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From iteration to one – dimensional

discrete dynamical systems using
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Abstract. In our paper we present the basic didactical framework and approaches of a
course on one-dimensional discrete dynamical systems made with the help of Computer
Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First
we review some didactical principles of teaching mathematics in general and write about
the advantages of the modularization for CAS in referring to the constructivistic view of
learning. Then we deal with our own development, a CAS-based collection of programs
for teaching Newton’s method for the calculation of roots of a real function. Included
is the discussion of domains of attraction and chaotic behaviour of the iterations. We
summarize our teaching experiences using CAS.
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1. Introduction

In this paper we present how one can get from the exploratory discussion of

iteration and especially Newton’s iteration to the emergence of some basic con-

cepts of the discrete dynamical systems. We deal only with the one-dimensional

case. The whole complexity of discrete dynamical systems can be demonstrated

in this special case.

Iteration figures in most of the calculus courses. The motivation for teaching

these methods of finding roots has changed with the appearance of CAS. Using
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computers and especially CAS we can investigate and explore more thoroughly

the nature of algorithms, e.g. the order of the convergence. With the help of

CAS we have a real chance to discuss and visualize concepts like the attracting

region of fixed and periodic points in a discovery manner. Without exaggeration

we can say that a description of the whole complexity of dynamical systems (such

as chaotic behaviour) has only become possible with the use of computers.

2. Didactical principles

First of all let us summarize those basic didactical principles and methods

which have led us to create a CAS-aided course of dynamical systems.

2.1. Multiple representation

For a mathematical way of thinking and communication it is necessary to

represent the elements of mathematical structures as well as the structures them-

selves. The representations can be divided into two types.

For communication we need external representations, presented as physical

objects, pictures, spoken language. (Lesh, Post and Behr, [1].)

When thinking internal representation is used. This representation particu-

larly concerns mental images corresponding to internal formulations we construct

from reality. According to cognitive science there is a relationship between inter-

nal and external representations. This indicates that the effectiveness of teaching

and the comprehension of mathematical concepts depend greatly on the appropri-

ate representation. On the basis of examining the mathematical learning process

we can say that the internal representations are greatly determined by the math-

ematical ones.

The effectiveness of mathematical knowledge and in a narrow sense the com-

prehension itself can only be approached from the point of view of the organisation

of the knowledge elements.

Hiebert and Carpenter [2] define comprehension in mathematics as follows:

A mathematical idea, procedure or fact can only be understood if its mental

representation is part of the network of representations. The degree of comprehen-

sion is determinated by the number and strength of connections. A mathematical

idea, procedure or fact is understood thoroughly if it is linked to existing net-

works with strong and numerous connections. Mathematical structures can be
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represented in various modes. Here we distinguish and use four types of repre-

sentations: numeric, symbolic, graphic and descriptive. (See Figure 1.)

Figure 1. Multiple representation in CAS-environment

According to the US NCTM – 2000 Standard each mathematical topic should

be represented by the above four types. In our opinion the use of more than one

representation – but not always all the four, or sometimes one type repeatedly-

helps to provide a better picture of a mathematical concept or idea. Kaput [3]

says: Complex ideas are seldom represented adequately by using a single form

of representation. Each representation reveals a different aspect of an idea while

concealing other aspects. The ability to link different representations helps us

reveal the different facets of a complex idea explicitly and dynamically.

The literature shows that students are able to work with different types of

representations, and even the use of the CAS can assure a greater effectiveness

of concept building and of discovery learning. But as Schneider and Peschek

[4] emphasize: If the easy availability of various CAS-representations and the

changing of the various forms of representation is to be used in a sensible manner,

then further efforts at interpretation, that can not be underestimated, need to be

employed.

Porzio [5] found that students are better able to see or make a connection

between different representations when one or more of the representations is em-

phasized in the instructional approach that they experienced and when instruc-

tional approaches include having students solve problems specifically designed to

explore the connection(s) between representations.
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2.2. Modularization

Using CAS we have the possibility to use predefined functions or procedures,

and we can establish such structures ourselves too. In using these structures –

so-called modules – one needs to know their effects and the “interfaces” to the

outside very well, so that one can apply them correctly, but at the same time, it is

not necessary to know their internal structure. The main function of modules is to

reduce the complexity of problems, and doing so to release the load on the mind.

When working with modules, we always realize the so-called outsourcing method.

In mathematics it is a constantly applied method. For example when we would

like to find the fixed points of a function f we need to solve the equation f(x) = x.

When we are working with CAS we can solve this equation with the Maple module

‘fsolve’. Here we don’t need to know how the applied approximating algorithm

works when finding roots of this equation. This outsourcing of operative (also

symbolical) knowledge to the machine frees time for thinking and reduces the

complexity.

