
1/2 (2003), 247–257

Methods of teaching programming

Péter Szlávi and László Zsakó

Abstract. Programming methodology is one of the oldest fields of IS education, and
thus various methods have evolved for its teaching. While some of them could be used
effectively in primary or secondary education, others are more suited for students in
higher education. The methods themselves determine the structure and curricula of
courses such as Programming methodology, Data types and algorithms, Programming

technology.

Key words and phrases: teaching programming, algorithms, data structures, systematic
programming, program theorems.

ZDM Subject Classification: A40, B30, B40, D40.

Teaching programming is virtually as old as information technology itself. In

the beginning, (before 1950) it meant the understanding of how computers worked

and how they could be used. In this and the following era programming was an

“artistic” activity, programmers had to learn different tricks and gimmicks, and

furthermore they had to find out new algorithms for each problem. The knowledge

of programming was spread by word of mouth even in the 1950s. They used

programming languages which were based on the machine, thus they were forced

to spend more time working out the details than focusing on the essence of the

problem. Meanwhile, they had to realize that the computers were slow and did

not have enough memory capacity.

It became really important to teach programming after programming lan-

guages of higher level had appeared. On the influence of the previous era, how-

ever, it was based on teaching one particular programming language. The exer-

cises were to understand the instructions of the programming language and to

Copyright c© 2003 by University of Debrecen



248 Péter Szlávi and László Zsakó

introduce how it could be applied. Actually, teaching programming as we mean

it today, dates back to the 1970s. The big break in the methodology of pro-

gramming was brought by the book Structures in Programming (Dahl, Dijkstra,

Hoare [DDH], [D], Wirth [W]). Its valuable invention was that it used a few but

well defined algorithm and data structures, it divided the problems into subprob-

lems according to the principle “Divide et impera”, it created abstract algorithms

and data types independent of the programming language to solve programming

problems.

At the end of the ’70s the methodology of teaching programming was ap-

proached from another point of view as well, based on the way how children

think. This method was developed mainly by S. Papert [P]. J. Hvorecky and

J. Kelemen [HK] writes about a similar method although it is based on different

problem classes.

Several methods have been developed for teaching programming since then.

A few of them have already become out-of-date, most of them, however, are still

in use at a certain level of education. Although some of them are related to

methodology of program design, the majority of the methods are independent

from them.

Here is a list of the most widespread methods in teaching programming:

• methodical, algorithmic oriented

• data oriented

• specification oriented

• problem type-oriented

• language oriented

• instruction oriented

• mathematics oriented

• hardware oriented

• model oriented.

We would like to note that the majority of teachers prefer to use several methods

at the same time rather than stick to one single method.



Methods of teaching programming 249

1. Methodical, algorithmic oriented

This method, similarly to many others, covers the whole process of program-

ming:

– problem definition, specification

• algorithm and data structure planning, comprehension of the correctness of

the algorithm

• coding

• testing

• error detection, correction

• efficiency control, quality control

• documentation.

Each activity is to be dealt with separately. The methods and tools connected

with the topic should be considered in each case. Algorithm elaboration is con-

sidered to be of primary importance in this method, thus most of the emphasis is

laid upon this during teaching. There are algorithmic oriented elements in later

phases as well.

The basic idea of algorithm elaboration is systematic arrangement. The first

step includes general problem types and their general solution models, i.e. the

programming theorems. (Although it is formally provable [SzZs1] that the general

solution models of certain problem types are correct solutions to the relevant

problems, this method substitutes formal proof for informal one.)

The second step is to reduce the given problems to programming theorems,

i.e. to determine how to apply certain programming theorems. The speciality of

this method lies in the fact that it examines where and what needs to be actualized

both in specification and algorithm at the same time.

As the third step, the programming theorems should be combined so that

more theorems could be applied at the same time (not lineally, one after the

other). It is important to give the relevant (program transformation) rules not

only for the specification but for the combination of algorithms as well [HSzZs].

Data structure planning (a part of the subject traditionally called Data Struc-

tures and Algorithms) is to be processed here on the basis of the methodology

of programming, i.e. data structure is a certain type with specification, structure

representation and operation implementation [PSzZs].

A great number of decisions can be made during the coding phase depending

on the definite or more general programming language. This method observes the

vast majority of these decisions from algorithmic point of view. Thus the methods



250 Péter Szlávi and László Zsakó

of conversion between iterative and recursive algorithms [SzZs2], the realisation

of the usual programming structures (branches, iterations, functions, operators,

etc.) are dealt with this way as well. Apart from this, the method discusses the

tools of user-friendly programming (e.g. the realisation of menu) in this phase.

As regards the methods of testing, it handles the methods based on specification

(known also as black box) and the ones based on algorithm (known as white box)

as well [SzZsT].

