
i

i

“wirth” — 2005/2/17 — 18:35 — page 407 — #1
i

i

i

i

i

i

2/2 (2004), 407–421

Mechanisms for teaching

introductory programming using

active learning

Michael Wirth

Abstract. One of the requirements of teaching introductory programming to students
whose branch of learning is engineering or science is bridging the gap between in-class
lectures and real-world applications. Traditional passive approaches to lecturing often
focus on the syntax of a language with little or no discussion of the process involved in
using the language to design algorithms to solve real-world problems. One way of over-
coming the limitations of traditional lecturing is by tailoring lectures towards becoming
more student-oriented, a pedagogical methodology known as active learning. This pa-
per explores mechanisms for implementing active learning in introductory programming
courses in computer science.

Key words and phrases: introductory programming, active learning, student interaction,
classroom teaching.

ZDM Subject Classification: C70, D40.

1. Introduction

Teaching introductory programming to students with little background in

computing can be a challenging task, which is made more difficult when students

are from diverse disciplines. Traditional methods of teaching such classes using

passive instruction are inadequate in providing a comprehensive learning environ-

ment. Often the challenge of teaching programming to such a diverse audience is

bridging the gap between in-class lectures and real-world applications. One way

Copyright c© 2004 by University of Debrecen

i

i

“wirth” — 2005/2/17 — 18:35 — page 408 — #2
i

i

i

i

i

i

408 Michael Wirth

of overcoming the limitations of traditional lecturing is by tailoring lectures to-

wards becoming more student-oriented, a pedagogical philosophy where students

assume a participatory role in the lecture.

This paper explores the benefit of active learning over traditional passive

methods in multidisciplinary introductory programming classes, and describes

some of the mechanisms used for implementing active learning. The anecdotes in

this paper come from the biannual offering of “Introduction to Programming”,

at the University of Guelph. The course is taken by 300–500 students composed

of both CS majors and students from engineering and science. The syllabus is

comprised of the foundations of programming in C (data types, loops, decision

statements, arrays, functions).

2. Limitations of lecturing

When teaching the foundations of programming, much of the content tra-

ditionally deals with conveying the elementary notion of programming language

syntax [1]. In one sense, programming languages are no different from spoken lan-

guages. Spoken languages are composed of words and linguistic features and have

certain natural “rules” that determine what passes for sensible communication.

These rules govern how words conveying messages are combined in a language

to form meaningful sentences. Similarly, programming language syntax describes

the structure of language elements. In both circumstances knowledge of the syn-

tax is of little use without a realization of the process involved in applying the

language.

Lecturing is the most common method of teaching computer science, yet it

is often the least effective way to teach the process of programming [2]. Indeed,

Laurillard [3] describes the process of lecturing itself has been referred to as “a

grossly inefficient way of engaging academic knowledge”. It yields students who

can memorize language syntax, but have difficulty in applying knowledge about

how this syntax can be used in designing algorithms. This is partially a result of

lectures teaching content at a relatively low level of learning – imparting facts,

principles, theories, terminology, symbols, and other knowledge information. Tra-

ditional passive methods of lecturing customarily rely on a notion of learning

known as “memorizing and reproducing” [4]. Here learning is entirely related to

the anticipated reproduction of what is learned, to some educational control or

assessment [4]. This implies that the students knowledge is not enhanced, they

i

i

“wirth” — 2005/2/17 — 18:35 — page 409 — #3
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 409

merely prove they have learned the material by being able to reproduce it. Pas-

sive learning relies on the student to absorb knowledge, with little recourse to

ask questions and clarify points. A typical passive lecture results in long periods

of uninterrupted instructor-centered expository discourse that regulates students

to the role of passive spectators in the classroom. Students often spend most of

the time writing notes with little time to reflect on the material presented in the

lecture.

