
i

i

“sikevarga” — 2005/2/16 — 20:10 — page 301 — #1
i

i

i

i

i

i

2/2 (2004), 301–317

Synthesis of concurrent programs

Sándor Sike and László Varga

Abstract. Students need a well defined method to be successful in the complex process
of writing a concurrent program. In this paper we show a step by step method to
create such programs. The method based on UML which has been thought to students
during previous courses. UML provides standard and relatively simple tools to describe
concurrent systems, and from the description the program can be derived.

First we give a brief introduction to the concurrent systems. This is followed by the
description of the method, and finally we demonstrate the method on a small problem.

Key words and phrases: concurrent program, process, synchronization, guarded state-
ment, semaphore, object-oriented design, UML, class diagram, state-chart diagram.

ZDM Subject Classification: D45, D55, N85, P25, P55.

1. Introduction

The task of creating concurrent programs is much more complicated and

sophisticated than writing sequential programs. A concurrent program consists

of processes and shared objects. The processes are sequential programs, that

executes in parallel, and they use the shared objects for communication or in-

teraction. Therefore the creation of a parallel system includes the creation of

sequential programs, and in addition the interaction of the processes has to be

controlled. The latter is called synchronization.

We can assume that the students are able to write sequential programs, and

thus we should focus on the problem of synchronization. We have to tackle two

subjects when we are synchronizing concurrent programs. First, we should be able

Copyright c© 2004 by University of Debrecen

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 302 — #2
i

i

i

i

i

i

302 Sándor Sike and László Varga

to form group of actions so that the execution of the group is not interrupted.

This is necessary to provide the consistency of states of the given process. We

call such a group of actions atomic statement. Second, we should be able to delay

a process until the system satisfies a specified condition. This is called condition

synchronization.

We use guarded statements to realize synchronization in the abstract pro-

grams, and semaphores to implement guarded statements. A guarded statement

consists of a condition, called guard, and sequence of statements, called body. The

execution of the body cannot be interrupted by other processes, thus the body is

an atomic statement, and the guard ensures that the body is executed only when

the condition is satisfied. The guard is true if we just want to create an atomic

statement. The syntax of the guarded statement is defined as:

await 〈condition〉 then 〈sequence of statements〉 ta;

where 〈condition〉 is a boolean expression and 〈sequence of statements〉 cannot

contain iteration and synchronizing (waiting) statements.

Semaphore is an abstract type whose objects have two operations: P and V.

The semaphore registers the difference between the number of completed P and

the number of completed V operations. An obvious representation of a semaphore

is an integer value. In this case the invariant of the semaphore is that the value

cannot be negative, and P decrements and V increments the value. The P oper-

ation waits until the value is positive. The initial value should be a non-negative

integer. The semaphore is called binary semaphore when the value can only be 0

or 1.

Non-deterministic conditional statements are used in the implementation of

guarded statements. The form of this construct is:

if cond1 → S1 @ . . . @ condn → Sn else S0 fi;

where condi is a boolean expression and Si is a sequence of statements. The else

part is optional. When executing this statement one Si executed whose condition

is satisfied. If else part is included and none of the conditions is satisfied then S0

is executed.

The formal method for synchronization presented by G.R. Andrews in [5] has

been used for several years in our education. In the past few years UML has

become a standard and widely used tool in software technology. In this paper

we present a way to combine the formal method with object oriented modeling

in UML to create a concurrent system. Using the approach described here the

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 303 — #3
i

i

i

i

i

i

Synthesis of concurrent programs 303problemrequirement
stati
 model dynami
 model : : :models of
on
urrent solution

abstra
t program
on
rete program

modeling
transformationtransformationvalidation

requirement de�nition analysis analysis

Figure 1. Development model of concurrent programs

problem of synchronization becomes less formal and more descriptive process,

which is an important aspect in education.

In our method first we create the static model, class diagram, then the state-

chart diagram as part of the dynamic model. The state-chart diagram is used to

determine the guarded statements and to derive the abstract program. If the pro-

gramming language does not support the implementation of guarded statements,

then the program can be obtained by using semaphores for realizing the guarded

statements.