2.3. Constructivistic view of learning

As it appears to us, the constructivistic view of learning is the most support-

ing paradigm in CAS-aided teaching. The constructivistic view involves two main

principles (Glasersfeld, [6]):

1. Knowledge is actively constructed by the learner, not passively received from

the environment.

2. Coming to know is a process of adaptation based on and constantly modified

by the learner’s experience of the world.

Actually, learning is only successful if it is realised that a fundamental meta-

morphosis should develop in the mind, together with conceptual change. If the

new knowledge is to fit organically into the already possessed knowledge it is

necessary to produce the conditions for this conceptual change. Distrust of the

interpretations and theoretical systems possessed must be created at each step.

The students must be confronted with the contradictions between their existing

ideas and the new knowledge element. Proceeding with constructivism in mind,

we realize K. Popper’s theory of knowledge, the so-called “falsification”. Namely,

we should attempt to disprove rather than verify our hypotheses. That means

we should disprove the false hypothesis to get gradually nearer to reality. The

APOS theory – developed by Dubinsky (see in [7]) – is based on the construc-

tivistic principle. This theory begins with actions and moves through processes
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to encapsulated objects. These are then integrated into schemas – consisting of

actions, processes and objects – which can themselves be encapsulated as objects.

(See Figure 2.)

Figure 2. Learning process on the basis of APOS theory

3. Conceptual and modelling system

of dynamical systems’ study materials

From this point on we deal with our development. We are preparing course

material concerned with discrete dynamical systems based on the previously dis-

cussed learning methods. We apply the Maple CAS, the local network and also

the internet.

We can elaborate the subtle conceptual mesh and the system of the compli-

cated relations of the discrete dynamical systems in many ways for beginners. In

this paper we deal with some stages of the way which the user can walk through

after accomplishing the introductory calculus course.

The knowledge of the fundamentals of differential calculus enables us to un-

derstand the process of finding the roots of equations by Newton’s method. How-

ever, with the appearance of CAS it is necessary to enlarge the motivation base

when we teach these methods. Namely CAS permits, in most of the cases, finding

the roots by using the built-in procedures together with the graphic visualisation

even without knowing the inner properties or the detailed circumstances of using

the procedures. Changing and renewing the motivation can be provoked by two
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things. On the one hand, Newton’s iteration may become chaotic when the con-

ditions are not fulfilled, for example the function is not differentiable at the zero

(see 4.4). On the other hand, the concept of iteration is a necessary requirement

for the conceptual establishment of discrete dynamical systems.

Introducing the concepts for the subject of dynamical systems demands spe-

cial elaborateness. Namely, it is such a new (since the 1980s) and forcefully

growing mathematical topic for which it is typical that the basic concepts are

interrelated with each other in a complicated manner. The course contains a

lot of new concepts and constructions (e.g.: discrete dynamical system, orbit of

iteration, periodic points, attraction, repulsion, bifurcation, period doubling and

characteristics of the chaos, etc.) (Benkő–Klincsik, [8])

It is well-known that a discrete dynamical system is an (X, f) pair, where X

is a nonempty set and f is a function mapping from X into X , i.e. f : X → X .

The ‘dynamic’ word in this definition emphasises the behaviour of the orbit:

(x0, f(x0), f(f(x0)), f(f(x0)), . . . ) in the set X . This behaviour can be for exam-

ple periodic, aperiodic, stable, unstable, everywhere dense in X , chaotic etc.

Because of the complexity of the subject it is necessary to present the pro-

posed ways of thinking together with their visually arranged model. The hyper-

link possibility of the programs (Maple, Html) guarantees quick recalling of the

concepts, and then permits the possibility of progress for the user on a personal

path. The student can either continue a previously reviewed topic, because in

this indirect way he/she has acquired the necessary concepts to go further, or if

they find a new interesting problem or concept they can go further to understand

and learn in that direction.

Perspicuity of the conceptual system and the contructions is increased by the

constant display or availability of

• The column visualizing the concepts and interrelations

• The row containing the well-known examples

• The map showing the mesh of the references



From iteration to one – dimensional discrete dynamical systems using CAS 277

Figure 3. The structural frame of the learning material

4. On the way towards the dynamical systems

4.1. Constructive approach to iterations

Contraction mapping theorem is a milestone in the discussion of iterations.

If there is a nonnegative number λ < 1 such that the inequality |f(x) − f(y)| ≤
λ|x − y| holds for all pairs of x, y from the domain of function f then f is called

a contraction mapping or shortly contractive.

Contractive mapping theorem ([9]). Let the function f be contractive

and map from the subset C of the real numbers onto itself. Then f possesses

exactly one fixed point p ∈ C and moreover for any initial number x0 from C the

iteration sequence is converges to p.