While lecturing can be effective, for instance in providing an opportunity

for a large number of students to be simultaneously exposed to a new topic, it

labors under a number of inherent limitations. Firstly, students’ attention to what

the instructor is saying (i.e. their ability to concentrate) decreases as the lecture

proceeds [5]. This lack of attention manifests itself in a reduction in the amount

of information retained by the student. For the first 5-10 minutes of a typical

50 minute lecture a student remembers a high proportion of the information

presented, after which the proportion of information preserved rapidly declines

[6]. Students typically retain 70% from the first 10 minutes of lecture, and 20%

from the last 10 minutes [7]. The average percentage of material retained in long-

term memory is also influenced by the mode of interaction used in the lecture

[8]. Whilst learning by “seeing and hearing” results in a 50% retention rate,

active learning which involves “doing and discussing” results in 90% retention.

A number of factors have also been identified that have a negative impact on

memory [6]. One of these relates to interference. Passive lecturing often occurs as

an uninterrupted stream of information, and what comes before or after a piece

of information usually interferes in a negative manner with the information. This

phenomenon is called the bowing effect because the information in the middle is

affected by both pro- and retro-active interference [9].

Bloom [10] lists a progression of learning from simple to complex: knowl-

edge, comprehension, application, analysis, synthesis and evaluation. Passive

learning only encompasses the first of these paradigms, mostly notably knowl-

edge (observation and recall of information), and as such is not well suited to

higher levels of learning. A comprehensive review of the effectiveness of tradi-

tional lecturing compared with other techniques was conducted by Bligh [9] in

which he concluded that lectures were approximately equivalent to other methods

for acquiring knowledge, but were often less than effective in promoting thought,

changing beliefs and developing analytical skills. In summary, passive lecturing,

in the context of teaching programming languages, is at best useful in conveying

i

i

“wirth” — 2005/2/17 — 18:35 — page 410 — #4
i

i

i

i

i

i

410 Michael Wirth

a sense of the basic syntax of a programming language, it does not relate the

process for using the language to design algorithms to solve real-world problems.

3. The role of active learning

Interaction in the classroom seldom happens by chance. Simply posing ques-

tions to the tune of “Does everybody understand this?” usually results in silence,

partially because students have spent the entire lecture writing down material,

with little opportunity to reflect on the content. Taylor [11] states that:

“teaching begins with the premise that if I want students to become more

effective in meaningful learning and thinking, they need to spend more

time in active, meaningful learning and thinking – not just sitting and

passively receiving information”

According to social psychological theories, learning is more effective when process

is an active rather than a passive one [12]. The process of having students engage

in some activity that forces them to think about and comment on the information

presented is known as active learning. Active learning is an umbrella term for

a variety of educational approaches focused on student-oriented learning. It is

sometimes used interchangeably with terms like collaborative learning or coop-

erative learning, although both are essentially subsets of active learning. Active

learning requires students to take a participatory role in learning, rather than

adopt a more passive position [13]. Active learning activities vary considerably,

but most focus on students’ exploration or application of knowledge, not simply

the instructor’s presentation or explication of it. It can encompass a range of ac-

tivities, including problem-based learning, case studies, simulations, workshops,

and discussion groups.

Active learning involves more than just the notion of student interaction. In

order to better facilitate these activities, the lecture itself must be augmented

using mediums such as electronic lecture notes [14]. Electronic lecture notes are a

concise electronic medium designed to provide a simple introduction to key con-

cepts, including copies of any detailed figures and programming examples. The

goal of electronic lecture notes is to support active learning by drawing the atten-

tion of the student away from rote note-taking to focus more on the perception,

comprehension [15] and analysis of knowledge. To facilitate active learning stu-

dents must adopt higher order thinking [16], employ critical thinking skills – the

i

i

“wirth” — 2005/2/17 — 18:35 — page 411 — #5
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 411

ability to apply and analyze the knowledge. This is especially pertinent in com-

puter science where problem resolution requires defining a series of algorithms,

and implementing these algorithms in a particular programming language. Active

learning has been shown to increase learning in computer science courses [1,17]

and can be achieved in a number of ways.

3.1. Refocusing attention/fostering motivation

Compared with the uninterrupted lecture, variations in teaching methods will

usually result in higher levels of attention. Indeed a pause triggered by the change

in focus from a lecture to an interactive session will allow the level of attention to

recover. The provision of problems, case studies, interactive discussions and ways

of involving students fosters motivation and influences the way in which students

perceive knowledge.

