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Equivalence and range of quadratic

forms

Sándor Szabó

Abstract. If two quadratic forms are equivalent, that is, if there is a linear transformation
with integer coefficients and determinant 1 or −1 which takes one form to the other,
then their ranges are the same and also their determinants are the same. The result
of the paper is that for positive definite binary quadratic forms the converse is also
true. Namely, if two positive definite binary quadratic forms of the same determinant
have the same range, then they are equivalent. The arguments are guided by geometric
considerations.
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1. Introduction

In 1640 P. Fermat arrived at the result that an odd prime can or cannot be

written as a sum of two squares depending on it is congruent to 1 or 3 modulo 4.

In other words the range of the quadratic form x2 + y2 for integer substitutions

contains each prime congruent to 1 modulo 4. In 1654 he announced two similar

results. If p is a prime p ≡ 1 (mod 3), then the equation x2 + 3y2 = p is soluble

in integers. If p is a prime p ≡ 1 or 3 (mod 8), then there are integers x, y such

that x2 + 2y2 = p.

L. Euler extended Fermat’s investigations to the ax2+cy2 = p case for various

choices of the integers a and c. As a next step in 1775 L. Lagrange turned to

studying the solvability of the equation ax2 + bxy + cy2 = n in integers. He
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introduced the concept of equivalence and developed a reduction procedure for

quadratic forms.

Plugging αx′ + βy′, γx′ + δy′ in place of x, y respectively in the quadratic

form f = ax2+bxy+cy2 leads to the quadratic form f ′ = a′(x′)2+b′x′y′+c′(y′)2.

In order to ensure that a′, b′, c′ are integers we choose the coefficients α, β, γ,

δ to be integers. To make the relation between f and f ′ symmetric we choose

αδ−βγ, the determinant of the transformation, to be 1 or −1. The forms f and f ′

connected in this way are called properly or improperly equivalent corresponding

to the determinant is 1 or −1. The quantity ac − b2/4 is called the determinant

of the quadratic form f . It turns out that if two quadratic forms are equivalent

(properly or improperly), then their ranges are equal and also their determinants

are equal. Our purpose is to show that if two positive definite binary quadratic

forms of the same determinant have the same range for integer substitutions, then

the two forms are equivalent.

In 1831 C. F. Gauss pointed out that there is an intimate connection be-

tween positive definite quadratic forms and lattices. Our argument exploits this

connection and geometric considerations play an essential part.

2. Quadratic forms and lattices

A basis u1,u2 on the plane naturally gives rise to a positive definite quadratic

form f . Namely, if l = x1u1 + x2u2 is a typical vector of the plane, then

lT l =
[

x1 x2

]

[

uT

1
u1 uT

1
u2

uT

2
u1 uT

2
u2

] [

x1

x2

]

= xTAx = f

is a quadratic form, which represents the square of a distance. This connection

can be reversed. We can associate a basis u1,u2 with a given positive definite

quadratic form

f = xT Ax =
[

x1 x2

]

[

a11 a12

a21 a22

] [

x1

x2

]

,

where a12 = a21. As f is positive definite, it follows that

a11 > 0, a11a22 − a12a21 > 0. (1)

We try to find the basis vectors in the form

u1 =

[

u11

0

]

, u2 =

[

u21

u22

]

.
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This is only a matter of choosing a coordinate system such that the first coordinate

axis is parallel to u1. Equating

UTU =

[

uT

1
u1 uT

1
u2

uT

2
u1 uT

2
u2

]

=

[

u2

11
u11u21

u11u21 u2

21
+ u2

22

]

to
[

a11 a12

a21 a22

]

= A

leads to the system of equations

u2

11
= a11, u11u21 = a12, u2

21
+ u2

22
= a22

which is solvable because of conditions (1). The decomposition

A =

[

a11 a12

a21 a22

]

=

[

u11 0

u21 u22

] [

u11 u21

0 u22

]

= UTU

is the so-called Cholesky decomposition of A. (For n by n matrices see Proposition

14.26 of [3] page 316.) The equation

detA = det(UTU) = detUT · detU =
[

detU
]2

shows how the determinant of the quadratic form and the determinant of the

lattice are connected.

