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Illustrated analysis of Rule of Four

using Maple

György Maróti

Abstract. Rule of Four, as a basic didactic principle, was formulated among the NCTM
2000 standards (see [14]) and since then it is quoted by numerous books and publications
(see [4], [9], [12]). Practically we can say it is accepted by the community of didactic
experts. The usage of the Rule of Four, however, has been realized mainly in the field
of calculus, in fact certain authors restrict the wording of the principle to the calculus
itself (e.g. [3]).

Calculus is a pleasant field, indeed. A sequence of values of a function provides us
with example for numeric representation, while the formula and the graph of the function
illustrate symbolic and graphical representations, respectively. In the end by wording
the basic features of the function on natural language we gain textual representation.

This idyllic scene, however, becomes more complex when we leave the frame of
calculus. In this paper we investigate the consequences of the usage of Rule of Four
outside calculus. We discuss the different types of representations and show several
examples which make the multiple features of representation evident. The examples are
from different fields of mathematics and are created by the computer algebra system
Maple, which turns out to be an excellent tool for illustration and visualization of the
maim features of mathematical objects.

Next we introduce the concept of basic representation and rational representation,
which is considered as the mathematical notion of “didactic usable” or “didactic ra-
tional” representation. In the end we generalize the notion of numeric representation,
which leads us a more widely usable didactic principle which can be considered as a
generalization of Rule of Four.
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Remark 1: Multiple representation

The wording of rule of four sounds as follows:

“Every topic should be presented numerically, graphically,

symbolically and verbally.”

This sentence evokes the impression that mathematical problems always have to

be represented in four different manners. On the same time a given mathematical

notion, problem or phenomenon can be represented several different ways, which

yields that the different kinds of representations are far from being unique. As we

will see later, in many cases it is practical to represent the investigated problem

by more than one graphical or symbolic representation.

Example

Consider the series of real numbers for which

Tn = 2 ∗ (4n − 1)/3.

The series is given by formula, so the initial representation is symbolic. Displaying

the numeric value of first ten members we obtain numeric representation.

> T :=n− > 2*(4ˆn−1)/3;

T : n →
2

3
4n −

2

3
> seq(T(i),i = 1..10);

2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050.

It can be shown that our series complies with the following recursive definition:

T1 = 2,

Tn+1 = 4 ∗ Tn + 2.

The first equality can by checked easily, while the second can be proved by the

usual Maple technique. We form the difference of the two sides and simplify the

result.

> 4*T(n)+ 2−T(n+1);

8 4n

3
−

2 4(n+1)

3
> simplify(%);

0.
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The recursive formula provides us with a newer symbolic representation. Next

change the form of numbers in the equalities. Namely let us use the binary forms,

i.e. 10 besides 2 and 100 besides 4. We reach the equalities

T1 = 10,

Tn+1 = 100 ∗ Tn + 10,

which gives the third symbolic representation of the original problem.

Now consider the second equality and try to interpret it. If u is binary number

then 100 ∗ u coincides with u00, while 100 ∗ u + 10 is of the form u10. What we

have done is nothing else than we have written two binary digits 1 and 0 after

the number u. As the first number is 10, the second must be 1010, the third is

101010, etc. We can state that the members of series Tn as binary numbers are

described by the set

L = {10, 1010, 101010, 10101010, . . .}.

This set, however, can be considered as a language over the alphabet X = {0, 1}.

As L is regular it can be recognized by finite automaton.

The underlying maple commands display the transition graph of a determin-

istic and a nondeterministic automaton accepting the language L. This steps

offers two different graphical representations of the original problem.

> L= {seq(convert(2*(4ˆi−1)/3,binary),i = 1..5)};

L = {10, 1010, 101010, 10101010, 1010101010 . . .}

> with(aut):
Xi := genaut([A,1,a,a,0,{b,f},b,1,a],A):
p1 :=plotaut(Xi,[−2,0]):
p2 :=plotaut(ConDet(Xi),[2,0]):
plots[display](p1,p2,scaling= unconstrained);
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Let us summarize what we have done up to now. We took a series of real

numbers, which we represented symbolically in its original form. Next we created

a numeric and two further symbolic representations, by giving the decimal and

binary form of recursive definition. The consideration of a set of binary numbers

as a language over the alphabet {0, 1} is an implicit switch from binary represen-

tation to a symbolic one. In the end we used the result of automata theory and

obtained two graphical representations.