3.2. Helping with the retention of information

Bligh [9] notes that information learned before a pause is better remembered,

implying that a lecture benefits from pauses, or a change in focus.

3.3. Reinforcing understanding

The use of active learning techniques such as those discussed serves to pro-

mote a deep approach to learning, rather than the more surface approach often

encountered in introductory programming classes. A surface learning approach

focuses on memorizing facts and principles, without much thought – e.g. learning

the syntax of a programming language without putting it into a broader context

or seeking an understanding of how it can be applied. A deep learning approach

emphasizes thought rather than memory, focusing on meaning and understanding,

– e.g. comprehension of programming syntax through its use in case studies.

3.4. Encouraging critical thinking and analysis

One of the cornerstones of active learning is the notion of students becoming

actively involved in the learning process, placing less emphasis on memorization

and more emphasis on critical thinking and problem solving. Rather than passive

acceptance of prescribed ideas, students are encouraged to realize and develop

i

i

“wirth” — 2005/2/17 — 18:35 — page 412 — #6
i

i

i

i

i

i

412 Michael Wirth

their own beliefs. Active learning allows students to progress in Bloom’s tax-

onomy [10] beyond the mere recall of knowledge. Questions such as “What is

the difference between loops and recursion?” require analytical thinking, whilst

questions like “What is the benefit of using pointers to define arrays?” requires

more evaluative thinking. Some sample questions illustrating Bloom’s taxonomy

in the context of programming are shown below:

Bloom’s Level Sample Questions

Knowledge: Name the three looping structures in C?

Comprehension: What is the purpose of recursion? Describe how it be used

to design an algorithm. Differentiate between recursion and

iterative programming?

Application: Describe the effects of passing an array to a function? Illus-

trate how recursion could be used to calculate the Fibonacci

series.

Analysis: Compare the differences between a iteration and recursion.

Synthesis: Design an algorithm to model the population dynamics of

predators and their prey.

Evaluation: Explain how the integer overflow bug which occurred during

the launch of the Ariane 5 rocket could have been avoided.

Provide a rationale for your answer.

4. Active Learning Mechanisms

To facilitate active learning in our introductory programming classes we use

five basic mechanisms to increase active participation, both between students and

the instructor and amongst students themselves. There is no firm methodology

for when to incorporate specific mechanisms, but the basic format of a lecture

consists of one of the following lecture formats interspersed with learning activities

to refocus the students attention:

• A feedback lecture – two mini lectures separated by a small-group exercise.

• A guided lecture – a half-class lecture, followed by a small-group activity: e.g.

using a case study to illustrate a programming construct.

• A responsive lecture – an open-ended lecture devoted to answering student-

generated questions. Questions may or may not be submitted in advance.

i

i

“wirth” — 2005/2/17 — 18:35 — page 413 — #7
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 413

4.1. Insight puzzles

One way of increasing the amount of class participation during lectures is

to have a problem solving session before the start of every class, as the students

are arriving. This involves using ”insight puzzles” to facilitate lateral thinking.

These problems are in some way illogical, improbable, or even contradictory.

Breakthroughs in thinking are made by recognizing subtle clues, challenging as-

sumptions, and seeing old situations in new ways. This teaches students how

to think in nonlinear ways, question or check assumptions, eliminate irrelevant

information, and distinguish between causal, corollational, and coincidental rela-

tionships. How does it work? The puzzle is displayed on the screen and the class

may ask questions. Students that already know the answer are asked to keep quiet

and not spoil the learning experience of others. Students learn to ask questions of

relevance, clarifying questions, and questions that help eliminate options, that are

useful in solving the puzzle. Students learn to use logic, check assumptions and

examine situations from multiple perspectives. This routine accomplishes several

ends: It promotes creative thinking, and adds some dynamism to the class at the

outset of each meeting, acting as a catalyst to further class participation. It also

helps encourage higher levels of thinking, developing intellectual skills that can

benefit students beyond the material covered in class. An example of an insight

puzzle is described below:

The Equation

Here is an equation: 2+7−118 = 129. As it stands, it is not a valid mathematical

statement. Add one straight line anywhere in the equation to make it a true

statement. There are at least three solutions:

• Put a slash through the equals sign to make it “does not equal”.