Replacing x by Cx in f = xTAx results the quadratic form f ′ = yTA′y,

where

A′ = CTAC = CT UTUC = (UC)T (UC).

So replacing the variables in f corresponds to replacing the basis vectors u1, u2

by c11u1 + c21u2, c12u1 + c22u2 respectively, where

C =

[

c11 c12

c21 c22

]

.

Conversely, changing the basis corresponds to changing variables in f .

We are interested in the values of the quadratic form f = xT Ax = (Ux)T (Ux)

when the components of x are integers. Consequently, we consider the set of vec-

tors Ux = x1u1 + x2u2, where x1, x2 range through the integers independently.

This set of vectors is called a plane lattice or simply a lattice spanned by the basis

vectors u1, u2. The parallelogram spanned by u1, u2 is the basic parallelogram of

the lattice. Translated copies of the basic parallelogram by lattice vectors tile the
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whole plane and we can visualize the lattice by this parallelogram tiling. A lattice

has many different bases. The way how the plane is divided into parallelograms

changes with different choices of the basis. However, the
∣

∣det(u1,u2)
∣

∣, the area

of the basic parallelogram, is independent of the choice of the basis. Similarly,

the point set formed by the vertices of the parallelograms of the tiling remains

the same. So the distances occurring between these points are invariant under

changing the basis of the lattice. A lattice has many different bases and so to a

lattice we assign many different quadratic forms. But all of them are equivalent

as the linear transformation that takes a basis of the lattice to another basis has

integer coefficients and determinant ±1. In short a lattice represents a family of

equivalent quadratic forms.

3. Quadratic forms with common range

The quadratic forms in this section have real coefficients.

Theorem 1. Let f and f ′ be positive definite binary quadratic forms of the

same determinant. If f and f ′ have the same range for integer substitutions, then

f and f ′ are equivalent.

Proof. We divide the proof into smaller steps.

(1) Let L be the lattice spanned by the column vectors of the Cholesky decom-

position of the matrix of f . Clearly, L as a vector set is an abelian group

under addition and as a point set L is discrete, that is, it has no accumu-

lation points. So the distances occurring between lattice points of L have a

minimum value. Choose an element u of L \ {0} for which |u| is minimal. It

is obvious that |u|2 is the minimum nonzero value of f for integer substitu-

tions. We introduce a coordinate system such that the first coordinate axis is

parallel to u and the origin of the coordinate system coincides with a lattice

point. In this coordinate system u has coordinates u and 0.

The integer multiples of u form a sublattice M of L. From the minimality

of |u| = u it follows that points from L on the first coordinate axis are

identical with the points of M . These points divide the first coordinate axis

into equal intervals of length u. Draw straight lines parallel to u through

each points of L. Then consider the intersection of this family of lines by the

second coordinate axis. Let S be the set of intersection points. If S has an

accumulation point P , then in the square of side length 2u centered at P , there
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are infinitely many points from L. Since L does not have any accumulation

point neither does S. Thus points of S divide the second coordinate axis into

equal intervals of length, say v2. There is an element v of L\M such that |v|
is minimal. The second coordinate of v is v2. Let the first coordinate of v be

v1. Let li be the translated copy of the first coordinate axis by the vector iv.

From the minimality of the distance v2 it follows that the lines li together

cover all points of L. Thus the vectors u and v form a basis for L.

(2) We claim that v2 ≥ (
√

3/2)u. In order to prove this claim consider open

circular discs of radius u centered at the lattice points on the first coordinate

axis. The union of these discs forms a strip. If a point P falls into the strip,

say into the disc whose center is Q, then the distance between P and Q is less

than u. Consequently, the strip cannot have any lattice point from L other

than the centers of the discs. This verifies the claim.