Types of representations

The example above shows that we can not speak of the best representation.

Neither can we speak of unique representation. In the contrary, all four sym-

bolic representations have had its role so that we could reach the two graphical

representations by the end of our examination.

We can see that the attributes included in rule of four (numeric, graphic,

symbolic and verbal) specify types of representations instead of concrete repre-

sentations. The concrete representations are special appearances of these types.

The freedom of choosing representation

If we have more than one thing from something, then both the possibility

and the constraint of choice arise. What type of representations and what con-

crete representation of a specific type should be chosen in the course of solving a

mathematical problem?

According to my experience this could cause serious difficulties for the stu-

dents. The faulty attitude, what students acquire in elementary school says that

the solution of mathematical problems is nothing else than a sequence of prede-

fined deterministic steps. In other words the solution of problems has only one

way, and students have nothing else to do to find this way.
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It is not easy to face the fact that the exact nature of mathematics does

not mean unanimity of solutions of problems. The solvable problem does not

determine uniquely the way which leads us to the solution of the problem.

How should we choose the appropriate representation? The answer is we

decide it. We can choose freely, but we should keep in mind that different repre-

sentations gives different level of support in the course of problem solving.

Remark 2: Base representation

Different problems have different appearance when coming into existence.

One of the representations describing the phenomenon in question plays high-

lighted role. Namely, the one which gives the initial form of mathematical object.

This representation is called the base representation of the problem.

Using this new notion we can state that the base representation of example

of the previous section is symbolic, as we defined the problem by formula.

Remark 3: Properties of representation

Representations are not for themselves. A new representation is introduced

in order to visualize, to highlight or to make easier a certain aspect or property of

the subject of examination. To do so one has to provide the transfer between the

different representations. The bidirectional transfer is necessary for us to be able

to formulate the original problem in the new representation, and as well as to

formulate the solution of the problem in the second representation in the original

representation.

Example

Consider the curve given by the following system of equations

x = t

y = sin(2 ∗ t).

As this system of equations is nothing else that the parametric form of the function

y = sin(2 ∗ x), we state that the curve is periodic and its period is π.

How can we visualize this property of the curve in the Cartesian coordinate

system? The answer is well known. For all possible value of the independent
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variable x the values of function y(x) and y(x+ π) coincide. Indeed, the graphic

below shows that the line which connects the two values y(x) and y(x + π) is

parallel to the x axis.

> period(cartesian);

Remark. As for the usage of period procedure the reader is referred to Ap-

pendix of this paper.

Now switch to another graphical representation and draw the function in

polar coordinate system.

> period(polar);
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The curve has been significantly changed. How can we formulate the periodicity

of the function of this representation? First of all convince ourselves of that

vertical lines in Cartesian coordinate system are transformed to circles whose

center coincides with the center of polar coordinate system, while the horizontal

lines are transformed to lines which contains the center of polar coordinate system.

In this way the periodicity of our function assumes the following awful form. “For

every nonnegative number x if we draw a circle with radius x around the center

of coordinate system, and another circle with radius x + π then connecting the

points of intersections of two circles and the function curve we obtain a line which

contains the center of coordinate system.”

It is obvious that there are serious problems with polar coordinate represen-

tation from didactic point of view. For first it is not ease to handle the transfer

between the two graphical representation, for second the property in question

is formulated clearer and in this way more easily understandable in the original

representation.

Summarizing we can state that if the problem is the periodicity of sinus

function then the choice of polar coordinate system for graphic representation is

fare from being usable. This raises the question under which condition can the

representations be considered didactically usable, or didactically rational?

Rephrasebility

Indispensable condition of the usability of a representation is that the essential

properties of the examined phenomenon formulated in base representation should

have the form – should be rephrased into the form – whose solution is known or

easier to solve than that in the original form. In this case we say that the notion,

or property is rephrasable for the given representation.