In order to the explore the evolvement of the theorem first of all we investigate

special iterations, the linear ones in the form xn+1 = axn + b. We write a
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CAS procedure performing both graphical and numerical representations of the

iterations. We execute the iterations with different slopes. We divine that if the

slope of the line is between −1 and +1, the sequence is convergent, and otherwise

the iterative sequence is divergent. Additionally we can see that the dynamical

behaviour of the sequences is independent from the parameter value b. (See

Figure 4.)

Figure 4. Dynamical investigation of the iteration sequences generated
by linear functions

The proof of this conjecture is accomplished by the joint application of the

symbolical and analytical representations. After this the notion of fixed point

can be introduced. It is obvious that we want to search for such conditions

which guarantee the convergence of iterative sequences with arbitrary differen-

tiable functions. Whether it is enough to assume the generalization of the con-

dition obtained in case of the linear iterations, i.e. besides the fulfilment of the

| d
dx

f(x)| < 1 inequality do we have to impose additional conditions? We can work

by the constructive learning aspect. Investigating it in pursuance of Popper’s fal-

sification theory we are eliminating the unsuitable class of functions, and we are
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looking for simple conditions, guaranteeing the existence of a fixed point in the

remaining set of functions.

Let us consider the function f(x) =
√

1 + x2. The derivative of f is f ′(x) =
x√

1+x2
and the absolute value of this is less than 1 for all real x, even if the

iteration is not convergent (Figure 5).

Figure 5. Although the condition |f ′(x)| < 1 is fulfilled, the iterative
sequence is divergent

There is no such interval for this function that the function maps onto itself.

Now it is interesting to note, that if we consider a continuous function f : [a, b] →
[a, b], i.e. f maps the interval [a, b] onto itself, then a fixed point exists. Let us

consider, indeed, the auxiliary function g(x) = x − f(x)! We can show there is a

zero of the function g in the interval [a, b], or, equivalently, there is a fixed point

of function f . Scilicet, we can obtain from the definition of the function f the

inequalities

a ≤ f(a) ≤ b, and a ≤ f(b) ≤ b.

From this follows that g(a) = a − f(a) ≤ 0, and g(b) = b − f(b) ≥ 0. The

continuity of the function g implies that there is a zero of g.

The emergence of this idea is crucial in developing the notion of dynamical

system.

4.2. Special iteration:
Newton’s method and its domain of attraction

The detailed discussion of Newton’s iteration is motivated by several things.

On one hand, it is a natural and useful application of the differential calculus

acquired; on the other hand we can investigate the applicability conditions of
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the method by using CAS. We note that searching for the root of the equation

f(x) = 0 by using Newton’s method is equivalent with the iteration method gen-

erated by the function N(x) = x − f(x)/f ′(x). In other words, it means that

the set of zeros of a differentiable function f(x) and the set of fixed points of the

function N(x) are the same. It is important to choose such an initial value of

Newton’s iteration, which is adequate to the conditions. Newton’s iterations with

different initial values lead to the classification of the fixed points or rather to the

investigation of the domain of attraction. A fixed point p is called attracting if

there is a δ > 0 neighbourhood of p such that starting the iteration anywhere in

the interval (p−δ, p+δ) the iteration converges to p. If the condition |N ′(p)| < 1

is fulfilled – assuming the function f is at least twice differentiable – then the

fixed point p of the map N(x) becomes attracting. Calculating the derivative of

the function N(x) = x − f(x)
f ′(x) , we obtain the formula N ′(x) = f(x)·f ′′(x)

(f ′(x))2 . We

can get from this that when the function is twice differentiable and f ′(p) 6= 0,

then N ′(p) = 0 since f(p) = 0. Consequently, Newton’s iteration is an adequate

method for determining the zeros of the functions, satisfying the previously men-

tioned conditions. That is, if we start the iteration sufficiently close to the zero,

then the iteration converges to the zero.

Figure 6. Investigation of the domain of attraction for Newton’s iteration
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The set of all points from which the procedure starts and the iteration se-

quence tends to the attracting fixed point p is called the domain of attraction or

the basin of the attractive fixed point p. From both practical experiences and

theoretical considerations it is important to analyze the domain of attraction.

Figure 6 shows the results of the CAS procedure written for the investigation

of the domain of attraction. The subsets of the domain of attraction are also

obtained in graphical and in numerical form. The procedure is based on check-

ing whether the condition |N ′(x)| < 1 is fulfilled or not. It gives the domain of

attraction for different fixed points and plots them. We test the procedure with

randomly selected initial values from the domain of attraction.