• Put a diagonal line upward from the right end of the equal sign to make the

expression read “less than or equal to”.

• The + can be changed to a 4 by adding a vertical line on the upper left of

the sign. This makes the equation true.

4.2. Questioning and discussion sessions

One of the goals of active learning is to entice students into participating in

the class. One of the easiest ways of doing this is by promoting class discussions.

At the start of every lecture, there is a 5–7 minute session where students are

encouraged to ask questions relating to the course. This provides students with

i

i

“wirth” — 2005/2/17 — 18:35 — page 414 — #8
i

i

i

i

i

i

414 Michael Wirth

the opportunity to review previous material and revisit any concerns or questions

they may have. This concept can be further extended by having students develop

questions based on what they feel is still unclear, and addressing these questions

towards the end of the class.

An effective way of promoting an active-learning environment is to have students

work in small groups to answer questions, allowing them 2–3 minutes for dis-

cussion. The purpose here is to focus their attention on a particular point and

give students a chance to process the material by discussing and questioning it.

An assortment of real-world examples are used to illustrate programming behav-

iors. For example to demonstrate the process of developing good algorithm design

practices we discuss how the existence of software bugs can contribute to system

failures. One case described is the Ariane 5 rocket launched by the European

Space Agency in 1996. I first show the class a QuickTime movie of the rocket

which disintegrated forty seconds after its lift-off from Kourou, French Guiana.

A series of questions are introduced in order to analyze the incident:

• What do you think caused the rocket to disintegrate?

• If I told you the problem was caused by an error in the inertial reference

system, compensating for a wrong turn that had not taken place, what could

cause this?

• A data conversion from 64-bit floating point to 16-bit signed integer value

caused a software exception. Why did this lead to a system failure?

• How could the algorithm have been adapted to avoid such a problem?

This ultimately leads into a discussion on programming errors, and how they can

be avoided.

4.3. Interactive programming and algorithm tracing

One of the benefits of using active learning in the delivery of introductory

programming courses is the ability to perform interactive programming exercises.

Traditionally, programming examples are shown on an overhead slide, and the

program is worked through line-by-line in a static manner. Using interactive pro-

gramming, programs can be written, compiled and run in-situ, allowing the com-

plete process of design and implementation to be illustrated. This gives students

the opportunity of experiencing each of the processes involved in implementing

a program, including any errors which may occur in the program, and method-

ologies for tracing these bugs and deriving solutions. Programming logic errors

such as infinite loops, or run-time errors such as divide-by-zero can be effectively

i

i

“wirth” — 2005/2/17 — 18:35 — page 415 — #9
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 415

demonstrated in this manner. Permitting the student to “create” input allows

for experimentation of the algorithm in different scenarios. Most importantly it

allows the instructor to answer questions by showing the answer [18].

4.4. Case studies and problem sets

A case study is a story or narrative of a real life situation that sets up a

problem for the students to analyze and resolve. A case study must not only in-

troduce new programming concepts, but provides students with new insight into a

previously unexplored problem area. The class is given a problem statement and

contribute to the process of deriving a solution, first by exacting an algorithm,

and then implementing the algorithm. Solutions to the case studies and problems

are provided electronically after the class. Students are encouraged to work in

small groups and are given 3–4 minutes to formulate an algorithm. The entire

class then proceeds to work through an implementation, discussing different de-

sign ideas with groups providing rationale for their ideas. A case study involves

using knowledge acquired from previous lectures as the foundation to design an

algorithm. For example, a case study on the Fibonacci series is used to illustrate

the effectiveness of looping structures, and follows the following format:

• A brief history of “Leonardo of Pisa” and his accomplishments

• A background to the conception of the Fibonacci series

• Review of applications of Fibonacci numbers in nature:

– Pine cones, flowers and bees.

• Description of a method of calculating the Fibonacci series

• Deriving an algorithm

• A review of alternate solutions.

Later in the course, when we have studied recursion, or arrays in the context

of C, the students return to this case study and re-implement it. Groups may

work on algorithms incorporating different types of loops simultaneously, leading

to a discussion on the benefits and shortcomings of each particular approach.

