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Packings in hyperbolic geometry

H. Zeitler

Abstract. I am becoming older. That’s why I am returning to my youth sins. “On
revient toujours à ses premiers amoures”. This sin was the noneuclidean hyperbolic
geometry – especially the Poincaré model. I was teaching this kind of geometry over
many years as well in highschool (Gymnasium) as for beginners at the university too.

A lot of results concerning packings in hyperbolic geometry are proved by the
Hungarian school around László Fejes Tóth. In this paper we construct very special
packings and investigate the corresponding densities. For better understanding we are
working in the Poincaré model. At first we give a packing of the hyperbolic plane with
horodisks and calculate the density. In an analogous way then the hyperbolic space is
packed by horoballs. In the last case the calculation of the density is a little bit difficult.
Finally it turns out that in both cases the maximal density is reached.

Key words and phrases: hyperbolic geometry, packing, covering, partitioning, density.

ZDM Subject Classification: G90.

1. Introduction

1.1. Some definitions

Let Ei be a family of given point sets and D a domain. If ∪ Ei ⊂ D and no

two sets Ei, Ej have common points (up to boundary elements) then we speak

about a packing of D. Naturally in this case gaps may occur. Think of a box D

filled with oranges Ei.

Copyright c© 2004 by University of Debrecen
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packing covering partitioning

Figure 1. Packing, covering, partitioning

Density

We are working with the usual definition of the density due to L. Fejes Tóth:

d =

∑

i I(Ei)

I(D)

I(Ei) and I(D) means the content of Ei respectively of D. In the plane this is the

area and in space the volume. Then a problem is to find packings with maximal

density.

1.2. Aim of the paper

We restrict ourselves to considerations in the hyperbolic plane H
2 and in the

hyperbolic space H
3. All investigations are done within the Poincaré halfplane or

halfspace model. Using congruent hyperbolic disks and congruent hyperbolic balls

(with radius r each) L. Feher Tóth obtained the following results for packings

H
2 : d(r) <

3

π
≈ 0, 9549, H

3 : d(r) <
2

3A
≈ 0, 852

A is the so-called Coxeter series A =
∑

∞

K=0

[

1
(1+3K)2 − 1

(2+3K)2

]

. We are inter-

ested only in the limiting case.

These limits of density cannot be attended by disks and balls, rather it needs

so-called horodisks or horoballs.

Remark concerning notions:

In Euclidean plane the set of points P with PM = r is called circle with center

M and radius r and the set PM ≦ r the corresponding disk. In an analogous
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Packings in hyperbolic geometry 211

way we distinguish between sphere and ball in Euclidean space. We transfer all

these notions to hyperbolic geometry.

2. A packing of the hyperbolic plane H
2

2.1. The Poincaré halfplane model

We give only a sketch and refer to special books (see e.g. [14]). The elements

of Euclidean geometry are supplied with new name plates, with new etiquettes.

Some geometers are speaking about a translation from Euclidean to hyperbolic

language – they use a dictionary.

For better distinction we write E, H for the respective notions: H-line, E-

circle, . . .

H-points:

The set of all E-points in a distinguished open E-halfplane. The limiting line

is x.

Ideal H-points:

The set of all E-points in x and one point at infinity P∞.

H-lines:

The set of all E-circles and E-lines orthogonal to x – as far as they are in the

distinguished halfplane.

Horocycles:

The set of all E-circles touching x, together with the set of all E-lines parallel

to x, as far they are in distinguished halfplane.

Exactly as in the remark to 1.2 we naturally have also horodisks.

H-lines and H-reflections horocycles

Figure 2. H-lines, H-reflections, horocycles
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212 H. Zeitler

H-reflection in H-lines:

E-reflection in the E-circle (inversion) or in the E-line corresponding to the H-line

in question.

H-angles:

H-angles are the corresponding E-angles. The degrees of H-angles are measured

in the Euclidean way.

H-length H-area

P1P2 = ln
h1

h2
P1P2 =

1

2
ln

1 + cosϕ1

1 − cosϕ1
:

1 + cosϕ2

1 − cosϕ2

F = π − (α + β + γ)

Figure 3. H-length, H-area F

Now it’s possible to develop all the flora and fauna of twodimensional hyperbolic

geometry within the model.

H-distance, H-area, H-trigonometry, . . .

H-theorems as for instance: H-distance, H-angle and H-area remain invariant

under H reflections.

2.2. The construction of the packing

2.2.1. The first step

What can we see in Figure 6?