Example

As an example let us consider the solution of linear system of equations with

two unknowns. We can add two further graphical representations to the problem

whose base representation is symbolic (see [9]). In the first representation we

visualize the problem with two lines while in the second the coefficients of variable

x and y are considered as two dimensional vectors of a plane.

> M:= linalg[matrix](2,3,[1,2,2,2,1,2]):
M[1,1]*x+M[1,2]*y=M[1,3];
M[2,1]*x+M[2,2]*y=M[2,3];

x+ 2y = 2

2x+ y = 2
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> plots[implicitplot]({%,%%},x =−4..4,y=−4..4);

> u1 :=Vector([M[1,1],M[2,1]]):
u2 :=Vector([M[1,2],M[2,2]]):
u3 :=Vector([M[1,3],M[2,3]]):
plots[display](plots[arrow]({u1,u2},color = green), plots[arrow](u3,color = blue));

In the base representation the exercise is to find the algebraic solution of lin-

ear system of equations. The exercise is rephrasable for the second graphical

representation as in this one the problem is to find the point of intersection of

two lines. The solution of linear system of equations is also rephrasable for the

second graphic representation, since in this representation the original problem

is reduced to the determination of a linear combination of two vectors. On the

other hand we recall that the periodicity of sinus function is not rephrasable for

the polar coordinate graphic representation.

In the end we notice that the notion rephrasability is representation depen-

dent. We mean that a problem can be rephrasable for one representation while

can not be for another one. As in most cases the problem is specified first and

we usually look for representation to this problem and not conversely. In other

words, given the problem and our task is to find a representation for which this

problem is rephrasable.
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Transferability

The easy rephrasability is the second necessary condition of the usability of

representations. We can not consider as acceptable the representation, for which

the transfer is too complex, hard to execute and in this way it does not support

the understanding, but it causes unnecessary difficulties.

In the previous example the transfer is easy between the representations.

The equations in the symbolic representation describe themselves equations of

the geometric lines. Similarly, we can easily perform the transfer between the

symbolic and the second graphical representation as well.

The importance of transferability is also highlighted by the fact, that in el-

ementary mathematics we teach nothing else than the transfer form one repre-

sentation of a problem to another one. When the pupil solves math exercises by

two variable linear system of equations he/she transfers the problem from verbal

representation to symbolic representation. If after that he/she draws the line, as

we have done before, he/she transfers from symbolic to graphic representation.

In this sense the ability to perform transfer from one representation to another

one is the measure of mathematical knowledge level of students.

Remark 4: Rational representation

It is practical to introduce new name for representations which are didactic

usable from the point of the problem. We call a representation rational for the

examined problem if

1. the representation is rephrasable for the base representation of the problem

and

2. the problem or the essential features of the problem is transferable for this

representation.

The rational representation are those which have “didactic rationality” from the

point of examined notions, phenomenon or problem.

It can be seen that the rational nature of a representation is problem depen-

dent. The same representation can be rational for one problem while not rational

for another one.
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Remark 5: Cognitive efficiency

The notions of cognitive efficiency was introduced by Ziegenbalg (see [17])

for algorithms and programming languages. The cognitive efficiency, i.e. the easy

understandability, the visualizations power and the seamless integration to the

cognitive structure of students can be easily extend to representation as well.

The cognitive efficiency of representations of different type, more specifically

the cognitive efficiency of different models belonging to the same type of repre-

sentation may differ significantly. This is because the cognitive efficiency of rep-

resentation is problem dependent. It would be very bad if it was not so. Just this

property of representations makes them suitable to help us in problem solving, to

contribute to the evolution of human thinking.

Example

The limit of sequences of number belongs to problems, which constitute big

didactic challenge to all teachers. Several authors discuss this problem (see [4]).

The symbolic representation of limit is very hard to understand, indeed. We have

to state that the cognitive efficiency of this representation very low. Although the

verbal representation is of better cognitive efficiency the right solution is given by

the animation technique of Maple.