Figure 1 illustrates the development model used by us. Activities that are

involved in this type of development but are not discussed in this paper are grayed.

This paper focuses on modeling of a problem given and transforming the model

to a concrete program. Our belief is that the main task of creating a program is

the construction of a model for the problem. The formal analysis of the model

created and the validation of the final program is out of the scope of this paper.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 304 — #4
i

i

i

i

i

i

304 Sándor Sike and László Varga

2. A method for creating concurrent programs

We assume that the requirement definition of the system to be created is

given. Then we can obtain the solution by the next procedure.

(1) Create the static model – the class diagram – of the system. Identify the

processes and the common resources they use. Define the attributes of the

classes. Determine the relations between the classes and the number of ob-

jects that are involved.

(2) Create the dynamic model – the state-chart diagram – of the system. The

state of the system is the aggregate of the states of the resources and the

processes.

• Identify the states of each process and resource. The states of a process

correspond to its activities, the states of a resource provides the condi-

tions for synchronization. Let us name as active state of a process when

it uses a resource.

• If the processes have different priorities, then introduce special state(s)

– e.g. requesting – for processes with higher priorities. Processes at the

lowest level of priority do not need this type of state. (The preconditions

of the state transitions guarantee the correct scheduling.)

• Define the invariant of each resource state. Introduce variables if neces-

sary.

• Determine the actions for state transitions. Define the precondition of

these actions. The state transitions of the processes correspond to the

atomic statements in the abstract program, their precondition will be

the guard of the appropriate guarded statement. The actions can be

defined as the entry and exit phase of the active state(s) or request for

entering the requesting state(s).

• We can ignore those actions from the state-chart diagram that do not

induce state transition.

(3) Create the abstract program.

• Define the initial values of the variables introduced in the dynamic model

and make the skeleton of the program as an initial assignment and the

parallel execution of processes.

• Define the skeleton of each process using the state-chart diagram.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 305 — #5
i

i

i

i

i

i

Synthesis of concurrent programs 305

• Determine the atomic statements based on the actions of the state-chart

diagram and create the appropriate guarded statements. Place these

guarded statements into the skeleton of each process according to the

state transitions.

(4) Create the program.

• Introduce semaphores for the implementation of guarded statements.

• Define the initial values of the semaphores.

• Implement the guarded statements with semaphores with the schemes

given.

• If necessary and possible then transform the program to be more simple

and effective.

The following schemes can be used in the implementation of guarded state-

ments. Introduce an s binary semaphore to ensure mutual exclusion and set the

initial value to 1.

Implement the await true then Sk ta; statement as in Figure 2 (a) where

the V(s) statement is placed in the schedule algorithm.

Let us assume condj (j ∈ {1, . . . , n}) conditions are used in guarded state-

ments for synchronization. We introduce a bj semaphore and a cj counter value

for each case. The counter value specifies the number of processes waiting at the

given semaphore. The initial value is 0 both for the semaphore and the counter.

In this case implement the await condj then Sj ta; statement as in Fig-

ure 2 (b) and the schedule algorithm can be defined as in Figure 2 (c).

If the priority of the processes waiting at synchronization points has to be

concerned then the non-deterministic conditional statement of the schedule algo-

rithm can be replaced by a deterministic construction. Let us assume that the

priorities are fixed and the order is identical of the indexing order. In this case

the implementation of the schedule algorithm is shown in Figure 2 (d).

3. Case study

We will demonstrate the method described on a simple problem. Our task is

to create a program that simulates the use of a computer laboratory. There is a

single laboratory containing a given number of computers.

Students want to use the laboratory. The students do their studies and when

they need computers they wait outside of the laboratory. If there is at least

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 306 — #6
i

i

i

i

i

i

306 Sándor Sike and László Varga

(a)

P(s);

Sk;

call schedule;

(b)

P(s);

if ¬ condj then cj ← cj + 1; V(s); P(bj) fi;

Sj ;

call schedule;

(c)

if cond1 ∧ c1 > 0→ c1 ← c1 − 1; V(b1);

@ cond2 ∧ c2 > 0→ c2 ← c2 − 1; V(b2);
...

