-

resents the original state of the problem, the first level nodes those states the

problem might get into after the first decision, the second level nodes represent

the ones resulted from the second decision etc. A node will have as many children

as many choices we had when the selection was made at the respective decision.

Considering all this, we can say that we apply all the techniques we are going

to present especially in the case of problems which in some consideration have

226 Zoltán Kátai

the structure of a tree. From the point of view of the techniques this means that

each one considers the problem as a tree. Well, this common tree structure is

that common plane or abstract platform – necessary for the “upperview” – where

the techniques can be laid next to each other.

Proposed Syllabus

The application of the “upperview” method according to the below presented

syllabus requires basic programming skills from the students and a clear vision

on such fields as recursion or tree structures. It is especially important that

they know the tree structure’s traverse modes. Should the curriculum plan the

teaching of the rooted trees for later, it would be advisable to dedicate one-two

hours for their presentation, without entering into details concerning the theory

of graphs. We suggest the following syllabus:

(1) Revision of the recursion, presentation of the tree structures and their tra-

versal.

(2) Through a demo problem solvable with each of the strategies, we offer a

general and comprehensive image of the techniques. Without effectively

solving the problem, we draft the certain strategies by having a conversation

with the class.

(3) We present the backtracking technique.

(4) We go deeper into the backtracking strategy:

• Practice specifically backtracking problems.

(5) We present the divide and conquer technique.

(6) We go deeper into the divide and conquer strategy:

• Practice specifically divide and conquer problems.

(7) Divide and conquer and backtracking from “upperview”:

• We choose such problems which can be solved with both techniques.

(8) We present the greedy technique.

(9) We go deeper into the greedy strategy:

• Practice specifically greedy problems.

(10) Backtracking and greedy from “upperview”:

• We choose such optimizing problems where the two techniques can be

combined, completing each other.

(11) We present the technique of the dynamic programming.

“Upperview” algorithm design in teaching computer science in high schools 227

(12) We go deeper into the technique of the dynamic programming:

• Practice specifically dynamic programming problems.

(13) Divide and conquer, greedy and dynamic programming from “upperview”:

• We choose problems which make the comparison of the dynamic pro-

gramming with divide and conquer as well as with the greedy possible.

(14) All the techniques from “upperview”:

• With all the techniques, we solve the problem we used at the beginning

to draft the basic characteristics of certain strategies.

At the classes presenting certain techniques we have to emphasise what it

means from the point of view of the respective strategy to perceive a problem like

a tree.

For the “upperview” classes we choose such problems which can be “solved”

with each of the respective techniques. These are the classes where the similarities,

differences and connections between the strategies are stressed.

Due to lack of space we cannot present in detail the concrete way these goals

can be achieved, but a book with detailed material concerning the above syllabus

is on its way. The following subchapter is giving an idea about it.

Highlighting the similarities, differences and connections at the “upper-
view” classes

We are going to present a problem which can be used at the 2nd and 14th

points of the above presented syllabus and which excellently illustrates the way

the “upperview” method makes it possible to highlight the basic differences and

similarities between the techniques. We are dealing with an optimizing problem,

given in 1992 at the International Computer Sciences Contest in Sweden:

Problem:

On the main diagonal and in the triangle under the main diagonal of an n-row

square matrix there are natural numbers. We presume that the matrix is stored

in a two-dimensional array. Determine the “longest” path leading from peak

(element a[1,1]) to the base (row n), taking into consideration the followings:

• On a certain path element a[i,j] can be followed by element a[i+1,j]

(vertically down) or a[i+1,j+1] (diagonally to the right) where 1 ≤ i ≤ n

and 1 ≤ j ≤ i.

• We consider the length of a path the sum of the elements found along the

path.

228 Zoltán Kátai

For example, should for n = 5 the matrix be the following:

7

5 9

10 1 4

2 7 3 1

2 5 8 3 1

Figure 2

The “longest” path from the peak to the base is the shaded one, its length is 37.

Analyzing the problem we notice that we can reach the optimal solution by

making n − 1 decisions and for each decision we have 2 choices (which direction

to go further, vertically down or diagonally to the right). With each decision

the problem is reduced to a similar, but simpler subproblem. So the role of the

abstract platform is fulfilled by the binary tree.

a51 a52 a52 a53 a52 a53 a53 a54 a52 a53 a53 a54 a53 a54 a54 a55

a41 a42 a42 a43 a42 a43 a43 a44

a31 a32 a32 a33

a21 a22

a11

Figure 3

“Upperview” algorithm design in teaching computer science in high schools 229

Determining the optimal solution means to find the optimal sequence of de-

cisions. We can say that we have to find the best path out of the 2n−1 paths

leading from root to leaf. In other words, we have to find the “best leaf” of the

tree, to which “the best path” leads.