4.3. More thorough investigation of the domain
of attraction

When we investigate the iteration xn+1 = f(xn), the question emerges,

whether the condition | d
dx

f(x)| < 1 is necessary on the whole basin of attraction

or not. Choosing again an experimental way and using different representations

we show that the domain of attraction can be extended to such intervals where

the above-mentioned condition fails. Let us analyse the iterations for the function

f(x) = x3. As it is well-known, f maps the interval [−1, 1] onto itself, i.e. the pair

([−1, 1], x → x3) is a dynamical system. We have got three fixed points −1, 0

and 1. Now the derivative is f ′(x) = 3x2 and the value of the derivative in these

fixed points is 3, 0, 3, respectively. Therefore the fixed point p = 0 is attracting.

And what about the other two fixed points? These are repelling fixed points, i.e.

each of them has a neighbourhood such that an iteration starting from any of

its points will leave the interval. This fact can easily be verified by the closed

form xn = x3n

0 given for the n-th iteration. It is clear from this formula, that the

entire domain of attraction of the fixed point p = 0 is the whole open interval

(−1, 1). However there are places in this interval where the derivative is greater

than 1. This means that the condition |f ′(x)| < 1 is not necessarily fulfilled in

each point of the domain of attraction. However, in this case we have to look for

another method for surveying the domain of attraction. Nevertheless, presenting

this method is not simple. We would like to demonstrate this with the following

example (Alligood, K. T., Sauer, T. D. & Yorke, J. A., [10]).

Let us investigate the fixed points of the function f(x) = − 1
2x3 + 3

2x and

their domains of attraction. Similarly to the previous example the fixed points

are p1 = −1, p2 = 0 and p3 = 1. Calculating the derivative we find that the fixed

points p1 and p3 are attractive, and p2 is repelling. Let us determine the basins
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of the attracting fixed points −1 and 1. With the investigation of the iteration

sequences we have a presentiment and then we can prove that the open interval

(−
√

3, 0) belongs to the domain of attraction of the fixed point p1 = −1, while

the interval (0,
√

3) is a subset of the domain of attraction for the fixed point

p3 = +1.

A more precise survey of the domains of attraction leads to an extremely

interesting result. Namely, let us analyze what the image of the different intervals

is under this special map f !

Figure 7. The interval [
√
−5,

√
5] is invariant under the map f

On analyzing Figure 7 we can see that the function f maps the interval

[−
√

5,
√

5] onto itself and it is the largest interval with this property. Therefore

we can say that the pair (| −
√

5,
√

5|, f) is a dynamical system. It can also be

proved that the iteration sequence with the initial values of |x0| >
√

5 tends to

−∞ or +∞, alternatively if we separate the terms of the sequence with odd and

with even indices. Hereafter we have to investigate only the iterations starting

from the remainder intervals (−
√

5,−
√

3) and (
√

3,
√

5) respectively.
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Figure 8. The dynamical behaviour of the iteration changes at the zero
of the function

Let us consider the iteration sequences together with Figure 8. It is distinctly

visible that there is a turning point in the dynamical behaviour of the iteration

sequences when the initial values walk through at the z0 =
√

3 ≈ 1.732 zero of the

function f . Scilicet, the iteration starting from the left hand side neighbourhood

of z0 tends to the fixed point 1, but for greater initial values (at least on a piece of

the interval) the sequence tends to the fixed point (−1). The same phenomenon

can be observed at the other zero (−z0) of the function f . It seems that we have

described the phenomena entirely. But if we investigate further then it turns out

that similar turning points follow each other sequentially. The next turning point,

moving from the origin in positive direction on the x-axis, will be at z1, where the

function takes the value −z0 = −
√

3, i.e. f(z1) = −z0. Since the function f is odd,

the next turning point in the negative direction will be at the point (−z1), where

f(−z1) = z0. This process can be continued ad infinitum, scilicet the (n + 1)-th

turning point zn+1 in positive direction can be obtained from the n-th one zn by

the iteration formula f(zn+1) = −zn. We obtain a monotone increasing sequence

of the turning points z0 =
√

3 < z1 < z2 < · · · < zn < zn+1 < · · · <
√

5 on the x-

axis. The turning points in a negative direction constitute a monotone decreasing

sequence and can be obtained by reflecting the sequence (zn, n = 0, 1, 2, . . . ) to the

origin. Figure 9 shows the obtained infinite system of disjoint intervals becoming

smaller and smaller, and belonging to the basins of the attracting fixed points

p1 = 1 and p3 = 1 alternately. It is difficult to demonstrate in CAS environment

the reality of the infinite system of the turning points, where the nature of the

attraction is changing. One reason is that the lengths of the intervals of the

domains of attraction become smaller and smaller. Therefore when we take a

step with an initial value using the iteration then we don’t know exactly the

number of turning points we walk through. The second reason is that we can

illustrate only a finite number of the turning points using the CAS. Therefore,

for an exploration of this phenomenon we have to rely on a common application

of the graphical, numerical and descriptive representations.
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As we have seen this whole process is a complete realization of Popper’s

falsification method.