@ condn ∧ cn > 0→ cn ← cn − 1; V(bn);

else V(s) fi;

(d)

if cond1 ∧ c1 > 0 then c1 ← c1 − 1; V(b1);

elsif cond2 ∧ c2 > 0 then c2 ← c2 − 1; V(b2);
...

elsif condn ∧ cn > 0 then cn ← cn − 1; V(bn);

else V(s) fi;

Figure 2. The implementation schemes of the await statements and
the schedule algorithm

one free computer, then a waiting student can enter and begin to use a computer.

After completing the task the student leaves the laboratory and continues his/her

activities, i.e., studies and waits to use a computer in the laboratory again.

The computers in the laboratory are maintained by crew members. Only

one crew member can maintain the computers at the same time, but any number

of crew members can request maintenance simultaneously. During the mainte-

nance no student can use the computers. If a crew member specify a maintenance

request, no student can enter the laboratory, he/she must wait until the mainte-

nance is complete. The maintenance can start when all the students inside has

left the laboratory.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 307 — #7
i

i

i

i

i

i

Synthesis of concurrent programs 307

System

Lab

cap

StudentCrew

∗ ∗

maintain ◮ ◭ use

0..cap0..10..10..1

{exclude}

Figure 3. The class diagram of the system

3.1. Static model

We can identify the following classes from the description given.

System: a class corresponding to the whole system modeled.

Lab: a class of computer laboratory. It has an argument (cap), that specifies

the number of computers in the laboratory.

Crew: the class of crew members.

Student: the class of students.

The relations between the classes are the next ones.

• The System class is the aggregate of the other three classes. The multiplicity

factor is one for the laboratory, and arbitrary for the Crew and Student classes.

• The Student class is associated with the Lab class, the name of the association

is use. The number of students involved in this association can vary between

0 and cap.

• The Crew class is associated with the Lab class, the name of the relation is

maintain. There is at most one crew member involved in this association.

The use and maintain relations are exclusive ones, which means that only one

of them can exist at the same time. This can be described in the class diagram

by using a constraint. The result of our analysis is the class diagram of Figure 3.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 308 — #8
i

i

i

i

i

i

308 Sándor Sike and László Varga

crewi

state

lab

state

studentj
state

system state

.

Figure 4. The state-chart diagram of the system

3.2. Dynamic model

The state of our system is determined by the state of the crew members, the

state of the laboratory and the state of the students (Figure 4). The students and

the crew members are the processes of our system, thus their states correspond

to the actual activities of the processes. The state of the laboratory provides the

conditions for synchronization.

Each student can have two states.

• The student does some activity or waits outside the laboratory. Let be the

name of this state: do / wait.

• The student uses one computer in the laboratory. Let be the name of this

state: do / use.

The state transitions are induced by the entry and the exit phase of the use state,

i.e., use.ent and use.ex.

The crew members can have three states.

• The person is working somewhere else. Let be the name of this state is:

do / work.

• The person requests maintenance in the laboratory. The name of the state

is: requesting. (This is a passive state, the person waits to be scheduled.)

• The person is maintaining the computers in the laboratory. The name of this

state is: do / maintain.

The request action changes the state from work to requesting. The entry phase

of maintenance (maintain.ent) connects states requesting and maintain. The exit

phase of maintenance (maintain.ex) leads from maintain to work.

The state of the laboratory is determined by the number of students inside

and the activities of the crew members. Let us introduce variable t specifying the

number of students inside, variable r determining the number of crew members

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 309 — #9
i

i

i

i

i

i

Synthesis of concurrent programs 309

do / wait

do / use

use.exuse.ent[ϕ1]

studentj state

Figure 5. The state-chart diagram of a student

requesting maintenance and variable w for the number of crew members main-

taining the laboratory. Three states can be identified considering the students.

• No student uses the laboratory. The name is empty and the invariant is t = 0.

• There is no free computer, the laboratory is full. The name is full and the

invariant is t = cap.

• The laboratory is in the state between. The name is normal and the invariant

is 0 < t < cap.

