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Two centuries of the equations of

commutativity and associativity of

exponentiation
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Abstract. In this survey article we guide the reader through the solution of the com-
mutative equation of exponentiation xy = yx and that of the associative equation of
exponentiation x(yz) = (xy)z. Various characterizations of the integer, rational, real
and complex solutions are discussed together with some new results and open direc-
tions. The article is supplemented by a detailed and commented bibliography on the
history of these equations.
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1. Introduction and notation

The commutative equation of exponentiation possesses a long and rich history

and has provided many of us with a fruitful source of challenging problems. As we

will observe, several aspects of this equation have been discovered and rediscovered

by many authors during the last two centuries. These results however often seem

to be independent of each other or are scattered in the literature.

Our present discussion assembles the most noteworthy facts about the integer,

rational, real and complex solutions of the equation

xy = yx (1)

in Sections 2, 4 and 5 in order to enlighten the reader on this broad topic. Then,
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based on this commutative equation, positive integer, rational and real solutions

of the associative equation

x(yz) = (xy)
z

(2)

are derived in Section 3.

Finally, Section 6 comments on the results and known references collected

in this survey and puts them into chronological order revealing some historical

connections as well.

In order to keep the size of our exposition limited, known facts will only

be stated, generally without repeating the proofs, though they are sometimes

indicated to help the interested readers make their own discoveries.

In connection with (1), we will mainly focus on its nontrivial solutions, that is

when x 6= y. Throughout the paper, dom f , ran f and f [−1] denote the domain of

definition, the range and the inverse function of f , respectively. In the context of

multiple-valued powers, lr stands for the real, one-valued natural logarithm, with

dom lr = (0,+∞), moreover, arg z is the argument of the (complex) number z,

with ran arg = [0, 2π).

2. Positive commutative pairs

2.1. The positive real solutions of xy = yx

This section completely characterizes – via suitable parametrizations – all

nontrivial positive real pairs (x, y) satisfying (1). Set

ψ(v) := v
1

v−1 0 < v 6= 1,

χ1(u) :=

(

1 +
1

u

)u

u ∈ R \ [−1, 0],

χ2(u) :=

(

1 +
1

u

)u+1

u ∈ R \ [−1, 0],

further, let W denote the principal branch of the Lambert W -function with

domW =
[

− 1
e
,∞
)

and ranW = [−1,∞) defined by

W (x) eW (x) = x.

(Therefore, the real-valued W -function is nothing else than the inverse function

of x 7→ x ex (x ≥ −1). It can be used to represent solutions to a variety of
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transcendental equations. We remark that – as in the case of the logarithm and

with suitable care – the W -function can be extended to the complex domain also.)

Proposition 2.1. All positive nontrivial real solutions to xy = yx are given

by any of the following formulae.

(x, y) = (ψ(v), v ψ(v)) 0 < v 6= 1 (3)

(x, y) =

(

ψ(v), ψ

(

1

v

))

0 < v 6= 1 (4)

(x, y) = (χ1(u), χ2(u)) u ∈ R \ [−1, 0] (5)

(x, y) = (x, xψ[−1](x)) 1 < x 6= e. (6)

Alternatively, if 0 < y < e < x, one has

(x, y) =

(

x,−
x

lnx
W

(

−
lnx

x

))

. (7)

Proof. By introducing a positive real parameter v := y
x
> 0, equation (1)

can be rewritten as xvx = (vx)
x
. Raising this to the power 1

x
, we get the crucial

relation

vx = xv.

v = 1 (i.e. x = y) yields the trivial solutions. If 0 < v 6= 1, then ln v+lnx = v lnx

hence lnx = ln v
1

v−1 thus x = ψ(v) and y = vx = v ψ(v), proving (3). A direct

computation shows that v ψ(v) = ψ( 1
v
), which justifies (4). As for (5), apply the

substitution u := 1
v−1 . (6) is simply obtained from (3) by using the definition

of the inverse function ψ[−1]. For (7), analyse carefully the defining equations

(together with the domains and ranges) of ψ[−1] and W to prove the relation

W
(

− lnx
x

)

= −ψ[−1](x) · lnx for x > e, then use (6). It can be easily verified that

(3)–(7) are solutions of (1) indeed. �

Remark 1. If 0 < v 6= 1, then ψ(v) is the number for which multiplication by

v or raising to the power v amounts to the same thing, since v ψ(v) = ψ(v)v.