A more attentive traversal of the tree provides further observations:

(1) The number of nodes of the tree is 1 + 2 + 22 + . . . + 2n−1 = 2n − 1. This

means that any algorithm which inspects the whole tree in order to find the

optimal path will be of exponential complexity.

(2) While the tree represents the whole problem, its subtrees represent those

similar but simpler subproblems (the leaves are the trivial problems) it can

be broken down to. Concretely: the subtree with root aij describes the

problem of determining the “longest path” leading from element a[i,j] to

the base.

(3) The above presented picture also highlights that different sequences of de-

cisions can lead to the same subproblems, which means that the tree has

identical subtrees. It is not difficult to notice that the number of differ-

ent subproblems is identical with the number of the elements of the matrix,

namely n(n+1)/2. Hence, the algorithm that could avoid the repeated solving

of the identical subproblems will have a O(n2) complexity.

In what follows we summarize the strategy of the four techniques regarding

this problem:

Greedy: We start from the node and we always go further toward the element

which seems the most promising at a certain moment (it has the biggest value).

Observation: In this situation it is not sure that the greedy strategy will take

us to the optimal solution. On the case of the example-matrix the greedy path

has the length of 31, and this is the following: a[1,1], a[2,2], a[3,3], a[4,3],

a[5,3].

Backtracking: We generate all he paths leading from the node to the base

and we select ’the best one’.

Divide and conquer: We can notice that the definition of any “best path”

starting from the element aij (i<n) can be reduced to the definition of the “best

paths” starting from the elements ai+1,j and ai+1,j+1, since as long as they are

available, we only have to insert the element aij before the longest one. In other

words first we reduce the problem to simpler and simpler subproblems through

the mechanism of recurrence and then we build “the best path” on the “way

back” – taking into consideration the previous observation.

230 Zoltán Kátai

Dynamic programming: Starting from the obvious solutions of the trivial

subproblems, we build the solutions of the more and more difficult subproblems,

until we get to the solution of the main problem. As we would like to avoid the

repeated solving of the identical subproblems, we store the optimal subsolutions

in a bidimensional c array (the element c[i,j] of the array will store the length

of “the best path” leading from the element aij to the base.) We fill the main

diagonal and the triangle under the main diagonal of array c from bottom to top,

row by row, taking into consideration that

c[i,j] = a[i,j]+ max(c[i+1,j], c[i+1,j+1]), i < n

Eventually the length of the optimal path will be in c[1,1].

In order to have the path itself the filled array c contains enough information

(in contrast to array a) to write it, advancing by way of optimal decisions.

37

30 25

25 16 15

7 15 11 4

2 5 8 3 1

Figure 4

Criteria of comparison

(1) How do the certain techniques traverse and “prune” the tree that can be as-

sociated to the problem?

Greedy prunes the tree starting from the root and going toward the leaves,

cutting whole subtrees from it. It traverses only one root-leaf path, giving thus

the quickest algorithm (its complexity is linear), but unfortunately – at least in

the present case – cannot give any guaranties of finding the optimal solution (see

Figure 5).

The backtracking does not prune at all the tree in the present situation, as it

sees a potential solution in any root-leaf path. In order to find them it traverses

“Upperview” algorithm design in teaching computer science in high schools 231

a51 a52 a52 a53 a52 a53 a53 a54 a52 a53 a53 a54 a53 a54 a54 a55

a41 a42 a42 a43 a42 a43 a43 a44

a31 a32 a32 a33

a21 a22

a11

1

2

3

4

5

Q

Q

Q

Q

Figure 5

the tree in its depth, dealing with the nodes in a preorder sequence. As the number

of the tree’s nodes depends exponentially on n, its algorithm will obviously have

an exponential complexity (see Figure 6).

a51 a52 a52 a53 a52 a53 a53 a54 a52 a53 a53 a54 a53 a54 a54 a55

a41 a42 a42 a43 a42 a43 a43 a44

a31 a32 a32 a33

a21 a22

a11

5 6 8 9 12 13 15 16 20 21 23 24 27 28 30 31

4 7 11 14 19 22 26 29

3 10 18 25

2 17

1

Figure 6

232 Zoltán Kátai

In certain cases it might be advisable to combine the backtracking and greedy

techniques: before the backtracking algorithm should continue searching for the

optimal solution by traversing the current subtree, with a greedy-like algorithm

we assess the possibility that the respective subtree contains the optimal leaf.