The output of procedure convergence is an animation (see Appendix). We

only show four phases of this animation here, which is hopefully appropriate to

illustrate the process.

> convergence(sin(n)/n +1, n, 0.07);
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Remark. As for the usage of convergence procedure the reader is referred to

Appendix of this paper.

In general, in most cases the best cognitive efficiency can be reached by

graphic representation. This is not by chance, as the graphic representation acts

at iconic level promoting the inductive thinking.

Remark 6: Concretized representation

As we already mentioned at the beginning of this article the application of

Rule of Four is restricted first of all to different fields of calculus. According to this

the numerical representation is realized by a sequence of calculated values, or by

building a table of values of function. As an example we mention that Fuchs gives

numeric representation for the notion of convergence by showing Heron iteration

(see [5]). Sďż˝rvďż˝ri does the same in [16] using Newton iteration.

What happens if we leave the circle of real functions? For example in case

of polinomial ring over a field the values of polinomials are members of the field,

which may and may not be numbers. Can we speak of numerical representation

here? Or let us consider the theory of automata. Although we can call all the

states by numbers. . .



✐

✐

“maroti” — 2016/6/8 — 9:53 — page 394 — #12
✐

✐

✐

✐

✐

✐

394 György Maróti

> printaut(randaut(3,2));











STA \ INP 1 2

1 {3} {3}

2 − {3}

3 {1, 3} {2, 3}











Set of initial states: , {3}

Set of final states: , {1, 2}

. . . but the question arises if we can consider the transition table above as numeric

representation of the automaton. Or could we give rational numeric representa-

tion for languages over the alphabet {x, y}?

We have to face the fact that numeric representation can not be interpreted

in certain fields or even more over a certain level of abstraction. In this way if we

want neither to forgo the usage of numeric representation nor to reduce its usage

to calculus, we have to generalize it. In other words we have to try to supplement

it by a more general principle, which gives the habitual numeric representation

for the know cases, but it is generally usable.

Let’s take a look at what we do when we count the value of a function.

It is nothing else than to show the examined general phenomenon by concrete

examples. In this way we produce a concrete appearance of the mathematical

object, we concretize the problem, assuming that this concretized representation

is known by the students.

Notice that concretized representation produces a form stands for a lower level

of abstraction, it creates special cases of general phenomenon. The concretized

representation is a generalization of numeric representation, as applying it to

objects specified on real numbers it results in real numbers providing us with

numeric representation of examined phenomenon.

Summary

As all of the great and deep principles the Rule of Four is realized in an

extremely simple form. The need of its application compels the user to rethink

his/her notions concerning representations.

As we have seen in many cases the different representation types appear

multiply in the course of the examination of a problem. According to this instead
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of speaking of four different representations, we can speak only of the usage of a

certain number of representations belonging to four different types.

It seems to be more suitable to use the notation of Rule of Multiple Repre-

sentations instead of Rule of Four. This principle can be formulated by using new

notions introduced in this paper as follows. Mathematical topics should be repre-

sented by multiple representations being rational to the subject of examinations.

These representations can belong to the concretized, graphic, symbolic or verbal

representation types.

By the introduction of concretized representation we obtain a generaliza-

tion of Rule of Four, while the stipulation of using rational representations only

provides us with the didactic rationality of representation arising during the dis-

cussion of mathematical notion, object or phenomenon. In this way the usage

of representation like these contributes to better understanding and to a higher

cognitive efficiency of discussion.

Appendix

Although the goal of this paper is not to teach how to write procedures, or

more specifically animation in Maple, we give a short clarification of two proce-

dures convergence and period used in the main text. Both of these procedures are

used to visualize mathematical notions, namely the first for the notion of conver-

gence of number sequences, while the second for the demonstration of periodicity

of sinus function.

We presume the reader is familiar with Maple language, with basic syntactic

rules, with Maple’s data structures and the usage of procedures located in different

packages. We concentrate to our aim, i.e. to write a procedure which is of help

to us to visualize the notion of convergence.

Procedure: convergence

Let us commence with a specifying number sequence.