Figure 9. Infinite system of disjoint intervals as the domains of attraction

We can get closer to the explanation of the asymptotic behaviour of this

dynamical system if we notice that the points C2 = {−
√

5,
√

5} constitute a cycle

with period two, i.e. f(−
√

5 ) =
√

5, f(
√

5 ) = −
√

5. This cycle is repelling the

orbits starting near to the neighbourhood of the points C2, because in the points

−
√

5 and
√

5 the derivative of the second iteration f [2] is greater than 1:

[

f [2](x)
]′|x=

√
5 =

[

f(f(x))
]′|x=

√
5 = f ′(f(

√
5 )) · f ′(

√
5 ) = f ′(−

√
5 ) · f ′(

√
5 )

= [f(f(x))
]′|x=−

√
5 = 36.

The existence of an infinite sequence of intervals belonging to the domains of

attraction of different fixed points is occurring because

• there are two attracting fixed points: −1, 1;

• the function f changes its sign at the zeros −
√

3,
√

3;

• the orbits move away from the two-cycle C2 = {−
√

5,
√

5};
• there are points x where the equation f [n](x) = 0 holds for all n = 1, 2, 3, . . .

Now we characterise the global behaviour of the sequences xn+1 = f(xn), where

the function is f(x) = 3x−x3

2 . But we can demonstrate easily that this behaviour

is changing dramatically when we multiply the function f by (−1), i.e. consider

the dynamic which is induced by the function g(x) = −f(x) = x3−3x
2 . The fixed

points of the map g are p1 = −
√

5, p2 = 0, p3 =
√

5 and each of them is repelling,

because of g′(−
√

5 ) = g′(
√

5 ) = g′(
√

5 ) = 6, g′(0) = − 3
2 . But we have a new

cycle K2 = {−1, 1} with the length of period two

g(−1) = 1, g(1) = −1,
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which is now attractive:

[

g[2](x)
]′|x=−1 =

[

g(g(x))
]′|x=−1 = g′(g(−1)) · g′(−1)

= g′(1) · g′(−1) =
[

g(g(x))
]′|x=1 = 0.

The terms of the iteration sequences xn+1 = g(xn) with initial value x0 ∈ (−1, 1)

tend periodically to the points of the cycle K2 = {−1, 1}, closer and closer to 1

and after (−1) and so on (Figure 10).

Figure 10. The cobweb diagrams of the function g from the initial
value x0 = −0.04

We write this situation in the form

lim
n→∞

d
(

xn, {−1, 1}
)

= 0,

where d(xn, {−1, 1}) denotes the distance between the n-th iterated value xn

and the set {−1, 1}. This situation remains true in the whole interval (−
√

5,
√

5 )

except for the zeros of the iterated functions

g(x), g[2](x) = g(g(x)), g[3](x) = g(g(g(x))), . . . , g[n+1](x) = g(g[n](x)).

These zeros are the same as we have seen above for the function f , and starting

from these zeros the iteration is terminated at the fixed point p2 = 0 by finitely

many steps of iteration.

4.4. When Newton’s iteration becomes chaotic

If we omit one of the conditions for the function f , e.g. if the function is not

differentiable at its zero, then the behaviour of Newton’s iteration sequence may

be unpredictable, i.e. chaotic. It is well known that the iteration sequence for the

logistic map La(x) = ax(1−x) with parameter a = 4 is chaotic on a Cantor-type

subset of the interval [0, 1] (see in 5.2). Now we are looking for a function f(x),
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for which Newton’s iteration sequence is exactly the same as in the logistic map

L4(x) using a simple iteration sequence. For this we have to solve the differential

equation L4(x) = Nf(x), i.e.

4x(1 − x) = x − f(x)

f ′(x)
.

The solution of this differential equation is the function f(x) = 3

√

4x−3
x

, which

satisfies the initial condition f(1) = 1. If we perform Newton’s iteration with this

function, then it shows chaotic behaviour because it is the same sequence as the

iteration with the logistic map L4.

Figure 11. When the Newton-iteration becomes chaotic

We can explain this unpredictability property of the Newton-iteration sequence

by the fact that the function f is not differentiable at the zero x = 3
4 .

5. Our experiences in teaching math with help of CAS

We have used the Maple computer algebraic system in math education at

the Pollack Mihály Engineering Faculty of Pécs University since the beginning
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of the academic year 1997–1998. The curriculum of the calculus and that of

linear algebra are treated by the application of CAS. We use the system to train

students not only at the lectures and the exercises, but also with assessments

(tests, examinations). The Maple contributes to making the training activity

more effective within three main areas:

• High accuracy numerical calculations (there may be represented numbers

with approximately 500 digits)

• Symbolic calculations (manipulating expressions, simplification, derivation,

integration, solving differential equations in symbolic way and so on)

• Graphical representation (2D and 3D graphics, animations, presentation of

direction and vector fields)

At the beginning of our teaching period we mostly teach the built-in procedures of

the system to students. The high accuracy, fast calculator function and the great

variety of graphical visualisations have got a great importance in this phase. It

was soon becoming clear that there are great possibilities in the area of symbolic

calculations.