The divide and conquer prunes every node, in the order they appear according

to the postorder traverse. It leaves exactly one branch at each node, the one that

represents the optimal solution of the respective subproblem. As it traverses the

whole tree, obviously its algorithm will also have an exponential complexity (see

Figure 7).

a51 a52 a52 a53 a52 a53 a53 a54 a52 a53 a53 a54 a53 a54 a54 a55

a41 a42 a42 a43 a42 a43 a43 a44

a31 a32 a32 a33

a21 a22

a11

1 2 4 5 8 9 11 12 16 17 19 20 23 24 26 27

3 6 10 13 18 21 25 28

7 14 22 25

15 30

31

Q

Q Q

Q Q Q Q

Q Q Q Q Q Q Q Q

Figure 7

The dynamic programming first “lays one subtree over the other one” in case

of identical ones, thus creating a “contracted-tree” (strictly it is no more a tree),

which only contains the nodes representing the different subproblems (therefore

the dynamic programming can really make use of its strengths when there are a

lot of subproblems). Following this it prunes the dry branches from each node,

the same as divide and conquer (see Figure 8).

Which order does the dynamic programming prune the nodes of the con-

tracted tree? In the classical version it goes through the tree from bottom to top,

from level to level. The recurrent realization deals with the nodes in the same

order as divide and conquer, but it leaves out the repeated ones. Regarding that

“Upperview” algorithm design in teaching computer science in high schools 233

the number of the nodes of the contracted tree is n(n + 1)/2, the complexity of

its algorithm is O(n2).

a51 a52 a53 a54 a55

a41 a42 a43 a44

a31 a32 a33

a21 a22

a11

1 2 3 4 5

6 7 8 9

10 11 12

13 14

15

Q Q Q Q

Q Q Q

Q Q

Q

a51 a52 a53 a54 a55

a41 a42 a43 a44

a31 a32 a33

a21 a22

a11

1 2 4 7 11

3 5 8 12

6 9 13

10 14

15

Q Q Q Q

Q Q Q

Q Q

Q

Figure 8

(2) How do the four techniques “build up” the solution of the problem?

The greedy and backtracking techniques built up the solution from top to

bottom, announcing the result in leaves.

The divide and conquer and the dynamic programming built up the opti-

mal solution exactly in an opposite way, from bottom to top. Both techniques

announce the result in root, the classical version of the dynamic programming

arriving to it from below, divide and conquer getting back to it. The difference

between divide and conquer and the recurrent version of the dynamic program-

ming consists only in the fact that the first one solves the subproblems indepen-

dently from each other, there-fore not noticing if they are repeated, as long as

the second one stores the solution each time it solves a subproblem and hence if

it meets again the same subproblem its solution is already available.

The backtracking and divide and conquer have the common characteristic

that both of them traverse the tree in its depth. But as they built the solution in

opposite directions, one of them deals with the nodes in preorder, the other one in

postorder sequence. This explains why backtracking generates several potential

solutions (it has to select the optimal solution out of them), as long as divide and

234 Zoltán Kátai

conquer builds only one, the optimal one: the tree grows in size downwards but

becomes narrower upwards, it has many leaves but only one root.

What is the other basic difference between greedy and dynamic programming

techniques? The first one tries to build up the optimal solution through optimal

decisions, the second from through optimal subsolutions. Therefore the greedy

approach is satisfying only when we can prove that the optimal decisions really

lead to the optimal solution for the given problem (the global optimum presumes

local optimums). The condition for using the dynamic programming is the possi-

bility to build up the optimal solution of the problem from the optimal solutions

of the subproblems (the basic theorem of the optimality to be valid).