> numseq := sin(n)/n + 1;

numseq :=
sin(n)

n
+ 1.

We intend to illustrate the elements of this sequence as points of the plane in

Cartesian coordinate system. Next commands produce a sequence of two element

lists. Each list can be considered as the Cartesian coordinate of elements of

numseq.
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> i := 12;
i := 12

> pseq := seq([k,subs(n = k,sorozat)],k= 1..i);

pseq := [1, sin(1) + 1],
[

2,
1

2
sin(2) + 1

]

,
[

3,
1

2
sin(3) + 1

]

,
[

4,
1

4
sin(4) + 1

]

,
[

5,
1

5
sin(5) + 1

]

,
[

6,
1

6
sin(6) + 1

]

,

[

7,
1

7
sin(7) + 1

]

,
[

8,
1

8
sin(8) + 1

]

,
[

9,
1

9
sin(9) + 1

]

,

[

10,
1

10
sin(10) + 1

]

,
[

11,
1

11
sin(11) + 1

]

,
[

12,
1

12
sin(12) + 1

]

,

The variable pseq can be drawn by Maple’s plot procedure.

> plot([pseq],x = 0..N+3,style=point,symbol = circle,color = black);

In order to produce an animation which shows the points of number sequence

one after another, we encapsulate our commands into a cycle and create N(= 40)

different plot objects pd1, . . . , pdN . Each of these plot objects contains the illus-

tration of certain elements of number sequence, namely dpi illustrates the firts i

points of numseq.

> N :=40;

N : 40

> for i to N do
pseq := seq([k,subs(n = k,sorozat)],k =1..i);
ppoints :=plot([pseq],x = 0..N+3,style=point,symbol = circle,color = black):
pd[i] := plots[display](ppoints):

od:
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The result of commands above is 40 plot objects which are located in an array

called pd. The array element pd1 visualizes one point, pd2 visualizes the first two

points, and so on. We can check this by plotting for example pd15 and dp35.

> pd[15]; pd[35];

To become more illustrative it would be nice to see three horizontal lines as well.

One for the limit A of numseq, another two for values A+ε and A−ε, respectively.

For that reason we first determine the limit of the number sequence. Next we

specify a value for and produce the plot objects plimit, pupper and plower, one for

each required horizontal line. In the end we encapsulate the three plot objects

into a fourth one, called plines.

> A := limit(sorozat,n= infinity);

A := 1

> epsilon :=0.07;

ε := 0.07

> plimit :=plot(A,x= 0..N,y= 0.7..2,color= blue):

pupper := plot(A+epsilon,x =0..N,color=magenta):

plower := plot(A−epsilon,x = 0..N,color=magenta):

plines :=plots[display]({plimit,pupper,plower}):

> plines;
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What we have to do now is to alter the cycle above. In order to see the three

horizontal lines in each plot, we place the variable plines as a parameter of display

procedure in the body of the cycle. The second command below displays one of

the resulted plot objects, namely pd36.
> for i to N do

pseq := seq([k,subs(n = k,sorozat)],k= 1..i);
ppoints :=plot([pseq],x =0..N+3,style= point,symbol = circle,color = black):
pd[i] := plots[display]({ppoints,plines}):

od:

> pd[36];

This is a really nice and illustrative plot, which clearly show the behavior of the

number sequence. At this point we have every tools to reach the animation we

need. We just have to display the variables pd1 . . . , pdN on the same coordinate

system and use the plot option insequence=true in display command.
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> plots[display]([seq(pd[i],i = 1..N)],insequence = true);

The result of this command is a specific animation screen, which allow us to

show the plot objects pdi (i = 1, 2, . . . , 40) one after another or to play the whole

animation as a movie.

We end our work by encapsulate all commands in a procedure called convergence.