Case studies also serve to illustrate how programming paradigms can be used

to solve real-world problems. Here we use simple models such as the “Sieve Of

Eratosthenes” [19] which looks at identifying prime numbers, to more complex

ecological models used to simulate population growth [20]. Each week the pre-

ceding week’s laboratory or assignment exercise is discussed in class. The nature

of each problem is first briefly discussed and then students are invited to propose

i

i

“wirth” — 2005/2/17 — 18:35 — page 416 — #10
i

i

i

i

i

i

416 Michael Wirth

solutions. Choosing a particular solution, a discussion ensues which follows a

model adapted from Berglund et al. [11]:

• Is the proposed solution acceptable? Does everybody understand the under-

lying programming constructs used?

• Is the program correct, both with respect to style and output?

• What changes could be made to improve the program?

• Are there any alternative approaches to this problem?

For example, one of our early assignments involves writing a program that per-

forms carbon dating. The program should prompt for the percentage of Carbon

14 remaining in a sample, calculate the age of the sample and print out the result

with proper units. The code below is a sample solution:

#include <stdio.h>

#include <math.h>

#define lambda 0.00012097

int main(void)

{

double percent, ratio, age;

// Prompt the user for the percentage of C-14 remaining

printf("Enter the percentage of Carbon 14 remaining: ");

scanf("%lf", &percent);

// Perform calculations

ratio = percent / 100.0; // Convert the fractional ratio

age = (-1.0 / lambda) * log10(ratio); // Get age in years

// Output the results

printf("The age of the sample is: %.2lf years", age);

return 0;

}

We later analyze this program in class, looking at ways that improvements

could be made. One such improvement is the addition of code to validate the user

input. For example, the percentage of Carbon 14 remaining must be between 1

and 100 percent. A value of 0 would cause the expression log10(ratio) to fail,

and a negative percentage is inappropriate. This leads to a discussion on which

control structure would be most appropriate for performing this validation, and

i

i

“wirth” — 2005/2/17 — 18:35 — page 417 — #11
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 417

whether or not the user should be allowed to re-enter the percentage. The code

below is an example of the type of construct which could be used:

do {

printf("Enter the percentage of Carbon 14 remaining: ");

scanf("%lf", &percent);

} while (percent <= 0);

4.5. “5-minute” programs

5-minute programs are similar in concept to minute papers, and are brief,

informal, activities geared around designing and/or implementing algorithms re-

lated to a distinct problem. They provide students with the opportunity to syn-

thesize their knowledge and evaluate a problem. These exercises help students

to reflect upon what they’re learning and can facilitate large group discussions.

Minute papers allow you to gauge students learning, and they provide a ground

for discussion in the next class session. They can be used in combination with

the “muddiest point” [22] allowing the student to write down the most confusing

or ambiguous concepts from the lecture. We often pose them in the form of a “fill

in the blanks”-type exercise whereby the students are given a program with key

elements of the algorithm omitted. They are then given 5–7 minutes to compose

a solution. They can be used at beginning, middle, end of class:

• Beginning: use to probe for difficulties students had with an assignment,

to check if they can identify the main points of the previous lecture, or to

identify items for discussion

• Middle: use as a “break” in the middle of a lecture to give students a chance

for a break, use to see if students can solve a problem using the topic of

discussion for that lecture.

• End: use for review, reality check, application, higher order thinking

Consider the following sample “5-minute” programming exercise involving the role

of parameter passing in designing functions. The students are given the following

program:

#include <stdio.h>

#define R 8314

// Calculate the pressure of a tank of CO gas using the

// Ideal gas equation Pv = RT

i

i

“wirth” — 2005/2/17 — 18:35 — page 418 — #12
i

i

i

i

i

i

418 Michael Wirth

void main(void)

{

double temp; // temperature of CO gas

double mass; // mass of CO gas, in kg

double vol; // tank volume in cubic metres

double vmol; // molar specific volume;

double pres; // pressure

printf("Input the temperature of CO gas (deg K): ");

scanf("%lf", &temp);

printf("The mass of the gas (kg) is: ");

scanf("%lf", &mass);

printf("The tank volume (cubic m) is: ");

scanf("%lf", &vol);

vmol = 28.011 * vol / mass;

pres = ideal(vmol, temp);

printf("The ideal gas at %.3lf K has pressure ", temp);

printf("%.3lf kPa\n", pres);