The assessment of teaching the “upperview-method”

In the following we are going to relate about an experiment where we assessed

how the presented method and the suggested syllabus contributed to the more

efficient teaching of the algorithm design strategies. We conducted the experi-

ment at Bolyai Farkas Highschool from Targu Mures (Romania), in the school

year 2003–2004. At this school there are at the moment for each grade (IX–XII)

three classes of Computer sciences functioning in parallel. The official curriculum

foresees the teaching of the techniques (backtracking, divide and conquer, greedy)

in the Xth grade. We involved all three classes in the experiment: X.G., X.H. and

X.I. We could consider the general training of the classes identical as they had not

been formed in the IX. grade according to their marks from the entrance exami-

nation, but according to the foreign language they were studying. Classes H and

I had the same teacher, but class G a different one. Both teachers involved in the

experiment were different from the author of the present article, who developed

this method. We chose classes G and I as experimental classes and class H for the

control group. The teachers in the experimental classes were teaching using the

“upperview”-method, according to the suggested syllabus, and using the classical

method in the control class (we treat the techniques as separate units).

As the goal of the method is that the students can see the basic, principal

similarities and differences between the strategies, we reckoned that they must

leave a durable trace in the students. There-fore, and in order to be able to

measure it, we did not carry out the experimental measurement at the end of

the school year, but we postponed it for almost a year, for the second term of

the school year 2004–2005. Prior to the test written by the students, we had in

all three classes a single class of an hour, where we refreshed their knowledge.

“Upperview” algorithm design in teaching computer science in high schools 235

The material of the test had been chosen in such a way to offer the possibility

to assess with it how clearly the students can see and how well they can apply

it in practice. 26 students from the control group and 18 students in the first

experiment group, 26 in the second participated at the test. In the following we

present the test the students had to solve in 50 minutes:

(1) Which zeros of the enclosed a[1..7,1..7] array and in what order does

the recurrent backtracking procedure from below changes into twos at the

command fill (3, 3)? (3 points)

procedure fill(i,j:integer);

begin

a[i,j]:=2;

if a[i-1,j]=0 then fill(i-1,j);

if a[i,j+1]=0 then fill(i,j+1);

if a[i+1,j]=0 then fill(i+1,j);

if a[i,j-1]=0 then fill(i,j-1);

end;

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1 1
1 1
1 1
1 11 0 0 0 0

0 0 0 1 0
0 0 1 0 1
1 0 0 1 0
1 0 0 0 0

(2) A man would like to get out from the enclosed maze (1–wall, 0–free) from

the square with the coordinates (4, 3) on the shortest route. The divide and

conquer technique traces the determination of the shortest path starting from

the man back to the definition of the neighbouring (up, to the right, down

and to the left) shortest paths starting from free positions. Which order will

the subproblems belonging to certain positions be solved? What would be

a greedy approach of the problem and which path would that one find the

shortest? (4 points)

236 Zoltán Kátai

1 1 1 1 1 1 1
1
1
1
1
1
1 1

1

1

1

1
1

1 1

0

0

0

0

0

0

0

0

0

0
0

1 1 0 1 0
0 0 0 1 1
0 1 1 1 0 0

1

(3) What techniques would you use to solve the following problem?

(a) A shelf with the width H is given, as well as n books with the thickness

v1, v2, . . . , vn. Exactly how many ways can the shelf be filled with these

books, if we can tear out pages from only one book? Which are these

arrangement possibilities? (0.5 point)

(b) A shelf with the width H is given, as well as n books with the thickness

v1, v2, . . . , vn. Which is that exact way of filling the shelf with these

books that uses the most books? We can tear out pages from only one

book. (0.5 point)

(4) A square and a circle are given. Let’s determine the area of their intersection

surface with 3 decimals accuracy. Which of the techniques would approach

this problem in the following way: I cut the square in four and I determine the

area where each small square intersects the circle and I add them. I proceed

in a similar way with each small square, until I get squares small enough.

(1 point)

(5) Let’s cut a bar with the length of n meters into smaller 1 and 2 meter bars in

all the possible ways. What solutions does the following procedure offer and

what order does it write them? Which of the techniques would you include

this algorithm in? (The procedure printout(A,k) writes the first k element

of array A. We call the procedure bar(4,1)). (3 points)

procedure bar(n,k:integer);

begin

if n=0 then printout(A,k-1);

else

begin

if n>=1 then

begin

A[k]:=1;

bar(n-1,k+1);

end;

“Upperview” algorithm design in teaching computer science in high schools 237

if n>=2 then

begin

A[k]:=2;

bar(n-2,k+1);

end;

end;

end;

(6) In case of an optimization problem which techniques “would think” according

to the following principles? Give a reason for it! (4 × 0.25 points)

(a) What is sure is sure!

(b) Live the day!

(c) Don’t postpone for tomorrow what you can do today!