The first parameter of convergence is the number sequence we investigate, the

second is the name of variable with which we describe the sequence, while the

third parameter is the value of ε. Note that procedure convergence does not check

whether or not its first parameter is convergent. As a consequence of this the user

must make sure to give convergent number sequence to this procedure Have fun

to play with it.
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> convergence :=proc(numseq,variable,epsilon)
local A, N, k,i,ppoints,plines, pupper, plower, ptext, plimit, pseq, pd:

N :=40;
A := expand(limit(numseq,variable = infinity)):
plimit :=plot(A,x= 0..N,color=blue):
pupper := plot(A+ epsilon,x=0..N,color=magenta):
plower :=plot(A-epsilon,x = 0..N,color=magenta):
ptext :=plots[textplot]([[N+ 1,A+ epsilon,’`A+epsilon`’],[N+ 1,A,’` A`’],

[N+ 1,A-epsilon,’`A-epsilon`’]],align=RIGHT):
plines := plots[display]({plimit,pupper,plower,ptext}):
for i to N do

pseq := seq([k,subs(n = k,numseq)],k =1..i);
ppoints :=plot([pseq],x = 0..N+3,style=point,symbol = circle,color = black):
pd[i] := plots[display]({ppoints,plines}):

od:

plots[display]([seq(pd[i],i = 1..N)],insequence= true)
end:

Procedure: period

The second procedure period is used to illustrate the periodic feature of sinus

function. More specifically we work with the parametric form of function sin(2∗x),

whose periodic feature is very well illustrated by the following commands:

> s := [t,sin(2*t),t = 0..2*Pi];

> p :=plot(s) : x := 1.1:
p :=p,plot([[x,0],[x+Pi,0]],style= point,symbol = circle,color = black):
p :=p,plots[textplot]([[x−0.2,−0.2,”x”],[x+Pi−0.2,−0.2,”x+Pi”]]):
p :=p,plot([[x,t,t= 0..sin(2*x)],[x+Pi,t,t= 0..sin(2*(x+Pi))]],color= black):
p :=p,plot([t,sin(2*x),t = x..x+Pi],color= blue):
plots[display]([p]);
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There is a rarely used but very interesting features of Maple’s plot procedure,

the option coords. If we omit this option the default value is cartesian. On the

other hand we can set several different values, among others elliptic, logarithmic,

parabolic or polar. For further details the reader is referred to the help system of

Maple. We can produce interesting curves if we change the coordinate system in

plot procedure.

> plot(p,coords = elliptic);

> plot(p,coords = logarithmic);

We want to investigate how our illustration of periodicity of sinus function changes

when we alter the coordinate system in plot procedure. To make out task easier
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we encapsulate our commands in a procedure which has one parameter, the name

of coordinate system. Notice, that we inserted the option coords = k in the

end of all plot procedure. This ensures that the procedure process its parameter

correctly.
> period :=proc(k)

local x,p,s:
s := [t,sin(2*t),t = 0..2*Pi];x := 1.2:
p :=plot(s,coords = k):
p :=p,plot([[x,0],[x+Pi,0]],style= point,symbol = circle,color = black,coords = k):
p :=p,plots[textplot]([[x−0.2,−0.2,”x”],[x+Pi−0.2,−0.2,”x+Pi”]],coords=k):
p :=p,plot([[x,t,t= 0..sin(2*x)],[x+Pi,t,t= 0..sin(2*(x+Pi))]],color= black,coords = k):
p :=p,plot([t,sin(2*x),t = x..x+Pi],color= blue,coords = k):
plots[display]([p]);
end:

The procedure period is very convenient tool to investigate the affects of different

changes of coordinate system. We just call the procedure and give the name of

desired coordinate system as its parameter as the following commands show.

> period(polar);



✐

✐

“maroti” — 2016/6/8 — 9:53 — page 403 — #21
✐

✐

✐

✐

✐

✐

Illustrated analysis of Rule of Four using Maple 403

> period(parabolic);
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[13] Gy. Maróti, CAS based approach for discussing subset construction, ZDM
35(April), Number 2 (2003).

[14] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahm, S. M. Vorkoetter, J.
McCaron and P. DeMarco, Maple 8 Advanced Programming Guide, Waterloo Maple,
2002.

[15] National Council of Teachers of Mathemetics (NCTM), Principles and Standards
for School Mathematics, 2000.
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