In E-language:

Two lines g1, g2 orthogonal to x in M1, M2 two E-circles H1, H2 touching one

another and touching x in M1, M2. One line H0 touching our two E-circles in

A1, A2 and parallel to x. Finally one E-circle over M1, M2 orthogonal to x.

We consider only the parts of all these curves within the E-strip formed by

g1, g2 and x.
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Packings in hyperbolic geometry 213

Figure 4. Woodcut due to M. C. Escher

In H-language:

g1, g2 and the E-circle over M1, M2 are H-lines. They form the H-triangle D

with vertices M1, M2, P∞. All these vertices are ideal points. The measure of

the angles in this triangle is 0 each. We are speaking about a 3-fold asymptotic

H-triangle. Further we see three horocycle arcs.
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214 H. Zeitler

Figure 5. Henri Poincaré (1854–1912)

Figure 6. The first step

In this way we obtain three horodisk sectors – denoted by E0, E1, E2. Each

bounded by two H-segments and one horocycle arc. The 3-fold asymtotic triangle

is packed by these three horodisk sectors. Between, there remains a gap, a triangle

formed by three horocycle arcs. We have no overlapping.
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Packings in hyperbolic geometry 215

2.2.2. The second step

In Figure 7 we now perform a H-reflection in the H-line through M1, M2. Doing

so the 3-fold asymptotic H-triangle (M1, M2, P∞) is mapped into another H-

triangle (M1, M2, M3) of the same kind. The horocycles H1, H2 remain fixed

whilst H0 is becoming a new horocycle. Our horodisk sectors E0, E1, E2 are

mapped in new horodisk sectors. The area remains in any case invariant. The

new H-triangle is packed by these disk sectors. Between, there remains again a

gap, a triangle formed by three horocycle arcs.

Figure 7. The second step

2.2.3. We continue!

In Figure 7 we now perform a H-reflection in the H-line through M1, M3. Doing

so we obtain again a 3-fold asymtotic H-triangle (M1, M4, M3) packed by three

horodisk sectors. We repeat this procedure again and again. New 3-fold asymp-

totic H-triangles are born, each packed by three horodisk sectors always with the

same area. Finally the strip formed by g1, g2 is totally packed. Reflection in the

H-lines g1, g2 yields one packed strip after the next. In this way we receive a

packing of the total plane H
2. Figure 8 gives an idea.

2.3. Density

We first give and prove a very surprising lemma – the so-called Bolyai–

Lobachevsky theorem on horodisk sectors.
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Figure 8. From strip to H
2

2.3.1. Lemma

The H-length b of the horocycle arc A1 A2 in Figure 6 is exactly the area F (E0)

of the corresponding horodisk sector with vertices A1, A2, P∞.

Figure 9. F (E0) = 2 sh a1

2

Proof.

(a) Two formula

A first formula

Due to the definition in Figure 3 and with the notations from Figure 9 we

have

a1 =
1

2
ln

1 + cosϕ1

1 − cosϕ1
:

1 − cosϕ1

1 + cosϕ1
= ln

1 + cosϕ1

1 − cosϕ1
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⇒ a1

2
= ln

√

1 + cosϕ1

1 − cosϕ1
⇒ e

a1

2 =

√

1 + cosϕ1

1 − cosϕ1

⇒ sh
a1

2
=

1

2

(

e
a1

2 − e−
a1

2

)

=
1

2
· 2 cosϕ1

sinϕ1
= ctg ϕ1 =

x1

h
.

A second formula

From ea1 = 1+cos ϕ1

1−cosϕ1

we obtain cosϕ1 = ea1−1
ea1+1 = th a1

2

(b) Halving

The E-segment x1 in Figure 9 is halved again and again. In the step of

number n bisection yields 2n E-segments of E-length xn = x1

2n−1 . Further

there are 2n−1 corresponding H-segments of H-length an.

(c) Extension

By induction the two formula in (a) can be extended. We receive

sh
an

2
= ctg ϕn =

xn

h
=

x1

2n−1h
=

1

2n−1
sh

a1

2
and cosϕn = th

an

2
.

(d) Horocycle arc

We perform a limiting process. n is running to infinity.

b = lim
n→∞

2n−1an = lim
n→∞

2n

( an

2

sh an

2

)

sh
an

2
= lim

n→∞

2nAn

1

2n−1
sh

a1

2
= 2 sh

a1

2
.

We used limn→∞ An = 1 and sh an

2 = 1
2n−1 sh a1

2 .

(e) Horodisk sector

Once more n is running to infinity.