Figure 1

Further we claim that we may assume that 0 ≤ v1 ≤ (1/2)u. In order to

verify this claim note that the lattice points of L on l1 divide l1 into intervals

of length u. From the minimality of |v| it follows that the endpoint of v

is the lattice point on l1 closest to the second coordinate axis. Therefore

−(1/2)u ≤ v1 ≤ (1/2)u. If v1 < 0, then we simply replace v1 by −v1 which

corresponds to reflecting the whole lattice L to the second coordinate axis.

(3) Consider the circle C of radius r = |v| centered at the origin. We claim that

C can intersect the straight line li only for −1 ≤ i ≤ 1. In other words we

claim r < 2v2. To prove the claim assume the contrary that r ≥ 2v2. Since

(u/2)2 + v2

2
≥ r2, it follows that (u/2)2 + v2

2
≥ 4v2

2
and so (u/2)2 ≥ 3v2

2
.

Using the fact that v2 ≥ (
√

3/2)u we get u2/4 ≥ (9/4)u2 which leads to the

contradiction 1 ≥ 9.

Let L′ be the lattice that corresponds to f ′. In a similar way we con-

structed u, v from f we construct u′, v′ from f ′. We know that |u|2 is the

minimum nonzero value of f for integer substitutions and similarly |u′|2 is
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the minimum nonzero value of f ′. The ranges of f and f ′ are the same and

so |u| = |u′|. We may assume that u = u′ since this is only a matter of

changing the position of L′. The determinants of f and f ′ are the same and

so it follows that
∣

∣det(u,v)
∣

∣ =
∣

∣det(u,v′)
∣

∣. This gives that the endpoint of v′

is on the line l1. Let the coordinates of v′ be v′
1
, v′

2
. We know that v′

2
= v2.

If v′
1

= v1, then L′ = L and there is nothing to prove. We may assume that

v1 < v′
1

since this is only a matter of exchanging the roles of f and f ′.

(4) As f and f ′ have the same range for integer substitutions L′ must have a

point whose distance from the origin is r. In other words L′ must have a

point on the circle C. Points of L′ are on the straight lines li. We claim that

the intersections of C and l0 are lattice points of L′.

From (3) we know that C can intersect li only for −1 ≤ i ≤ 1. The

common points of C and l1 are Q = (v1, v2) and Q∗ = (−v1, v2) respectively.

Here Q is the endpoint of v on l1. If Q ∈ L′, then it follows that v = v′.

This is not the case so Q /∈ L′. If Q∗ ∈ L′, then in the way we constructed v′

we replaced v′ by another vector whose endpoint is Q. Thus the only lattice

point of L′ in C ∩ l1 is Q. Similarly, the only lattice point of L′ in C ∩ l−1

is the endpoint of −v. Therefore the common points of C and l0 must be

lattice points of L′. A similar argument gives that the common points of C′

and l0 must be lattice points of L.

(5) Consider the points Q = (v1, v2), Q′ = (v′
1
, v2), R = (r, 0), R′ = (r′, 0).

Points Q, Q′ are intersection points of C, C′ and l1 respectively that have

non-negative first coordinates. Points R, R′ are intersection points of C, C′

and l0 respectively that have positive first coordinates. The distances between

R and R′ is α = r′ − r and the distance between Q and Q′ is β = v′
1
− v1.

We claim that α ≥ u. Indeed, from (4) we have that R ∈ L′. As R ∈ l0
and along l0 lattices L and L′ identical, it follows that R ∈ L. Thus r is

an integer multiple of u. From (4) we know that R′ ∈ L. So a similar

reasoning provides that r′ is also an integer multiple of u. As r 6= r′, we get

α = r′ − r ≥ u.

Next we claim that β ≥ α. Indeed, a routine calculation shows that the

function g(y) =
√

(r′)2 − y2 −
√

r2 − y2 attains its minimum at 0 on the

interval (−r, r). So β = g(v2) ≥ g(0) = α as we claimed.
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Figure 2

Note that 0 ≤ v1 < v′
1
≤ u/2 implies u/2 ≥ β. Putting these facts

together leads to the u/2 ≥ β ≥ α ≥ u contradiction.

This completes the proof.

�
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