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Applications of methods of

descriptive geometry in solving

ordinary geometric problems

József Szabó and Ildikó Molnár

Dedicated to Professor Oswald Giering on his 70th birthday

Abstract. The importance of descriptive geometry is well-known in two fields. Spatial
objects can be mapped bijectively onto a plane and then we can make constructions
concerning the spatial objects. The other significance of descriptive geometry is that
mathematical visual perception of objects in three-dimensional space can be improved
by the aid of it. The topic of this paper is an unusual application of descriptive geom-
etry. We may come across many geometric problems in mathematical competitions, in
entrance examinations and in exercise books whose solution is expected in a classical
way, however, the solution can be found more easily and many times more general than
it is by the standard manner. We demonstrate some of these problems to encourage to
use this geometric method. Understanding the solution requires very little knowledge of
descriptive geometry, however, finding a solution needs to have some idea of descriptive
geometry.
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In this paper we omit other noteworthy constructive methods such as cy-

clography or very special descriptive geometric tasks. We select problems whose

solution is very simple with the help of descriptive geometry. For example, in

Vigassy’s [8] exercise book for seminars there are about 100 problems which can

be treated in that manner. Sometimes planar problems can be solved easily by

‘interpretation in space’. Stiefel’s [7] proof of Brianchon’s Theorem is noteworthy.

Also Jenő Horváth [1] published several tasks with elegant geometric solutions.

Copyright c© 2004 by University of Debrecen
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104 J. Szabó and I. Molnár

We demonstrate almost exclusively tasks that were set in competitions and

the principle of the selection lies in the method used in their solutions. Acquiring

the suitable method is obligatory in the training of teachers of descriptive geome-

try. In the paper no special knowledge of descriptive geometry is necessary, basics

of front- and top-view projection are sufficient requirements (see [2], [4], [7]). The

problems presented here are treated in the Constructive and Computer Geometry

Course in the training of teachers of mathematics and descriptive geometry. But

similar tasks often occur in the education of mathematics teachers not only in

Hungary. The elegance of the geometric method usually causes excitement and

keen interest.

At first we show a problem that gave the inspiration to apply descriptive

geometry as a method for its solution. It was a task in the Students’ Competition

in Moscow in 1941 and it can be found in [6, task 4].

Problem 1. Let e and f be two skew lines perpendicular to each other.

There is given a segment RS greater than the distance of the lines. Let point

R move on e and point S on f . What is the locus of the midpoints M of the

segments RS?
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Applications of methods of descriptive geometry in solving ordinary geometric problems 105

Solution. There exist planes that are parallel to both of the lines e and f .

Let the image-plane of the top-view be parallel to these planes. We have two lines

perpendicular to each other in the top-view and two lines parallel to the axis of

Monge’s top-front-view system. The projections of points M are midpoints in

both projections, too, because of the invariance of the ratio of segments under

parallel projections.

We can state, by the aid of the front-view, that the locus is a planar figure,

its front-view is on the line that is parallel to e′′ and f ′′ and is at equal distance

from both of them. The plane of the locus is parallel to the plane of the top-view,

that is why we can see the locus in actual size from above. Since the distance of

e and f and the length of the segment RS is constant, the length of the segment

R′S′ is constant, too. Since M ′ is the midpoint of the segment R′S′, the locus is

a circle.

Generalization 1. (It was not included in the task.) If P is another fixed point

of the segment RS, then the locus is, again well-known, an ellipse. If P divides

the given segment into two pieces of length a and b then P ′ divides R′S′ into

two segments of length a′ and b′ where a : b = a′ : b′ (since parallel projections

preserve the ratio of the length of segments). The co-ordinates of P ′ can be

determined with the help of the top-view: x = a′ · cosα, y = b′ · sin α and this

results in the equation x2

a′2 + y2

b′2
= 1.