The Maple system is possessed, as are other CAS, of modular structure and

open architecture. This means that the user can have access generally to the

source codes of the built-in system procedures and can modify them; can broaden

them by new procedures and packages.

We now summarise our teaching experiences concerning algorithms, proce-

dures and models in the following two points:

5.1. The principle of the stepwise refinement of the algorithm

It is expedient to follow the principle of the stepwise refinement when the

algorithms are represented by using CAS. Now let us consider this principle at-

tentively and what it means in the case of iterations. In the first step the calcula-

tion of the iteration xn+1 = f(xn) is performable when the starting value x0 and

the function f are known at least up to a fixed number of terms. In the second

step we organize the written program for a unique module, the so called proce-

dure in order to be able to call it with different parameters many times. Further

refinements concern the activity mode of the procedures: we built the stopping

conditions into the algorithm. For example the stopping conditions in the case of

the Newton-iteration can be |f(xn)| < ε or |xn+1 − xn| < ε beside the limitation

of the number of steps.
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How can we develop and refine the written procedure further? For this pur-

pose we use multiple representations. We can use our procedure to produce a

cobweb diagram. The procedure can also be developed so as to enable us to

provide the graphical and numerical representations of the orbit.

5.2. Investigation of the representability of equivalence models

In our course we investigate some different – but equivalent – models show-

ing chaotic behaviour, which demonstrate the common properties (periodicity,

stability, instability, chaos) of discrete dynamical systems. Each model is a vari-

ation on the same theme, chaos. In this manner we introduce the concept of

the chaos versatilely to the students. When we define and compare the models

with each other then we have possibilities for representation without using CAS

(descriptive, symbolic, numeric representations) and also using CAS (graphical,

symbolic, numeric representations). However, we emphasize the most profitable

representation for each construction.

Figure 12. Equivalent models, where the symbol space is the essenrial one

Figure 12 shows four well-known chaotic discrete dynamical systems or mod-

els where the equivalences are indicated by the double arrows between the boxes.

We give several such equivalence relations – which are called conjugacies in the

theory of dynamical systems – and we hope that the students will discover the

others.

We consider the symbol space SP with the Bernoulli-shift map BS as the

essential dynamical system out of these four because so we can exhibit the chaotic

properties more easily than in the other cases. These properties are among others
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the existence of an everywhere dense orbit and the sensitive dependence on the

initial values. Because the elements of the symbol space are the infinite sequences

with 0 or 1, the descriptive representation and approach will better fit this model

than the CAS realization which is not so adequate in this case. However, the

three other dynamical systems are suitable for representation of their properties

using CAS.

In the following five points are collected our investigations into the models

and the equivalence relations between them, and furthermore about using the

appropriate representations for these constructions.

Investigation 1. The Bernoulli-shift BS describes well the phenomenon of

chaos in the symbol space SP but it cannot be represented well by using CAS.

To be able to describe the properties of the chaos we have to measure the

distance between the elements of the symbol space SP . Therefore we define the

distance between two arbitrary strings s = (s1s2s3, . . . sn . . . ) and

t = (t1t2t3, . . . tn . . . ) of the symbol space SP by the sum of the following conver-

gent series:

d(s, t) =

∞
∑

n=1

|sn − tn|
2n

.

The distance defined in this way will be not greater than 1 for an arbitrary pair

of s, t. Now we construct the following string in the space SP :

s∗ = (0|1|00|01|10|11|000|001|010|011|100|101|110|111|0000| . . .),

where we put into a list and separated by vertical lines the substrings whose

lengths are equal to 1, 2, 3, . . . respectively. Thus the first two digits of s∗ are

0 and 1 because these are the strings with length 1; the next substrings 00, 01,

10 and 11 of s∗ are the strings with lengths 2 and this procedure is continued

with the enumeration of the 3 length substrings and so on. We can show on the

basis of this construction that using the Bernoulli-shift BS the orbit of s∗ will

get arbitrarily close to each string t = t1t2t3 · · · ∈ SP . For a verification using

the map BS of this everywhere dense property of the orbit s∗ we have to choose

natural numbers n and m so large, that applying the Bernoulli-shift map BS the

n-th iterated value of s∗ pushes out the digits of s∗ so that the first m digits

of BS[n](s∗) and of t will be the same. We can demonstrate this property by

using CAS only for those t containing a finite number of digits 1, but using the

descriptive representation we have a chance to characterise all of the cases. So
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we have demonstrated using the map BS that the orbit of s∗ is an everywhere

dense subset of the space SP .