In addition, the method of efficiency control is discussed with the help of

algorithm as well. This means that it defines general problem classes according to

execution time, reservation, and complexity (similarly to programming theorems),

it gives the algorithmic schemes and ideas for the enhancement of effectiveness (for

example, the principle of sequence segmentation can be used for the algorithms

of logarithmic search, quicksorting, parallel maximum and minimum choosing as

well as for determining roots by “bisection method”) [Zs], [B].

Since the programming language does not play a primary role either in this

or in the following two methods, it has little influence on the structure of pro-

gramming knowledge, thus programmers instructed by this method will not be

bound to one particular programming language.

One of the main principles of algorithm-oriented conception is that the de-

signer can put himself in the executor’s position thus acquiring informal ideas

about the correctness of the algorithm. This way individual experience can be

advantageous to sequential operation conceptions and experience of group oper-

ation and behaviour is beneficial to object oriented or parallel models.

2. Data-oriented

This method is similar to the previous one with the exception that it regards

data structure and type refinement as primary. Its basic principle is that problem

identification is regarded as type specification and it combines type refinement

with algorithmic structures: [J1], [J2]

• Cartesian product – sequence

• union, alternative data structures – branching

• multitude (set, sequence, hierarchical and network structures) – iteration

• recursively defined sequence (data recursion or recursive type) – recursion.

In the clear variety of the method the connection with the user can be regarded



Methods of teaching programming 251

as type refinement as well. We receive the input (forms) and output (reports)

formats from this.

While the stress was laid upon programming theorems in the previous method,

here data processing standard problems (data input, listing, listing with hierar-

chical totals, copying, up-dating, etc.) are put forward, which join input data

structures and output data structures. It is possible to give general data struc-

tures and algorithms for these just like for programming theorems [SzZs3].

This method emphasizes other problem types than the previous one. One

characteristic of the algorithmic oriented method is that first it expands algorith-

mic structures, that is its main principle is the principle of simple data structure –

complex algorithmic structure. As a contrast, data oriented conception follows the

principle of complex data structure – simple algorithmic structure. The programs

here can be based on the theory of “one reading – processing – one writing” for

a long time [BV].

3. Specification oriented

The notion of the method has a lot in common with the previous two ones.

However, it considers formal specification to be the most significant part of the

program development process, the algorithm is derived from the specification

automatically, then the code is created with the help of rigid coding instructions.

Similarly to the first method, there are programming theorems here as well, but

the algorithms of these are derived from the given specification [F].

While it is the transformation of the algorithm that is emphasized in the

algorithmic oriented method, here more stress is laid upon the transformation

of the specification. As a result, data structure and algorithm subjects may

contain more theoretical knowledge, may be based on theorems and on their

proof necessary for effective realisation. Since each phase involves mathematical

elaboration, it is advisable not to begin this method without profound theoretical

knowledge and being able to understand thet it requires abstraction skills [FNH].

4. Problem type-oriented

This method is fundamentally different from the previous three ones. Here

programming is seen as a global activity, it cannot be divided into separate parts,

and compared to the previous method, this one has got one essential feature,



252 Péter Szlávi and László Zsakó

which is the fact that we always deal with the whole program. (This will be true

for the following methods as well.) That is why it advances through each part

one after the other while discovering new methods.

We start from a definite problem class here, which belongs to classical math-

ematics, usually with problems from number theory (divisibility, prime numbers,

prime factor expansion), but this method is most successfully applied (especially

as regards primary and secondary education) in completely different fields:

• graphics

• word processing

• common algorithms.

The essence of all of them is that a series of problems based on one another has

to be solved. To solve the single problem we need new programming notions,

elements and they are invented because they are needed for solving a specific

problem. It has the advantage that new knowledge is derived from natural demand

and not as an allegation. Besides, it is used to solve the problem at the same

time and it is widely known that the highest level of understanding is the ability

to use the newly acquired knowledge.

The method based on common algorithms is especially suitable for getting

to know programming at an early age (in the first four years of primary educa-

tion, or even in kindergarten), since it is built upon our innate knowledge, and

programming notions, methods are derived from it. It is important to note that

algorithms have long been taught in kindergartens and primary schools only it

did not have anything to do with teaching informatics algorithmization [K].

We should note that this concept (i.e. algorithms work the same way as we

would do it by hand) is applied to a number of methods of teaching programming.

5. Language oriented

This is one of the oldest methods, where the aim, just like in the previous

case, is to produce an effective program. Another vital feature is that it is closely

related to one particular programming language as it is reflected in the following

examples:

One can often hear conversations like this:

– “What are you studying in programming?”

– “Pascal”

In other words: There are “Pascal” programmers, “C”-programmers, etc.