Three states can be identified in connection with the crew members.

• Nobody requests maintenance and nobody maintains the laboratory. The

name is OK and the invariant is r = 0 ∧ w = 0.

• Maintenance is requested and nobody maintains the laboratory. The name

is requested and the invariant is r > 0 ∧ w = 0.

• The laboratory is under maintenance. The name is maintained and the in-

variant is w = 1.

Now the conditions of the state transitions can be specified. (The first two

conditions can be rephrased with variables using the invariants.)

• A student can start to use a computer if the laboratory is not full and is in

state OK. ϕ1 : ¬ in full ∧ in OK.

• A crew member can start the maintenance if the laboratory is empty and

nobody else maintains it. ϕ2 : in empty ∧ ¬ in maintained.

• The laboratory becomes full after a student begins using a computer and

there has been only one free computer. ϕ3 : t = cap− 1.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 310 — #10
i

i

i

i

i

i

310 Sándor Sike and László Varga

do / work requesting

do / maintain

maintain.ent[ϕ2]maintain.ex

crewi state

request

Figure 6. The state-chart diagram of a crew member

• The laboratory becomes empty after the last student leaves it. ϕ4 : t = 1.

• The state of the laboratory will be requested after a maintenance is finished

and there are other crew members requesting maintenance. ϕ5 : r > 0.

• The state of the laboratory will be OK after a maintenance is finished and

nobody else requests maintenance. ϕ6 : r = 0.

From the conditions above, ϕ1 and ϕ2 provide synchronization conditions for the

processes.

The state-chart diagram for a student is shown in Figure 5, the state-chart

diagram for a crew member can be seen in Figure 6, and the states of the labo-

ratory are defined in Figure 7. The actions that do not change the state of the

laboratory are not shown in the diagram.

3.3. Abstract program

We have already introduced the three variables for describing the states of

our problem in the dynamic model. These variables are:

• t : the number of students using computers,

• r : the number of crew members requesting maintenance,

• w : the number of crew members maintaining the laboratory.

The initial values of the variables defined as:

w = 0 ∧ r = 0 ∧ t = 0.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 311 — #11
i

i

i

i

i

i

Synthesis of concurrent programs 311

empty

normal

full

use.ent

use.ent[ϕ3] use.ex

use.ex[ϕ4]

OK

requested

maintained

request

maintain.ent maintain.ex[ϕ5]

maintain.ex[ϕ6]

lab state

Figure 7. The state-chart diagram of the laboratory

w ← 0; r ← 0; t ← 0

parbegin

crew1; || . . . || crewn; ||

student1; || . . . || studentm;

parend

Figure 8. The skeleton of the program

Let us assume that the actual number of crew members is n, and the actual

number of students is m. Then the skeleton of the program is shown in Figure 8

and Figure 9 contains the skeletons of the processes.

The atomic statements and their corresponding actions in the state-chart di-

agram are shown in Figure 10. In the abstract program we realize the atomic

statements with guarded statements, await. The guards of these statements en-

sure the correct scheduling. The precondition of the corresponding action in the

state-chart diagram determines the guard of the await statement. The condi-

tions can be defined by the variables introduced if the states are replaced by their

invariants. The third column in Figure 10 contains the guards for the atomic

statements.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 312 — #12
i

i

i

i

i

i

312 Sándor Sike and László Varga

crewi:

while true do

work;

request;

maintain;

od

studentj:

while true do

wait;

use;

od

Figure 9. The skeletons of the processes

atomic statement action guard

〈w← w− 1〉 maintain.ex true

〈r← r + 1〉 request true

〈r← r− 1; w← w + 1〉 maintain.ent w = 0 ∧ t = 0

〈t← t + 1〉 use.ent t 6= cap ∧ w = 0 ∧ r = 0

〈t← t− 1〉 use.ex true

Figure 10. The atomic statements of the program

The result of the transformation applied to the skeleton of the processes

can be seen in Figure 11. We can have the abstract program by inserting these

processes into the skeleton of the program in Figure 8.