By using the descriptive representation we can also prove the validity of

another property of the chaos for the discrete dynamical system (SP, BS). This

is the so called sensitive dependence on the initial values. We have to show the

existence of a real number 0 < δ < 1, such that for every ε > 0 and for every

string s = s1s2s3 . . . ∈ SP there is a string t = t1t2t3 . . . ∈ SP and a natural

number n, so that the distance of t and s is smaller than ε, i.e. d(s, t) < ε, but

the distance between the n-th iterated value of s and t under BS greater than δ,

i.e. d
(

BS[n](s), BS[n](t)
)

> δ. We can express this property in other words: if

we start the iteration from two arbitrarily close initial values then the distance

between the elements of the two iterations can get greater than a given value δ at

some step. This is a simple consequence of the shifting property of the map BS.

Let the number 0 < δ < 0.5 be fixed, while the value 0 < ε < 1 and the string

s = s1s2s3 . . . ∈ SP are given arbitrarily. Choose the natural number n so that the

inequality 2−n < ε holds and define the string t = s1s2s3 . . . sntn+1tn+2 . . . ∈ SP

so that the first n digits of t and s are equal, but the (n+1)-th digits are different:

tn+1 6= sn+1. Then from the definition of the distance we get

d(s, t) =

∞
∑

k=n+1

|sk − tk|
2k

≤ 2−n < ε

but

d
(

BS[n](s), BS[n](t)
)

=

∞
∑

k=1

|sn+k − tn+k|
2k

≥ 1

2
> δ.

Investigation 2. The equivalence between the maps T and L4 can be

represented well by using CAS.

When the students have become familiar with the properties of the chaos

using the previous digital model then they are able to investigate the chaotic

behavior of other models and to discover their connections, too. Let us continue

the investigation with the comparison of the iterations xn+1 = L4(xn) and yn+1 =

T (yn), where the function L4(x) = 4x(1 − x) is the so called logistic map with

parameter 4 (Figure 13/a), and the function T (x) =

{

2x, 0 ≤ x ≤ 1
2

2(1 − x), 1
2 ≤ x ≤ 1

is

the tent map (Figure 13/b). So we see the importance of the different models

and the necessity of discovering similarity relations between the models.
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Figure 13. a) Graph of the logistic map parameter 4.
b) Graph of the tent map

Obviously the shape of these two graphs is similar if we compare their monotonic

and extreme value properties. The similarities between these two maps can also

be extended to the iteration sequences if we compare the cobweb diagrams of the

iterations (Figure 14).

Figure 14. The iteration sequences are also similar

We can easily verify that the one-to-one map h(x) = sin2(π
2 x) on the interval [0, 1]

establishes these similarities between the tent and the logistic maps (Figure 15).

If we compute the composite function L4 ◦ h, then we get

(L4 ◦ h)(x) = L4(h(x)) = 4 · sin2
(π

2
x
)

·
(

1 − sin2
(π

2
x
))

=
[

2 · sin
(π

2
x
)

· cos
(π

2
x
)]2

= sin2(πx).
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Figure 15. The conjugacy map between the tent and the logistic map

Now we obtain the same function for the composition h ◦ T :

(h ◦ T )(x) = h(T (x)) =











sin2
(π

2
· (2x)

)

, if 0 ≤ x ≤ 1

2

sin2
(π

2
2(1 − x)

)

, if
1

2
≤ x ≤ 1











= sin2(πx).

The equality L4 ◦ h = h ◦ T means conjugacy between the maps L4 and T . Since

the inverse function h−1 of h exists on the interval [0, 1], the relation

L4 = h ◦ T ◦ h−1

holds. Thus the similarity of the iteration sequences is a consequence of the

relations

L
[n]
4 = h ◦ T [n] ◦ h−1 (n = 1, 2, 3, . . . ),

where T
[n]
4 and L

[n]
4 is the composition of T and of L4 n-times by itself, respec-

tively. We saw that the equivalence property of the tent and the logistic model

can easily be visualized and calculated symbolically, analytically and numerically

by use of CAS.

Investigation 3. The equivalency of the logistic and the saw-tooth map

can be represented well by the CAS.

Let us consider the so called saw-tooth map σ(x)=

{

2x, if 0≤x≤ 1
2

2x − 1, if 1
2 ≤ x≤ 1

}

=

frac (2x) on the interval [0, 1], where the symbol frac(2x) denotes the fractional

part of the real number 2x (Figure 16).

This function σ has a discontinuity property at the value x = 1/2. We can

compare the behavior of the logistic iteration xn+1 = L4(xn) with the behavior

of the saw-tooth iteration zn+1 = σ(zn) where the map L4 is continuous and the
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Figure 16. The saw-tooth map on the interval [0, 1]

map σ is discontinuous. We can carry out of this comparison by considering the

function

g(z) = sin2(πz)

on the interval [0, 1] (Figure 17).