Methods of teaching programming 253

The basis of the method is that it teaches one particular programming language

and it introduces programming knowledge with the help of this language. Be-

cause the centre of this method is the programming language itself, it contains a

number of language-dependent information, which might be remembered as gen-

eral programming terms (an example is the knowledge connected to the use of

data-read-restore instructions in BASIC language). This is the reason why

programmers who learned one particular programming language have difficulty

changing over to another language.

Another source of danger is that the complexity of a certain programming

language element has hardly anything to do with the complexity of its application

in programming and when teaching with the emphasis on the language it is not

highlighted appropriately. Excellent examples of this are branching and pretesting

conditional iteration instructions (in Pascal they are if and while, which are of

about the same complexity from linguistic point of view, however, we deal with

problems that require iteration in the solution much more than with the ones that

include branching only.

Furthermore, there are several programming conceptions, activities (stack,

queue, sorting methods, etc.) that are not related to a certain programming lan-

guage element (at least not today concerning the programming languages taught),

thus they might be excluded from the process of teaching.

In spite of this there are a certain number of successful examples. These are

usually related to programming languages different from traditional programming

based on the Neumann principle [NF].

6. Instruction-oriented

This method is similar to language-oriented method with the exception that

it is based on a general language type instead of one particular language. This is

the most important difference between the two methods, which only means that

the problems caused by the use of one special language are solved, the ones in

connection with generalization still exist.

The method defines general language elements, according to the Neumann

principle:

• assignment, expressions;

• reading, writing;

• branching (IF-statement, Case-statement);



254 Péter Szlávi and László Zsakó

• iterations (counting, conditional pre- and post-testing);

• procedures;

• functions, operators;

• modules.

Apart from the difficulties of being bound to the language, there are all the

disadvantages of the previous method as well, therefore this method might be

considered dangerous.

7. Mathematics oriented

This concept is founded on the notions of another subject (which is math-

ematics in our example, but it could be another one as well). The problems to

be solved are taken from mathematics, where the individual problems are based

on each other in accordance with the principles of mathematics. Unfortunately,

there is no guarantee that the structure will be either logical or complete from

programming point of view.

Real temptation lies in mathematics itself with its “sovereign” topics, special

inner logic and proportions. There is no guarantee that these inner proportions

can be synchronized with the real aim, which is programming. It is interesting

to scan the teachers’ book written by Miklós Simonovits and Margit Gémes [SG],

as an early, yet of a very high standard, example of this tendency.

8. Hardware oriented

This method assumes that algorithmic knowledge cannot be understood with-

out high-level programming language knowledge; programming language knowl-

edge cannot be understood without assembly or machine code knowledge, respec-

tively; assembly knowledge cannot be understood without the understanding of

how the processor works; etc.

Originating from this appealing but incorrect reasoning, this methods tries

to build up programming knowledge from the bottom, claiming that: “To be able

to understand the structure of assembly instructions and to execute an assembly

program, one should know how processors work. Having acquired assembly lan-

guage it is possible to understand how the instructions of higher-level languages



Methods of teaching programming 255

work. With the knowledge of the instructions of higher-level languages it is easier

to understand how certain algorithms work.”

As a consequence, this method states that there is no need for programming

knowledge (in general: algorithmic and data modelling knowledge) except at

university or college. This completely contradicts the fact that everyone needs

to possess executive ability and algorithmic knowledge, as emphasized in public

informatics.

9. Based on a model

In this method models are introduced to the students (algorithms, program

codes) and they get information about programming by studying them. They

can produce new programs by modifying the existing ones.

Experimenting plays a very important role here, pushing programming knowl-

edge into the background. Students modify the programs that they have been

introduced evaluating the received results and in case it meets their expectations

the modification has been successful; if the result is not satisfactory, they have to

continue experimenting.

Brief evaluation of the methods

In our opinion, the first two methods (algorithmic and data oriented) can

be used towards the end of secondary education (for those preparing to work in

informatics business), in informatics professional training and in higher education.

Regarding motivation, algorithmic oriented method is more valuable because a

greater variety of more interesting problems can be used.

Specification oriented method is to be used for students whose major is in-

formatics at university (so-called elite training) as it can only be successful if the

students have profound mathematical knowledge. Concerning mass higher edu-

cation it might be introduced during the 4th or 5th year of university education.

The only method that is advisable to be used in itself at all levels of public

education (primary and secondary), where the aim is to develop algorithmic way

of thinking and not professional training is problem oriented method. Language

and instruction oriented methods are considered to be out-of-date and their appli-

cation might cause too much danger while they might be less useful than others.



256 Péter Szlávi and László Zsakó

Mathematics oriented method is not thought to be effective in teaching pro-

gramming but we must note that teaching mathematics with the help of program-

ming can be very useful for those possessing programming knowledge because, as

it has already been mentioned, the highest level of understanding mathematics is

the ability to apply it (e.g. in programming).