Remark 2. According to (4), a solution (x, y) is transformed into the solution

(y, x) by the substitution v 7→ 1
v
.
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Remark 3. Symmetry of the solutions manifests itself in the fact, for example,

that the function xψ[−1](x) is equal to its own inverse, in other words,

xψ[−1](x) · ψ[−1]
(

xψ[−1](x)
)

= x

holds true for 1 < x 6= e. (Deducing this property directly from the definition

of ψ[−1] is instructive.) Symmetry also implies that the graphs of χ1 and χ2

are reflections of each other about the line x = − 1
2 in the x-y plane, that is

χ1(−u− 1) = χ2(u) and χ2(−u− 1) = χ1(u).

Remark 4. Somewhat surprisingly, the upper left part of the nontrivial curve

on Figure 1 can not be obtained from (7), since the right hand side of (7) gives

trivial solutions for x ∈ (0, e) \ {1}, that is − x
ln xW

(

− lnx
x

)

= x here.

1 e
x

1

e

y

Figure 1. The graph of positive trivial and nontrivial solutions of xy = yx

Finally, we phrase some simple consequences.

Proposition 2.2. xy = yx can not hold if x 6= y and at least one of them is

in (0, 1] ∪ {e}. Similarly, if x, y > e and x 6= y, then xy = yx does not admit any

solutions. Moreover, if xy ≤ ee and x 6= y, then xy 6= yx.
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Proof. The first two statements can be deduced from Figure 1. To verify

the third one, substitute (3) into xy to get

ψ(v)v ψ(v) = v
v
( v

v−1 )
v−1 ,

and prove that the range of this function is the interval (ee,+∞). �

2.2. Positive integer and rational solutions

Now let us turn our attention to the nontrivial positive integer and positive

rational solutions of xy = yx. A nice elementary number theoretical proof in the

recent literature can be found in [30] or in [32]. We just repeat the main results

here.

Proposition 2.3. All positive nontrivial rational solutions (x, y) to xy = yx

are given by

(x, y) =

(

(

1 +
1

n

)n

,

(

1 +
1

n

)n+1
)

≡ (χ1(n), χ2(n))

n ∈ Z \ {−1, 0},

(8)

while the positive nontrivial integer solutions are only (2, 4) and (4, 2).

A curiosity about formula (χ1(u), χ2(u)) will be highlighted in Section 6.

3. Positive associative triples

In order to determine all positive real triples (x, y, z) for which (xy)
z

= x(yz)

holds, notice that the left hand side is equal to xyz. If x 6= 1, then we have

yz = yz. But this is the very equation we have encountered in the commutative

case – see the proof of Proposition 2.1. If z = 1, then every positive y is a

solution, otherwise y = ψ(z). Therefore we have all positive real triples for which

exponentiation is associative (see Figure 2):

(1, y, z) with y, z > 0,

(x, y, 1) with x, y > 0, x 6= 1,

(x, ψ(z), z) with x, z > 0, x 6= 1, z 6= 1.
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Figure 2

3.1. Positive integer and rational solutions

Proposition 3.1. Positive rational powers are associative if and only if the

triple (x, y, z) falls into one of the four categories below:

(1, y, z) with rational y, z > 0,

(x, y, 1) with rational x, y > 0, x 6= 1,

(

x,

(

1 +
1

n

)n

,
n+ 1

n

)

with rational 0 < x 6= 1 and n ∈ N+,

(

x,

(

1 +
1

n

)n+1

,
n

n+ 1

)

with rational 0 < x 6= 1 and n ∈ N+ .