Generalization 2. Since we can see the actual angle of the lines from above,

the question may arise what the locus will be if the given skew lines are not

perpendicular to each other. We may think that the answer will be the affine

image of the figure above since affinity preserves lines, ratio of signed distances of

collinear points, and the affine image of an ellipse is an ellipse included the ones

having equal axes, viz. the circle. If we proceed in this way we make a mistake,

namely whereas the top-view of the moving segment has constant length as we
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have proved before, the affinity maps the segment R′S′ in the figure above onto

a segment whose length is not constant.

In spite of this, the locus is an ellipse, the proof is the following:

Let the two given lines intersect at an angle α. Let the angle of the moving

segment and the axis x be t and this will be the parameter. Then

RE = (a + b) sin t,

OE = (a + b) sin t ctg α.

Hence we have

x = (a + b) ctg α sin t + b cos t,

y = a sin t

for the co-ordinates of P .

Let the constant (a + b) ctg α be denoted by q in the first co-ordinate, then we

obtain the form

x = q sin t + b cos t.
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Now we eliminate parameter t.

y

a
= sin t

x − q y

a

b
= cos t

(y

a

)2

+

(

x − q y

a

b

)2

= sin2 t + cos2 t = 1

a2x2 + (q2 + b2)y2 − 2qaxy − a2b2 = 0

This equation is that of the ellipse, since all of its points are finite and it is a

non-degenerate quadratic curve.

If we know that R′S′ is constant then its one-parameter forced movement

with endpoints on two straight lines is the well-known ’ellipse motion’, which one

applies in the socalled ’paper strip construction’ of an ellipse with given conjugate

diameter lines, then the analytic calculation is unnecessary.

We think the problem and the generalizations show the usefulness of descrip-

tive geometry as a method.

The next task was worth the most points in a central entrance examination

and it aimed at the application of geometrical mean.

Problem 2. Let us erect perpendiculars to the altitudes of an acute triangle

ABC at its orthocentre M and construct the Thales’ half-circles over the triangle’s

altitudes. On each perpendicular label each intersection point with the matching

Thales half-circle by R, S, T . Prove that the segments MR, MS, MT obtained

in this way have equal length.
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Solution. The three segments show the distance of the origin of the orthogonal

axonometry from the image-plane; a point has only one distance from a plane.

Thus we are ready.

Without being aware of this, we may say that three concurrent and pairwise

perpendicular lines intersect a plane at the vertices of an acute triangle and the

orthogonal projections of the lines onto the plane are the altitudes of this triangle.

The distance of the common point of the lines and the plane can be determined

by making a ’side-view’ through one of the altitudes.

The intersection points of a circle and an ellipse cannot be determined by

Eucleadian construction. Kárteszi [2] gives a method for this problem if they are

concentric.

Problem 3. Determine the intersection points of a circle and an ellipse if

they are concetric.

Solution. The solution is based on the construction of points of an ellipse

with the help of concentric circles, called “de La Hire’s construction”.

Let us draw the two vertex circles of the ellipse and a ray from its centre. This

ray intersects the circles at two points. Draw a Thales’ circle over these points

according to the figure. If the the radius r of the given circle fulfills b < r < a (a,

b denote the half axes of the ellipse), then the Thales’ circle intersects the given

circle at two points symmetric to the ray. We obtain two right angled triangles,

in the figure one of them is shaded. Let us rotate it by the black angle around
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the common centre of the ellipse and the vertex circles such that the legs of the

triangle become parallel to the axes of the ellipse. The vertex at the right angle,

moving on the given circle, becomes a point of the ellipse according to de la Hire’s

construction.

This method, based on a planar recipe, cannot be generalized. We suggest

treating the problem by ‘interpretation in space’: The circle and the ellipse might

be seen as images of two planar sections of a sphere. Since the solution of the

previous task would be rather trivial by this method, we pose the problem a little

bit more generally:

Problem 4. Let an ellipse and a circle whose centre is on the line of the

minor axis of the ellipse be given. Determine the points of intersection of the

ellipse and the circle.