Hardware oriented method (especially in its final form) can also be regarded

out-of-date, which generates more interesting questions as well: e.g. Is it good

to teach subjects connected with computer architecture in the first terms? Or

should we teach certain parts of it later and more profoundly?

The method based on a model is an idea from “the Middle Ages” and only

artists of programming can be educated this way, professional programmers can-

not. This method is useful for a number of geniuses, others can only potter using

it. In conclusion, here at the informatics teachers’ training courses of University

of Eötvös Loránd we have chosen algorithmic oriented method within the subjects

Programming Methodology and Data Structures and Algorithms. (Naturally, we

adjust teaching certain programming steps to the expected level of abstraction at

the university; therefore we have to include a lot of formal knowledge for students

studying to be informatics teachers.) Moreover, there are other subjects (Com-

puter Graphics, Methodology of Informatics Application) as well which are based

on this conception. We are doing this although we are aware of the fact that the

vast majority of our graduated students will not use this method when teaching

informatics.

References

[DDH] O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming, Aca-
demic Press, New York, 1972.

[D] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[W] N. Wirth, Systematic Programming: An Introduction, Prentice-Hall, 1973.

[P] S. Papert, Mindstorms, Children, Computers and Powerful Ideas, Basic Books,
Inc., Harper Colophon Books, 1981.

[HK] J. Hvorecky and J. Kelemen, Algoritmizácia, elementárny úvod, ALFA, Bratislava,
1983.

[K] C. H. A. Koster, Systematisch leren programmeren, Educaboek, 1984.

[NF] A. E. Nicholson and K. M. Fraser, Methodologies for teaching new programming

languages: A case study teaching LISP, CACM, 1997.

[SzZs1] Szlávi Péter és Zsakó László, Módszeres programozás: Programozási tételek,
ELTE TTK Informatikai Tanszékcsoport, 1996.



Methods of teaching programming 257

[HSzZs] É. Harangozó, P. Szlávi and L. Zsakó, Joining Programming Theorems, a Prac-

tical Approach to Program Building, Annales Universitatis Scientiarum Budapesti-
nensis, Sectio Computatorica, Vol. 17, 1998, 155–172.

[PSzZs] Pap Gáborné, Szlávi Péter és Zsakó László, Módszeres programozás: Adatt́ıpu-

sok, ELTE TTK Informatikai Tanszékcsoport, 1998.

[SzZs2] Szlávi Péter és Zsakó László, Módszeres programozás: Rekurzió, ELTE TTK
Informatikai Tanszékcsoport, 1995.

[SzZsT] Szlávi Péter, Zsakó László és Temesvári Tibor, Módszeres programozás: A pro-

gramkésźıtés technológiája, ELTE TTK Informatikai Tanszékcsoport, 1995.

[Zs] Zsakó László, Módszeres programozás: Hatékonyság, ELTE TTK Informatikai
Tanszékcsoport, 1996.

[B] J. L. Bentley, Programming pearls, Communications ACM 27, no. 2–11
(Feb.–Nov., 1984).

[J1] M. A. Jackson, Principles of Program Design, Academic Press, 1976.

[J2] M. A. Jackson, Structure-oriented programming, in Program Transformation and

Programming Environment, Springer, 1984, 169–180.

[SzZs3] Szlávi Péter és Zsakó László, Módszeres programozás: Adatfeldolgozás, ELTE
TTK Informatikai Tanszékcsoport, 1995.

[BV] Bánné Varga Gabriella, Programtervezési gyakorlatok, SZÁMALK, 1989.

[F] Fóthi Ákos, Bevezetés a programozáshoz, Tankönyvkiadó, 1983.

[FNH] Fóthi Ákos, Nyékyné Gaizler Judit és Harangozó Éva, Abstraction strategies in

practice, Annales Universitatis Scientiarum Budapestinensis, Sectio Computator-
ica, Vol. 19, 2000, 75–92.

[SG] Simonovits Miklós és Gémes Margit, Tanári segédkönyv Simonovits Miklós

“Számı́tástechnika” tankönyvéhez, OKKFT TS 4/1, 1991.

[KS] R. Kempf and M. Stelzner, Teaching object-oriented programming with the KEE

system, OOPSLA’87 Proceedings, 1987.

PÉTER SZLÁVI

DEPARTMENT OF INFORMATICS METHODOLOGY

EÖTVÖS LORÁND UNIVERSITY

BUDAPEST

HUNGARY

E-mail: szlavi@ludens.elte.hu

ZSAKÓ LÁSZLÓ

DEPARTMENT OF INFORMATICS METHODOLOGY

EÖTVÖS LORÁND UNIVERSITY

BUDAPEST

HUNGARY

E-mail: zsako@ludens.elte.hu

(Received May, 2003)