Proof. The first two cases are trivial, while the other two follow from the

formula (x, ψ(z), z), since z > 0 and ψ(z) are rational by assumption, and com-

paring formulae (3) and (5), further using Proposition 2.3 yield that ψ(z) = χ1(n)

or ψ(z) = χ2(n) must hold with some n ∈ N+, but ψ is monotone decreasing,

hence we have z = n+1
n

or z = n
n+1 for some n ∈ N+. �
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Proposition 3.2. Positive integer solutions to (2) are given by the following

triples:

(1, y, z) with integers y, z > 0,

(x, y, 1) with integers x, y > 0, x 6= 1,

(x, 2, 2) with integer x > 1.

4. Real commutative pairs

In order to extend the investigation of xy = yx to x, y ∈ R \ {0}, powers will

be interpreted as multiple-valued complex expressions, i.e.

xy :=
{

ey(lr |x|+i·argx+2πki) : k ∈ Z
}

⊂ C.

Definition 4.1. We say that a real pair (x, y) (x, y ∈ R \ {0}) is a solution to

xy = yx, if xy ∩ yx 6= ∅.

It is shown in [10] that the set

C := {(x, y) : x, y ∈ R \ {0}, x 6= y, x lr |y| = y lr |x|}

is the union of four curves Cj (j = 1, 2, 3, 4), lying in the jth quadrant, see Figure 3

(though C1 and C3 have two points missing: (e, e) and (−e,−e), respectively).

As we have seen, C1 is a subset of the nontrivial solution set

S := {(x, y) : x, y ∈ R \ {0}, x 6= y, xy ∩ yx 6= ∅},

and an elementary argument shows in [10] that S ⊂ C. [21] proves that S is

countably dense on C\C1. However, it is important that S∩Cj 6= Cj (j = 2, 3, 4).

The necessary and sufficient condition for a real pair (x, y) to be a nontrivial

solution is given implicitly by the following proposition.

Proposition 4.2 (see [10], cf. [21]). (x, y) ∈ S if and only if

(x, y) ∈ Cj (j ∈ {1, 2, 3, 4})
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-1-e
x

y

Figure 3. Not all points on the curves C2, C3, C4 are solutions of xy = yx

and there exist integers k,m, n ∈ Z such that (x, y) satisfies the jth equation

below:

1. kx = my + n

2. 2kx = (2m+ 1)y + 2n

3. (2k + 1)x = (2m+ 1)y + 2n

4. (2k + 1)x = 2my + 2n.

Positive and negative rational solutions of (1) have also been described –

explicitly – in [22]. The interested reader can reconstruct them on one’s own.

There is, however, a subtle difference: while C1 ∩ (Q × Q) ∩ S = C1 ∩ (Q × Q),

this is no longer true for C3, even though C3 = −C1. (Propositions 2.3 and 4.2

help.) In contrast, C2 and C4 behave similarly, so the following proposition –

whose proof closely follows that of (3) – suffices.

Proposition 4.3.

C4 =
{(

v−
1

v+1 ,−v · v−
1

v+1

)

: 0 < v
}

, (9)

C4 ∩ (Q × Q) = {(1,−1)}. (10)
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Corollary 4.4. If (x, y) ∈ C4 and x ∈ Q \ {1}, then y ∈ R \ Q.

Finally, note that the second sentence of Theorem 2 in [21] incorrectly states

that if (x, y) ∈ S \C1 then x and y are both rational or both irrational. (In addi-

tion, there are other (typographical) errors in the counterpart of Proposition 4.2

in [21], but those do not affect the flaw in the proof of Theorem 2.) The proof in

[21] misses the case m = 0 in the fourth equation in Proposition 4.2, for example.

A counterexample is k := 0, m := 0, n := 1, because then x = 2 is rational,

but the corresponding solution y = −0.7666646 . . . obtained from (9) must be

irrational by Corollary 4.4. At the same time, this observation also answers affir-

matively the open question in the same paper [21] by showing that there exist a

rational number x and an irrational number y such that (x, y) ∈ S.

5. Complex commutative pairs

Now consider the equation

zw = wz (11)

in the sense of Definition 4.1 with z, w ∈ C \ {0}.