Solution. Now we consider the given figures as the top-view of two circles and

construct their side-views. The ellipse is the top-view of a circle whose radius is

the major axis. This circle is set in the space so that its top-view is the given

ellipse with the minor axis. There exists a one-parameter set of spheres through

this circle. The centres of these spheres are on the line that passes through the

centre of the circle and is perpendicular to the plane of the circle. It can be

seen in the side-view. The given circle is the projection of a spherical circle that

is parallel to the top-view. There exists a pencil of spheres through that circle,

too. As the given figure is symmetric, the two lines consisting of the centres of

the spheres of both pencils are in the same plane and intersect in the centre of

the sphere carrying both circles. The side-views of the circles are segments. The

circular image comes from two congruent circles of the sphere in parallel planes.
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Each pair of the intersection points in question comes from the intersection of one

of those circles with the one having the elliptic image.

The problem is slightly more difficult if the centre of the circle is on the major

axis of the ellipse.

The next problem was a task in a competition of Hungarian pupils specialized

in mathematics (pupils had ten maths lessons a week) in the second round in 1980

(see [3]).

Problem 5. The orthogonal projections of a planar quadrilateral on both

two planes that are perpendicular to each other are squares whose sides are two

units long. What is the perimeter of the quadrilateral if one of its sides is
√

5?

Solution. The projections on the planes perpendicular to each other induces

the consideration in Monge-projection, it is natural to treat the squares as front-

and top-views.

The term “planar” is unnecessary because it follows from the two given pro-

jections that the spatial figure is a parallelogram. Since the projections are con-

gruent, they can be arranged as top- and front-views in two ways: they can be

either translated into each other parallel to the order-lines or symmetric with

the order-lines as symmetry rays. In each front-view we construct the triangles

to determine the actual size from which we obtain the shaded triangles in the

top-views. The difference of the order-lines provides that the other side of the
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parallelogram is
√

7 in both cases. Thus the perimeter of the quadrilateral is

p = 2 · (
√

5 +
√

7)) units.

The task does not ask for the area of the quadrilateral, but as it is an almost

trivial conclusion, we pose the following problem:

Determine the area of the quadrilateral above:

As the parallelogram shows as congruent squares in both projections, its plane

is parallel to one of the symmetry planes of Monge’s image-planes. Thus, in both

possible cases its slope angle to the first image-plane is 45◦. Let T denote the

area of the quadrilateral and T ′ the area of its quadratic top-view, then by

T ′ = 4 = T cos 45◦ = T

√
2

2

it follows that

T =
8√
2

= 8

√
2

2
= 4

√
2 sq units.

The following task was posed at an entrance exam at a university in 1960’s,

long before the central entrance examination system was established. Nobody

solved it.

Problem 6. Let us rotate a unit cube around one of its diagonal and calcu-

late the volume of the solid of revolution obtained in this way.
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Solution. The planes on which the vertices are moving while the cube is being

rotated divide the diagonal into three equal parts and they are perpendicular to

the diagonal. Let the cube be placed into a Monge system of image-planes and

let the diagonal be perpedicular to the plane of the top-view. Thus the contour

of the top-view is a regular hexagon. Let us rotate the cube around the diagonal

so that two of its faces will be perpendicular to the plane of the front-view. We

will receive the figure on the left. The thick lines in the figure determine the solid

of revolution. It consists of two cones of rotation, one on the top and one at the

bottom, and some solid between them.

We do not know what those who had posed the task thought of, they probably

did not realize what this solid is. Since it is determined by a line that is skew

to the diagonal, it can be neither a cylinder nor a cone, thus it cannot be even

a frustum of a cone, and integral calculus was not on the syllabus in secondary

schools. To determine the outline of this object, we consider a point P on the

edge of the cube with its top-view P ′ and front-view P ′′. Let us rotate this point

around the diagonal so that the plane of the point and the axis of rotation will

be parallel to the plane of the front-view, then we determine the ordinary point

of the meridian section of the solid. After rotating P , we obtain point P̄ (see

middle figure).

We determine a parameter representation of the meridian. As a result we will

receive the surface generated by any line g skew to the axis of rotation. Let the

line that is being rotated have a distance d from the axis of rotation (this can be

seen in the top-view), and let it intersect the axis of rotation at an angle ϕ. We

can see this angle in actual size in the front-view.