The area of the marked small H-triangle with angles 0, ϕn, ϕn in Figure 9 is

π − 2ϕn – due to the formula given in Figure 3. With this we obtain

F (E0) = lim
n→∞

2n−1(π − 2ϕn) = lim
n→∞

2n−1 π − 2ϕn

sin(π − 2ϕn)
sin(π − 2ϕn)

= lim
n→∞

2n−1An sin 2ϕn = lim
n→∞

2nAn sin ϕn cosϕn

= lim
n→∞

2nAn sin ϕn th
an

2
= lim

n→∞

2nAn sin ϕn

sh an

2

ch an

2

= lim
n→∞

2nAn sin ϕn

1

ch an

2

· 1

2n−1
sh

a1

2
= 2 sh

a1

2
.

We used the extended formula in (c) further:

lim
n→∞

An = 1, lim
n→∞

ϕn =
π

2
, lim

n→∞

sin ϕn = 1, lim
n→∞

ch
an

2
= 1,
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Now we are going back to the density.

Because of our special construction it is enough to calculate the density in

only one 3-fold asymptotic H-triangle – we choose the H-triangle (M1, M2, P∞).

Due to our reasonable definition we have d = F (E0)+F (E1)+F (E2)
F (D) . This will be

the density of our packing all over the hyperbolic plane H
2. �

2.3.2. Theorem

The density of our packing the hyperbolic plane H
2 with horodisks is d = 3

π
≈

0, 9549.

With this we can say that the upper bound density given by L. Fejes Tóth is

reached.

Figure 10. E0 → E1

Proof. Due to Figure 3 with α = β = γ = 0 we have F (D) = π. To find

F (E0) we need our Lemma 2.3.1 and obtain F (E0) = 2 sh a1

2 = 2x1

h
and with

h = 2r, x1 = r finally F (E0) = 1.

Finding F (E1) we use a trick. We perform a H-reflection in the H-line

through M2 and A1 (Figure 10). The corresponding E-circle has center M1 and

radius 2r. Doing so H0 is mapped to H1 and g2 to the H-line over M1, M2.

The H-line g1 remains as a whole. So we can say that the horodisk sector E0 is

mapped on E1.

H-reflection preserves area, therefore F (E1) = F (E0).
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In the same way we obtain F (E2) = F (E0). Finally we have

d =
F (E0) + F (E1) + F (E2)

F (D)
=

3

π
. �

3. A packing of the hyperbolic space

3.1. The Poincaré halfspace model

We give a few “etiquettes” and refer to the model of H
2.

H-planes horospheres

Figure 11. H-planes, horospheres

H-points:

The set of all E-points in a distinguished open E-halfspace. The limiting plane

is x.

Ideal points:

The set of all E-points in x and one point at infinity P∞.

H-planes:

The set of all E-spheres and E-planes orthogonal to x – as far as they are in the

distinguished halfspace.

H-lines:

The set of all E-circles and E-lines in our halfspace orthogonal to x.

Horospheres:

The set of all E-spheres touching x, together with the set of all E-planes parallel

to x – as far as they are in the distinguished halfspace.

Exactly as in the remark to 1.2 we naturaly have also horoballs.
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H-reflection in H-planes:

E-reflection in the E-sphere (inversion) or in the H-plane corresponding to the

H-plane in question.

H-angle:

H-angles are the corresponding E-angles. The degrees of H-angles are measured

in the Euclidean way.

Exactly as in the twodimensional case now it’s possible to develop the flora

and fauna of threedimensional hyperbolic geometry within the model. We rec-

ommend the reader to do this and to use older books. Mathematics must be

done!

Figure 12. Nikolai Ivanovich Lobachevsky (1792–1856)
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3.2. The construction of the packing

3.2.1. The first step

In E-language:

We start with an equilateral E-triangle (M1, M2, M3) in x (length of one edge

is 2r) and three E-lines g1, g2, g3 in M1, M2, M3 orthogonal to x. So we have

a prism with faces S1, S2, S3. Further we draw a E-sphere H (radius 2
3r
√

3 )

through M1, M2, M3 also orthogonal to x and consider the domain D included

by the faces of the prism and the E-sphere H (Figure 13).

Figure 13. 4-fold-asymptotic H-tetrahedron

Translation in H-language:

The points M1, M2, M3, P∞ form a 4-fold asymptotic H-tetrahedron. Be-

cause the triangle (M1, M2, M3) is equilateral we are speaking about a regular

H-tetrahedron. The faces are 3-fold asymptotic H-triangles.

The construction now is continued using again the E-language:

We draw three E-spheres respectively three E-balls H1, H2, H3 radius r touching

x in the points M1, M2, M3. Then we consider only the ball sectors within the

prism. Think of orange slices. These ball sectors are touching one another.