Figure 17. The semi-conjugacy map between the logistic and the saw-
tooth map

We can show that the saw-tooth iteration zn+1 = σ(zn) and the logistic iteration

xn+1 = L4(xn) are connected by the relation xn+1 = g(zn+1) = sin2(πzn+1) for

all natural numbers n = 0, 1, 2, 3, . . . . This relation can be obtained from the

equality

(g ◦ σ)(z) = sin2(π frac (2z)) = sin2(2πz) = 4 · sin2(πz) · (1 − sin2(πz))

= L4(g(z)) = (L4 ◦ g)(z)

which holds for all z in the interval [0, 1] because the function g has period one,

i.e. g(z+1) = g(z). This relation is only a semi-conjugacy, because the function g

is not a one-to-one map. This similarity relation between the logistic and the saw-

tooth map enables us to work with a map realizing a more effective representation.
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Investigation 4. The equivalence between the logistic or the tent model

and the symbolic model can be represented well by using CAS.

The syllabus continues with a comparison between the Bernoulli-shift with

the tent map and the Bernoulli-shift and the logistic map. We can characterize

these two equivalences in a similar way, by the so called itinerary calculus. We

register 0 or 1 in a diary about the orbit starting from the initial value x0 ∈ [0, 1]

when the n-th element of the iteration is in the left half or the right half of the

interval [0, 1], respectively. This registration procedure establishes order in the

chaos. Symbolically we now define two functions g1 and g2 mapping from the

interval [0, 1] to the symbol space SP . Our function in the case of the logistic

map is

g1(x0) = s1s2s3s4 . . . where sn =











0, if 0 ≤ L
[n]
4 (x0) ≤

1

2

1, if
1

2
< L

[n]
4 (x0) ≤ 1

(n = 1, 2, 3, 4, . . . ),

and in the case of the tent map

g2(x0) = s1s2s3s4 . . . where sn =











1, if 0 ≤ T [n](x0) ≤
1

2

1, if
1

2
< T [n](x0) ≤ 1

(n = 1, 2, 3, 4, . . . ).

We can more easily give the systems of intervals mapping the n-th iteration T [n]

to the whole interval [0, 1] for the tent map than for the logistic map. But it is not

an easy task to demonstrate to the students that the functions g1 and g2 map the

interval [0, 1] onto the whole symbol space SP . We can verify the last statement

in the case of the logistic map by drawing the orbits for rational initial values.

These figures consist of criss-cross lines which are intuitively the chaos. But the

orbits in the case of the tent map for rational initial values are terminated in a

periodic cycle.

The conjugacy relationships

BS ◦ g1 = g1 ◦ L4, BS ◦ g2 = g2 ◦ T,

hold with the functions g1 and g2 and can be deduced easily from the definitions.

Let us consider the proof of the relation for example in the case of the logistic

map. We have (BS ◦ g1)(x0) = BS(g1(x0)) = BS(s1s2s3 . . . ) = s2s3s4 . . . and

(g1 ◦L4)(x0) = g1(L4(x0)) = s2s3s4 . . . , because of L4

(

L
[n]
4 (x0)

)

= L
[n+1]
4 (x0). In

the case of the tent map we can reason similarly.
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Investigation 5. The equivalence between the saw-tooth and the symbolic

models can be represented cumbersomely by using CAS.

We can show the equivalency between the dynamical systems ([0, 1], σ) and

(SP, BS) using the binary representation or expansion of the real number

z ∈ [0, 1]

z =
s1

2
+

s2

22
+

s3

23
+ . . . ,

where sn is the n-th binary digit of the number z which may be 0 or 1 (n =

1, 2, 3, . . . ). So we establish a correspondence between an arbitrary element z

of the interval [0, 1] and the element s = s1s2s3 . . . of the symbol space SP ,

which we write as g3(z) = s1s2s3 . . . . The basic relationship between these two

dynamical systems follows from the fact that the binary expression of the number

σ(z) will be the same as the binary expression of the number z, after omitting

the first digit of the number z:

σ(z) = frac (2z) = frac
(

2 ·
(s1

2
+

s2

22
+

s3

23
+ . . .

))

= frac
(

s1 +
s2

2
+

s3

22
+

s4

23
+ . . .

)

=
s2

2
+

s3

22
+

s4

23
+ . . .

So we have got the conjugacy relationship g3(σ(z)) = BS(g3(z)) = BS(s1s2s3 . . . )

= s2s3s4 . . . On the basis of this equivalence we can investigate the chaotic be-

havior of the saw-tooth map on the interval [0, 1], but, basically, this equivalence

cannot be well represented by using CAS.
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HUNGARY
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