}

They are then asked to design a function ideal to calculate the ideal gas

equation using pass-by-value. After 5–10 minutes, I ask one of the students to

“submit” their solution, and the class as a whole works through the solution to

check its validity. The code below is a sample solution.

double ideal(double v, double t)

{

double p;

p = R * temp / v; // pressure in Pascals

return p / 1000.0; // pressure in kilo Pascals (kPa)

}

A subsequent lecture may involve rewriting the function to return the calcu-

lated value using pass-by-reference. The code below is a sample solution.

double ideal(double v, double t, double &p)

{

*p = R * temp / v; // pressure in Pascals

*p = *p / 1000.0; // pressure in kilo Pascals (kPa)

}

ideal(vmol, temp, &pres);

i

i

“wirth” — 2005/2/17 — 18:35 — page 419 — #13
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 419

This activity provides an ideal mechanism for illustrating the notion of pro-

gram “evolution”. You can start the semester designing a algorithm, and using a

program skeleton progressively add functionality as new programming concepts

are introduced. Case studies and “5-minute” programming exercises are available

online at http://www.uoguelph.ca/~mwirth.

5. Discussion and conclusion

Lecturing is in itself not the most appropriate way of teaching introductory

programming. The rationale for employing active learning in computer science is

to provide students with an interactive learning experience, transforming lectures

from the usual instructor-oriented model to a more innovative student-centred

model. It is based on the key notion of making students active participants in the

learning process, rather than passive recipients as might be the case when they

are exposed to more traditional lecture-oriented learning [23]. Active learning

augments the learning process by influencing the way in which students perceive

knowledge. It allows for a departure from the traditional methods of teaching

programming which tend to focus solely on teaching programming language syn-

tax.

One of the challenges of incorporating active learning is trying to persuade

students to become involved in a large classroom, an environment which can be

intimidating for many students. It is important to encourage participation from

the onset of the first class, and positive reinforcement over time will increase the

students willingness and desire to participate in the process. One concern with

active learning is that less material is covered during a semester. Since active

learning involves setting aside a portion of class time for learning activities, the

amount of material covered in the class will be reduced, but students obtain a

deeper understanding of programming paradigms and their application to problem

solving. But it may be more appropriate to ask more pertinent questions: “How

much material do students retain using the current method?”, or “What type of

learning occurs within traditional lectures?”. Some of these questions focus on

digesting knowledge. Traditional lecturing can create a level of understanding

that is superficial since the demands of note-taking may preclude the opportunity

to analyze knowledge at a deeper level. But does it really work? In the five

semesters we have been using this technique in the classroom, we have nearly

always seen higher class averages than corresponding semesters taught using more

i

i

“wirth” — 2005/2/17 — 18:35 — page 420 — #14
i

i

i

i

i

i

420 Michael Wirth

traditional techniques. The averages for nine consecutive semesters are given

below (semesters incorporating active learning are shown in italics):

W00 F00 W01 F01 W02 F02 W03 F03 W04

73 67 65 78 70 72 77 80 82

Active learning involves various departures from the normal expectations of

the passive classroom. Instructor’s must learn to evolve from “The Sage” who

walks into class, proceeds to the front of the room and dispenses information

to “The Builder” who focuses on creating a more learner-centred classroom [24].

Although not every instructor is as receptive to such methods, allowing students

to think and voice their ideas is preferential to the rote-learning and expunge

which often occurs. Active learning helps students comprehend concepts that are

taught, makes a course more interesting and relevant to the students and shows

students how to use programming as a tool to solve a wide variety of problems from

many varying disciplines. Although oriented towards computer science, many of

the techniques discussed can be adapted to other disciplines.

References

[1] J. D. Wilson, N. Hoskin and J. T. Nosek, The benefits of collaboration for student
programmers, ACM SIGSE Bulletin 25 (1993), 160–164.