The E-plane parallel to x touching H1, H2, H3 in the points A1, A2, A3 is

denoted by H0.

The E-sphere H cuts all the sectors and so we obtain truncated horoball

sectors.

Back to the H-language:

We denote the three truncated sectors E1, E2, E3 now as horoball sectors – each

bounded by three H-planes and one horosphere (Figure 15). The part of the

E-prism over the E-triangle (A1, A2, A3) is also bounded by three H-planes and
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one slice top view of 3 slices

Figure 14. Horosphere – slices

Figure 15. One “truncated” slice

one horosphere. Therefore we have another truncated horoball sector E0. With

our definition in the introduction we have a packing of our 4-fold asymptotic H-

tetrahedron with four truncated horoball sectors. There is no overlapping, but

one gap occours (Figure 14).

3.2.2. The second step

If a geometrical configuration was difficult to understand, then the famous

geometer Jakob Steiner (1796–1863) from Switzerland told his students to close

the eyes. Or he even darkened the classroom – for better seeing, for better

visualizing geometrical objects. Now our construction is arrived at a point, where

we should do in this way.
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The construction works in a similar way as in the plane case. We can take

over some texts word-by-word.

We perform a H-reflection in the H-plane H . Doing so the 4-fold asymptotic

tetrahedron (M1, M2, M3, P∞) is mapped into another tetrahedron (M1, M2, M3,

M4) of the same kind. M4 is the E-center of the E-triangle (M1, M2, M3). The

horospheres H1, H2, H3 remain fixed as a whole, whilst H0 is becoming a new

horosphere H4 (the corresponding E-sphere touches x in M4, radius 1
3r). The

H-planes S1, S2, S3 are going to H-planes through M4 and M1M2, M1M3 or

M2M3 respectively.

Figure 16 shows the situation from a top view.

Figure 16

The pictures of our horoball sectors E1, E2, E3, E0 are new ones – each

bounded by three H-planes and one horosphere (remember J. Steiner!) The

volume remains invariant in any case. The new 4-fold asymptotic H-tetrahedron

is packed by these horoball sectors. No overlapping, but a gap occurs.

3.2.3. We continue

Now we perform a H-reflection in the H-plane through M1, M2, M4. Doing

so, we obtain a 4-fold asymptotic H-tetrahedron (M1, M2, M4, M5) packed with

four horoball sectors.
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We repeat this procedure again and again. New 4-fold asymptotic H-tetra-

hedra are born, each packed by four horoball sectors. Always with the same

volume.

Finally the prism formed by g1, g2, g3 is totally packed.

H-reflections in the H-planes S1, S2, S3 yield one packed prism after the

next.

In this way we receive a packing of the space H
3.

3.3. Density

The so-called Bolyai-Lobachevsky theorem works not only in the case of di-

mension 2 but with some modifications also in higher dimensions.

3.3.1. Lemma

The H-volume of the horoball sector E0 with vertices A1, A2, A3, P∞ is exactly

half of the H-area F of the horosphere triangle with vertices A1, A2, A3.

In short V (E0) = 1
2F .

The proof is done using the so-called “volume element”. We omit this proof

here and refer for instance to [6].

Now back to the density

3.3.2. Theorem

The density of our packing the hyperbolic space H
3 with horoballs is d = 2

3A
with

A =
∑

∞

K=0

[

1
(1+3K)2 − 1

(2+3K)2

]

Proof. Because of our very special construction it is enough to calculate the

density in one 4-fold asymptotic H-tetrahedron only. We choose the tetrahedron

(M1, M2, M3, P∞). Due to our definition in the introduction we then have

d =

∑3
i=0 V (Ei)

V (D)
.

This is the density of our packing the total hyperbolic space H
3 too.

The proof is done in several steps. �

The volume of the 4-fold asymptotic regular tetrahedron V (D).

One possibility for calculation is to use once more the “volume element” [6]

together with a decomposition into six orthoschemes [1]. Applying these two
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instruments in the Poincaré halfspace model we obtain

V (D) = 3
√

3

∫

∞

0

x

e2x + e−2x + 1
dx.

This result is given and proved already by N. I. Lobachevsky [7].

The substitution z = 2x gives V (D) = 3
4

√
3
∫

∞

0
z

ez+e−z+1 dz. Developing the

integrand in a series and then performing integration by parts we obtain

V (D) =
3

4

√
3

∫

∞

0

z

∞
∑

K=0

[

e−2(1+3K) − e−2(2+3K)
]

=
3

4

√
3

∞
∑

K=0

[

1

(1 + 3K)2
− 1

(2 + 3K)2

]

=
3

4

√
3 · A.