3.4. Program

Semaphores have to be introduced to implement the guarded statements. We

need one semaphore, s, to ensure the integrity of the execution of each atomic

statement. We have two guarding conditions that need semaphores and counters:

condition: semaphore: counter:

w = 0 ∧ t = 0 bw cw

t 6= cap ∧ w = 0 ∧ r = 0 bt ct.

We implement the guarded statements with these semaphores as described in

the method given. The processes transformed and the shedule algorithm is shown

in Figure 12. The deterministic scheme is used because the priorities are different

for the maintenance and the use activities.

We can derive the program from the abstract program by assigning the ap-

propriate initial values to the semaphores and the counters. The initial value of

semaphore s should be set to 1, since we should allow the execution of the first

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 313 — #13
i

i

i

i

i

i

Synthesis of concurrent programs 313

crewi:

while true do

work;

await true then r← r + 1 ta;

await w = 0 ∧ t = 0 then r← r− 1; w← w + 1 ta

maintain;

await true then w← w− 1 ta;

od

studentj :

while true do

wait;

await t 6= cap ∧ w = 0 ∧ r = 0 then t← t + 1 ta;

use;

await true then t← t− 1 ta;

od

Figure 11. The abstract processes

P(s) statement. For the other semaphores and counters the initial value should

be set to 0. The reason for this choice is obvious for the counters, and we should

wait at the first P statement when bw and bt semaphores are used. Inserting the

assignments required to the skeleton of the abstract program we get the main

program (Figure 13).

The processes can be transformed to be more simple and effective. We used

the general scheme to implement the guarded statement. When we implement

the await true then r← r + 1 ta; guarded statement, the schedule algorithm can

be replaced by a simple V(s) statement. If the crewi process is rewritten then it

consists a V(s); P(s); sequence, that can be removed.

Note, that after these changes the values r and cw are identical outside of

the atomic statements. (This is not surprising, since the meaning of them is the

same, both values specify the number of crew members waiting to maintain the

laboratory.) Thus only one of them is necessary. We will use cw, and remove r

from the program. (In the main program it should be deleted from the initial

assignment part.)

The first schedule algorithm in the crewi process after w← w + 1; assign-

ment can be replaced by V(s); statement because the other cases in the schedule

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 314 — #14
i

i

i

i

i

i

314 Sándor Sike and László Varga

crewi:

while true do

work;

P(s);

r← r + 1;

call schedule;

P(s);

if w 6= 0 ∨ t 6= 0 then cw← cw + 1; V(s); P(bw) fi;

r← r− 1; w← w + 1;

call schedule;

maintain;

P(s);

w← w− 1;

call schedule;

od

studentj :

while true do

wait;

P(s);

if t = cap ∨ w 6= 0 ∨ r 6= 0 then ct← ct + 1; V(s); P(bt) fi;

t← t + 1;

call schedule;

use;

P(s);

t← t− 1;

call schedule;

od

schedule:

if w = 0 ∧ t = 0 ∧ cw > 0 then cw← cw− 1; V(bw);

elsif t 6= cap ∧ w = 0 ∧ r = 0 ∧ ct > 0 then ct← ct− 1; V(bt);

else V(s) fi;

Figure 12. The processes and the schedule algorithm

algorithm contain the w = 0 condition, and this cannot be satisfied after this

assignment.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 315 — #15
i

i

i

i

i

i

Synthesis of concurrent programs 315

s ← 1; bw ← 0; bt ← 0; cw ← 0; ct ← 0; w ← 0; r ← 0; t ← 0

parbegin

crew1; || . . . || crewn; ||

student1; || . . . || studentm;

parend

Figure 13. The main program

The second schedule algorithm can be replaced by a similar conditional state-

ment where the conditions can be simplified using the fact, that in this case w

must be 0 since the previous statement decreases the value of w. Thus the w = 0

component can be left out from the conjunctions. In this case the number of

students in the laboratory must be 0 (see the condition of incrementing w for

formal checking), thus t = 0 and t 6= cap conditions are satisfied and can also be

removed.

Let us check the first schedule algorithm in studentj process after t← t + 1;

assignment. We know that t is not 0, thus the condition of the first case in

schedule cannot be true. The synchronization ensures that w = 0 ∧ cw = 0 at this

point, therefore this part of the second condition can be left out.