Let us introduce a Cartesian co-ordinate frame in the front-view such that

P ∈ g is described by

y = d tg α

x = d tg α ctg ϕ.

The path of the motion can be seen in the top-view.

Accordingly, we obtain for the y co-ordinate of point P̄ , i.e. the radius of the

rotation

y2 = d2 + d2 tg2 α.

We express tg α from a previous equation,

tg α =
x

d ctg ϕ
,
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and we substitute this into the former equation after raising it to the second power

y2 = d2 + d2 tg2 α = d2 + d2 x2

d2 ctg2 ϕ
.

After reducing this equation, we have

y2

d2
− x2

d2 ctg2 ϕ
= 1

and this is the equation of the meridian section. Thus the solid of revolution

between the cones is a hyperboloid of one sheet (hyperbolic hyperboloid).

It is obvious from the figure that the altitude of the cones is
√

3/3. The

radius of the base circle of the cones is that of the circle circumscribed around

the top-view whose square can be determined with the help of the front-view (the

contour is a rectangle).

ρ2 = 1 −
(√

3

3

)2

= 1 − 3

9
=

2

3
(Pythagorean Theorem).

Thus the sum of the volume of the cones is: Vcone = 2
3
π

√
3

3
2
3

= 0.806 cubic units.

The volume of the hyperboloid can be calculated by integration. In the given

problem ϕ and d are special values: ctg ϕ = 1√
2
→ ctg2 ϕ = 1

2
, d2 = 0.5. We

have to integrate from 0 to
√

3
6

according to the formula of the volume of solids

of revolution and then multiply it by two.

Thus we have

Vhyp = 2π

∫

√
3

6

0

(d2 + 2x2)dx = 2π

∫

√
3

6

0

(0.5 + 2x2)dx = 2π

[

0.5x + 2
x3

3

]

√
3

6

0

= π

(√
3

6
+

4 · 3
√

3

3 · 63

)

Vhyp = 1.007.

The answer to the question is V = 0.806 + 1.007 = 1.813 cubic units.

The figure on the right shows the top- and front-view of the solid of the revolution.

We think that the way the surface of rotation generated by a line skew to the

axis is simple enough to be taught even at secondary school level: According to

the relative situation of the line being rotated and the axis of rotation the surface

of revolution can be a cone, a cylinder or a one sheet hyperboloid.
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The following task was worth the most points in a competition in the school

year 1973–74 in the first round [5, page 22].

Problem 7. A two-dimensional abstract animal is wandering on a unit

sphere. The length of its steps is 1.9 measured on a straight line (not on an

arc). How many steps has the animal to take at least to return to its starting-

point? (“Wandering” implies that it cannot turn back there immediately after

the first step.)

Solution. 1. Three steps are insufficient because the radius of the circle

circumscribed around the equilateral triangle of sides 1.9 is r = 1.9
2

∗
√

3 ∗ 2
3
≈

1.096965 units, so there don’t exist any circles of this radius on the unit sphere.

2. Four steps are enough: We construct four points A, B, C, D on the

sphere, whereby consecutive pairs of points A − B − C − D − A have 1.9 units

as distance. We start with the top- and front-view and put A at the ’north pole’

and O in the center of the sphere. The set of points on the sphere that are at a

distance of 1.9 from A is a circle a with AO as its axis of rotation. Choose one

of its points denoted by B. Now the animal can step from here to a point on the



i

i

“szabo˙molnar” — 2004/7/22 — 15:23 — page 115 — #13
i

i

i

i

i

i

Applications of methods of descriptive geometry in solving ordinary geometric problems 115

circle b passing through A opposite to B. The top-view of circle b is an ellipse

and its front-view is a segment. Now D has to lay on a, because the distance

of A and D has to be 1.9. Since d(CB) = d(CD) (= 1.9), the point C lays

within the symmetry plane of segment BD. This symmetry plane is projecting

in the top-view projection, because BD is parallel to the first image-plane, and

it passes through A and intersects b in a second point C. So to any chosen point

D (D 6= B and D 6= E where BE is a diameter of a) there exists a point C ∈ b

and the quadrangle ABCD solves the problem.
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