The volume V (E0) of the horoball sector E0

Referring to our Lemma 3.3.1 it’s enough to calculate F .

This is done by approximation in nearly the same way as in the chapter about

H
2. Some formulations are equivalent.

Figure 17

(a) Two formula

We use the results in 2.3.1 in respect of one face of our prism.

Let the length of the H-segment B1B2 in Figure 17 be b1. Then we have

sh
b1

2
= ctg ϕ1 and th

b1

2
= cosϕ1 =

x1

h
.

Attention:

In 2.3.1 the E-segment A1A2 was approximated by H-segments from above

(Figure 9) and now from below.
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(b) Halving

The E-segment x1 is now halved again and again. In step of number n this

bisection yields 2n E-segments of length xn = x1

2n−1 . Further there are 2n−1

corresponding H-segments of length bn

(c) Extension

The formula in (a) can be extended by induction.

sh
bn

2
= ctg ϕn and th

bn

2
= cosϕn =

xn

h
=

x1

2n−1h
=

1

2n−1
th

b1

2

(d) Approximation of F

Now we consider E-triangles in (M1, M2, M3) built by E-segments of length

xn and H-triangles touching (A1, A2, A3) from below with H-segments bn.

Figure 18 shows the situation in case n = 2. All these H-triangles have a

shape like a stepped blanket. The number of such equilateral H-triangles in

step of number n is 4n−1.

Figure 18

(e) Limiting process

F = lim
n→∞

4n−1(π − 3αn)

= lim
n→∞

4n−1

(

π − 3αn

sin(π − 3αn)

)

sin(π − 3αn)

= lim
n→∞

4n−1An sin 3αn
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Using addition theorems it’s easy to prove sin 3αn = sin αn(4 cos2 αn − 1). For

hyperbolic functions we get also an addition theorem cth bn =
1+th2 bn

2

2 th bn

2

. From

one equilateral H-triangle with edges of length bn we deduce with classical H-

trigonometry cosαn = cth bn · th bn

2 . Altogether this yields

cosαn = cth bn th
bn

2
=

1

2

(

1 + th2 bn

2

)

4 cos2 αn − 1 =
4

(

1 + th2 bn

2

)2

4
− 1 = 2 th2 bn

2
+ th4 bn

2
.

With all these small results we finally obtain

F = lim
n→∞

4n−1An sin 3αn

= lim
n→∞

4n−1An sin αn(4 cos2 αn − 1)

= lim
n→∞

4n−1An sin αn

(

2 th2 bn

2
+ th4 bn

2

)

= lim
n→∞

4n−1An sin αn

(

2

4n−1
th2 b1

2
+

1

(4n−1)2
th4 b1

2

)

.

Now we use limn→∞ sin αn = sin 1
3π = 1

2

√
3 and limn→∞ An = 1 and get

F = lim
n→∞

4n−1 · 1 · 1

2

√
3

(

2

4n−1
cos2 ϕ1 +

1

(4n−1)2
cos4 ϕ1

)

= lim
n→∞

1

2

√
3

(

2 cos2 ϕ1 +
1

4n−1
cos4 ϕ1

)

=
√

3 cos2 ϕ1 =
√

3
(x1

h

)2

.

With x1 = r, h = 2r we get F = 1
4

√
3 and V (E0) = 1

2F = 1
8

√
3.

The volume V (E1) of the horoball sector E1

Finding V (E1) we use again a trick. We perform a H-reflection in the H-plane

through M2, M3 and A1 (look at Figure 14). The corresponding E-sphere has

center M1 and radius 2r. Doing so, the horoball sector E0 is mapped to E1.

H-reflection preserves the volume. Therefore we get V (E1) = V (E0).

In exactly the same way we obtain V (E0) = V (E2) = V (E3).
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The density

Using all our partial results it turns out that

d =
4 · V (E0)

V (D)
=

4 · 1
8

√
3

3
4

√
3A

=
2

3A
.

4. Conclusion

4.1. A quick summary

We saw that the maximal packing density given in H
2 and conjectured in H

3

by L. Fejes Tóth is reached with special arrangements of horodisks respectively

horoballs. Concerning the method we tried to keep alive the Poincaré model.

4.2. What about didactics?

A special problem was investigated in H
2 and then in total analogy extended

to H
3. Doing so, a lot of interesting things was discovered by students. In this

way mathematical research really develops. Now it’s obvious to take the next

step to H
4 and even to H

n, n ∈ N \ {1}.
From this view our work has a very strong didactical component. It’s a

didactical paper but not at all a paper about didactics.
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