[2] T. Jenkins and W. Towle, Teaching programming to novices – Can technology

help?, in Proceedings of 5th Annual Conference on the Teaching of Computing,
(G. Daughton, and P. Magee, eds.), Dublin City University, 1997, 102–104.

[3] D. Laurillard, Rethinking University Teaching: A Conversational Framework for the

Effective Use of Learning Technologies, Routledge Falmer, London, 2001.

[4] F. Marton, G. Dall’Alba and E. Beaty, Conceptions of learning, International Jour-

nal of Educational Research 19 (1993), 277–330.

[5] J. Thomas, The variation of memory with time for information appearing during a
lecture, Studies in Adult Education 4 (1972), 57–62.

[6] D. Bligh, What’s the Use of Lectures?, Intellect, Exeter, England, 1998.

[7] J. Hartley and I. K. Davies, Note-taking: A critical review, Programmed Learning

and Educational Technology 15 (1978), 207–224.

[8] V. Magnesen, A review of the finding from learning and memory retention studies,
Innovation Abstracts, National Institute for Staff and Organizational Development,
1983.

[9] D. Bligh, What’s the Use of Lectures?, Harmondsworth: Penguin Books, 1971.

[10] B. S. Bloom, Taxonomy of educational objectives: The Classification of Educational

Goals: Handbook I, Cognitive Domain. Longmans, New York, 1956.

i

i

“wirth” — 2005/2/17 — 18:35 — page 421 — #15
i

i

i

i

i

i

Mechanisms for teaching programming using active learning 421

[11] S. M. Taylor, Cooperative Learning in Distance Education, Indiana Higher Educa-
tion Telecommunication System, 1997,
http://www.ihets.org/learntech/distance ed/fdpapers/1997/taylor.html.

[12] L. W. Sherman, Cooperative learning in post-secondary education: Implications from

social psychology for active learning experiences, in American Educational Research
Association, Chicago, 1990.

[13] J. I. Shenker, S. A. Goss and D. A. Bernstein, Implementing Active Learning in the

Classroom. Instructor’s Resource Manual for Psychology, Houghton-Mifflin, 1996.

[14] M. A. Wirth, E-notes: Using electronic lecture notes to support active learning in
computer science, ACM SIGCSE Bulletin 35 (2003), 57–60.

[15] D. Cordes and A. Parrish, Active learning in computer science: Impacting student

behavior, in ASEE/IEEE Frontiers in Education, IEEE, Boston, 2002, T2A1-5.

[16] C. C. Bonwell and J. A. Eison, Active learning: Creating excitement in the class-

room, ERIC Digest, 1991, http://ericae.net/edo/ED340272.htm.

[17] R. E. Sabin and E. P. Sabin, Collaborative learning in an introductory computer
science course, ACM SIGSE Bulletin 26 (1994), 304–308.

[18] S. H. Rodger, An interactive lecture approach to teaching computer science, ACM

SIGCSE Bulletin 27 (1995), 278–282.

[19] C. Bayes and R. Hudson, The segmented Sieve of Eratosthenes and primes in arith-
metic progression, BIT 17 (1977), 121–127.

[20] W. Wilson and W. G. Wilson, Simulating Ecological and Evolutionary Systems in

C, Cambridge University Press, Cambridge, 2000.

[21] A. Berglund, M. Daniels, K. Lundqvist and E. Westlund, Encouraging active par-

ticipation in programming classes, in Proceedings of 7th National Conference on
College Teaching and Learning, 1996.

[22] F. Mosteller, The ‘Muddiest Point in the Lecture’ as a Feedback Device, On Teach-

ing and Learning: The Journal of the Harvard-Danforth Center 3 (1989), 10–21.

[23] T. Jenkins, A participative approach to teaching programming, in Proceedings of
ITiCSE, ACM Press, 1998, 125–129.

[24] Professors evolving?, The Teaching Professor 15 (2001), 7–8.

MICHAEL WIRTH

DEPARTMENT OF COMPUTING & INFORMATION SCIENCE

UNIVERSITY OF GUELPH

GUELPH, ONTARIO N1G 2W1

CANADA

E-mail: mwirth@uoguelph.ca

(Received July, 2004)