Proposition 5.1. zw = wz is equivalent to demanding that there exist

integers k, l,m ∈ Z such that

−|z| cos ζ · lr |w| + |w| cosω · lr |z|

+ (2 l π + ω) |z| sin ζ − (2 k π + ζ) |w| sinω = 0

and

−|z| sin ζ · lr |w| + |w| sinω · lr |z|

+ (2 k π + ζ) |w| cosω − (2 l π + ω) |z| cos ζ − 2mπ = 0,

where ζ := arg z and ω := argw.

Proof. Use the definitions of multiple-valued powers, then take real and

imaginary parts. �

Due to the complex nature of these equations, no attempt is made here to

give the general solutions of (11). However, existence can be established without

much effort.



228 Lajos Lóczi

Proposition 5.2. For every w ∈ C \ {0, 1} equation (11) has a nontrivial

solution.

Proof. The beginning of the proof is the same as in [2]. zw = wz is equiva-

lent to demanding that ln z
z

= lnw
w

+ 2πmi
zw

holds for some m ∈ Z. It is sufficient

to take m = 0 for now. Let w ∈ C \ {0, 1} be arbitrary, and let A := lnw
w

, for

some value of the logarithm. (The original proof in [2] then went on by showing

that the two polar curves defined by the real and imaginary parts of the equation
ln z
z

= A always intersect. More than a century later, we could give a different

proof.) The exponential substitution z =: es transforms the equation ln z
z

= A

into s · e−s = A. For A = 0 (that is, for w = 1), there are only finitely many

solutions, namely s = 0 (that is z = 1). Hence, by virtue of Picard’s theorem,

s · e−s = A must have infinitely many solutions for A 6= 0. It is seen that these

have to be different modulo 2πi, thus z = es possesses infinitely many different

values. This proves that for any w ∈ C \ {0, 1} there exists z ∈ C \ {0, 1}, z 6= w,

such that zw ∩wz 6= ∅. �

Remark 5. It is interesting to note that (11) has nontrivial solutions even for

w = 1. Indeed, suppose z = reiϕ with r > 0 and ϕ ∈ [0, 2π). Then 1z = z1 is

equivalent to 2πk · r cosϕ = ϕ + 2πl and −2πk · r sinϕ = lr r, for some k, l ∈ Z,

which admits a solution k = 1, l = 0, r = 0.261739 . . ., ϕ = 0.952826 . . ., for

example. Figure 4 shows some other solutions for different values of k and l.

Now we construct infinitely many nontrivial solutions of zw = wz .

Proposition 5.3. For every v ∈ C\{0, 1} the complex analogue of (3) yields

a nontrivial solution to (11).

Proof. Use the principal value of the expression v
1

v−1 . �

Example 1. Let v := 1 + i. Then v
1

v−1 = (1 + i)−i and (using approximate

values) we have z := 2.06287 − 0.745007i ∈ (1 + i)−i, and w := v z = 2.80788 +

1.31787i ∈ (1 + i)1−i. Further, one can show that zw ∋ 14.298 + 0.886354i ∈ wz

holds.

The analogy with formula (3) is not complete, however. Namely, we have

shown there if x, y > 0 and x 6= y are given positive numbers such that xy = yx,

then x = v
1

v−1 for v := y
x
. We have discovered (effectively using Proposition 5.1
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Re z
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Im z

Figure 4. Some nontrivial solutions of 1z = z1

and the computing power of Mathematica) that this is no longer true in the

complex case.

Example 2 (Values are correct to 8-digit precision). There exist z, w ∈ C \
{0, 1}, z 6= w such that zw ∩wz 6= ∅, but z 6∈ v

1
v−1 for v := w

z
. Indeed, let

z := 0.33300028− 0.01584562i and w := 0.66600056− 0.03169125i,

then v := w
z

= 2 and zw ∋ −0.35447941 + 0.62145363i ∈ wz , but clearly, z 6∈

v
1

v−1 = {2}.