(d) The right person to the right place!

(7) Let’s find the longest root-leaf path in the enclosed tree. How do the three

techniques approach this problem? (2 points).

1

2 3

4 5 6 7

8 9 10

11 12 13 14 15

16

We converted the obtained number of points into marks, according to the

1–10 scale used in Romania. The following charts present the results obtained

after this experiment. The horizontal axe represents the interval of marks (in

238 Zoltán Kátai

consonance with the row-indexes of the table) and the vertical axe the number of

students from the respective interval of marks.

0

1

2

3

4

5

6

7

1 − 2

2 − 3

3 − 4

4 − 5

5 − 6

6 − 7

7 − 8

8 − 9

9 − 10

X.H. X.G. X.I.

5

5

4

2

5

3

1

0

1

0

2

2

4

2

4

2

1

1

1

4

6

3

1

2

1

5

3

Figure 9

The average of the three classes:

• Control group (class H): 4.05

• First experimental group (class G): 5.48

• Second experimental group (class I): 5.52

As we can notice, the average marks in both experimental classes (although

the methods were applied by different teachers), are approximately 1.5 marks

higher (on the 1–10 scale), which represents a significant difference.

Observation [4]: Considering the size of the samples we have used the two-

sample t-test. We checked the conditions of the applicability of this test:

(1) The samples obviously come from a population which can be considered of

normal dispersion.

“Upperview” algorithm design in teaching computer science in high schools 239

(2) We checked with an F -test if the unknown population dispersions can be

regarded as equal (for example in case of comparing classes H and I the

population dispersion can be considered equal with a level of significance of

0.9999).

Applying the two-sample t-test for classes H and I we found the difference of

their average – to the advantage of the experimental class – significant with a

probability of 0.9877.

Conclusions

The above described experiment empirically proves the efficiency of the “up-

perview-method” in teaching algorithm design strategies. The didactic value of

the method is already obvious from the way we defined it:

(1) We can see the entities being analyzed “next to each other”.

(2) Only those elements can be seen which are essential for the analysis.

(3) The similarities and differences are obvious, the connections are striking.

We are convinced that if the teacher can develop such a point of view in

his students, it will considerably contribute to the improvement of the problem

solving skills of the whole class in this field of computer sciences. Even more, it

can improve the general problem solving skills of the students.

Of course teaching algorithm design strategies according to this method can

be efficient not only in high school. At the moment an experiment is being

conducted regarding the effectiveness of the “upperview-method” in education

at universities. The flexibility of the method makes it possible to include further

techniques which are part of the university curriculum into the frame (for example

branch and bound strategy).

We are planning further experiment for an additional assortment of the

method. The students get four problems, each of them solvable with the dis-

cussed techniques (not necessary optimal). In the case of the first problem we

give students a clue to algorithms to which the application of certain strategies

lead and let them to choose which one to implement. In the case of the second

problem we give students a clue to algorithms too, but they are told which one to

implement. In the last two step of experiment they are not helped in any way. In

the case of the third problem they have to decide on their own which techniques

to use. Finally, in the case of the fourth problem they are given exactly what

technique to use.

240 Z. Kátai : “Upperview” algorithm design in teaching computer science in high schools

This experiment hopefully will reveal more about the impact of “upperview-

method” on the students. The results of the experiment will be presented in a

future paper.

References

[1] T. H. Cormen, C. E. Leirserson and R. L. Rivest, Introduction to Algorithms, Massa-
chusetts Institute of Technology, 1990, 266–270, 287–289.

[2] I. Odagescu, C. Copos, D. Luca, F. Furtuna, I. Smeureanu, Programming Methods

and Techniques, Intact Press, Bucuresti, 1994, 95–108 (in Romanian).

[3] R. Andonie, I. Garbacea, Fundamental Algorithms a C++ Perspective, Libris Press,
Cluj-Napoca, 1995, 185–187, 219–221 (in Romanian).

[4] Korpás Attiláné, Sándorné Kriszt Éva, Varga Edit, Veitzné Kenyeres Erika, General

Statistics, National Press for Coursebooks, Budapest, 1997, 97–104 (in Hungarian).

ZOLTÁN KÁTAI

SAPIENTIA

ERDÉLYI MAGYAR TUDOMÁNYEGYETEM

MAROSVÁSÁRHELY

ROMANIA

E-mail: katai zoltan@ms.sapientia.ro

(Received May, 2005)