Finally let us examine the second schedule algorithm used in studentj process.

This is placed after t← t− 1; assignment, thus t 6= cap must be satisfied and can

be removed from the second case. The synchronization guarantees that w = 0,

thus we can leave this out from both conditions.

The result of the transformations described is shown in Figure 14.

4. Conclusion

Our experience shows that the students can handle the problems of creat-

ing parallel programs much better using the method described. They can solve

problems successfully with this method even when they would fail to do so with

conventional approaches such as using invariants at synchronization points. The

reason can be that a well known and more descriptive tool, UML, is used for

modeling and defining synchronization. The model can be almost automatically

transformed to a program with guarded statements, and using the schemes the

guarded statements can be implemented with semaphores. In addition, from the

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 316 — #16
i

i

i

i

i

i

316 Sándor Sike and László Varga

crewi:

while true do

work;

P(s);

if w 6= 0 ∨ t 6= 0 then cw← cw + 1; V(s); P(bw) fi;

w← w + 1;

V(s);

maintain;

P(s);

w← w− 1;

if cw > 0 then cw← cw− 1; V(bw);

elsif cw = 0 ∧ ct > 0 then ct← ct− 1; V(bt);

else V(s) fi;

od

studentj:

while true do

wait;

P(s);

if t = cap ∨ w 6= 0 ∨ cw 6= 0 then ct← ct + 1; V(s); P(bt) fi;

t← t + 1;

if t 6= cap ∧ ct > 0 then ct← ct− 1; V(bt);

else V(s) fi;

use;

P(s);

t← t− 1;

if t = 0 ∧ cw > 0 then cw← cw− 1; V(bw);

elsif cw = 0 ∧ ct > 0 then ct← ct− 1; V(bt);

else V(s) fi;

od

Figure 14. The final form of the processes

UML model the invariants for a formal proof can be also determined using the

invariants of the states in the state-chart diagram.

i

i

“sikevarga” — 2005/2/16 — 20:10 — page 317 — #17
i

i

i

i

i

i

Synthesis of concurrent programs 317

References

[1] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
1973.

[2] E. W. Dijkstra, A tutorial on the split binary semaphore, EWD703, Nuenen, Nether-
lands, 1979.

[3] E. W. Dijkstra, The superfluity of the general semaphore, EWD734, Nuenen,
Netherlands, 1980.

[4] G. Booch, J. Rumbaugh and I. Jakobson, The Unified Modeling Language User

Guide, Addison-Wesley Longman, Inc., 1999.

[5] G. R. Andrews, A method for solving synchronization problems, Science of Com-

puter Programming 13 (1989/90), 1–21.

[6] K. R. Apt and E-R. Olderog, Verification of Sequential and Concurrent Program,
Springer-Verlag, 1997.

[7] W-P. de Roever et al., Concurrency Verification; Introduction to Compositional and

Noncompositional methods, Cambridge University Press, 2001.

[8] Sike Sándor and Varga László, Szoftvertechnológia és UML, (Második, bőv́ıtett
kiadás), ELTE Eötvös Kiadó, 2003.

[9] Kozma László and Varga László, A szoftvertechnológia elméleti kérdései, ELTE
Eötvös Kiadó, 2003.

SÁNDOR SIKE

DEPARTMENT OF SOFTWARE TECHNOLOGY AND METHODOLOGY

FACULTY OF INFORMATICS

EÖTVÖS LORÁND UNIVERSITY, BUDAPEST

PÁZMÁNY PÉTER S. 1/C

H-1117 BUDAPEST

HUNGARY

E-mail: sike@inf.elte.hu

LÁSZLÓ VARGA

DEPARTMENT OF SOFTWARE TECHNOLOGY AND METHODOLOGY

FACULTY OF INFORMATICS

EÖTVÖS LORÁND UNIVERSITY, BUDAPEST

PÁZMÁNY PÉTER S. 1/C

H-1117 BUDAPEST

HUNGARY

E-mail: varga@ludens.elte.hu

(Received April, 2004)