Scrutinizing the operations in the proof of (3) reveals the explanation. The

main point is that well-known identities in the positive reals are weakened in the

complex case, for example, only abc ⊂
(

ab
)c

holds for general complex numbers.

Thus it is natural to ask finally whether every nontrivial solution of zw = wz

can be obtained from (v
1

v−1 , v · v
1

v−1 ) by suitably choosing (possibly different)

values of v
1

v−1 :

Open Problem. Is it true that given z, w ∈ C\{0} arbitrarily such that z 6= w

and zw ∩wz 6= ∅ hold, there exist v ∈ C \ {0, 1} and z1 ∈ v
1

v−1 , w1 ∈ v · v
1

v−1 such

that z1 = z and w1 = w?
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6. Bibliographical remarks

The body of the material brought together in our survey has been (re)discov-

ered by the author (with the main exception being Section 4, which was motivated

by [21] to settle a question and an incorrect statement contained therein and

noticed lately by the present author). To be more explicit, we first indicate how

our work is related to other papers.

Sections 2 and 3 can essentially be considered as the condensed version of our

earlier article [30].

Later, an extensive search in the literature resulted in a gradually expanding

collection of references concerning the commutative equation, see further remarks

below. (We particularly recommend the relevant sections of the interesting survey

[25] also containing a host of references. For the sake of completeness, we have

quoted all of those regarding (1) explicitly.)

Nevertheless, it seems that there are still some results of ours which, to the

best of our knowledge, were not published by other authors. These include (the

already mentioned) Section 3 and Section 5 – with the exception of the content

of Proposition 5.2 – as well as formula (7).

Finally, some brief comments and additional information on other references

will follow.

Euler [1] himself mentions formulae (3) and (5). Figure 1 appears in his book

among the analyses of transcendental curves and he also gives some positive ra-

tional solutions of (1) based on (5). [2] indicates that for every w ∈ C \ {0} there

exist (in general infinitely many) z ∈ C \ {0} such that (11) holds. [3] contains

formula (5). [4] gives a series expansion for the function ψ[−1](x). [7] and [8]

determines the positive integer and positive rational solutions of (1), respectively.

[9] reports other references concerning (1) from the same era. [11] mentions a

trigonometric parametrization of the real solutions of (1). [12] interprets the so-

lution curve of (1) as an evolute. [13] determines the positive rational solutions as

well. [14] formulates (3) and analyses the behaviour of those coordinate functions.

Problems indicated in [15] discuss (3) and (5) from various perspectives, but no

solutions to those exercises are given in the book.

[16] proves that all integer solutions of (1) are (2, 4), (4, 2) and (−2,−4),

(−4,−2). [17] examines (1) in algebraic extensions and in ideals.

Following [18] and [23], formula (χ1(u), χ2(u)) reveals a wonderful and truly

remarkable hierarchy:

• if u ∈ R \ [−1, 0], it gives the positive real solutions of (1),
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• if u ∈ Q \ [−1, 0], we get the solutions in the positive real algebraic field,

• if 1
u

∈ Z \ [−1, 0], then it yields solutions in the ring of positive algebraic

integers,

• if u ∈ Z \ [−1, 0], the formula gives the positive rational solutions,

• while if u ∈ {−2, 1}, it yields the positive integer solutions of (1).

(The last – seemingly strange – case and the role of the set [−1, 0] become clear if

one turns back to Remark 3 in Section 2.1 about the reflection symmetry of the

graphs of χ1 and χ2.)

Positive rational solutions of (1) are included in [19] and also in [20]. (Ac-

cording to [20], equation (1) in the positive integers was among the problems

of the Moscow Mathematical Olympiad in 1948.) [24] examines the associative

property. [25] devotes one sentence to the solution of (2). Positive real solutions

of the equation aa = bb are determined by [28] (see [25] also), however this is

trivial for us: perform the substitutions a 7→ 1
x

and b 7→ 1
y
. (This way one obtains

all positive rational solutions to the equation aa = bb as well.)

[29] proposes various inequalities involving xy and yx (consult [25] again for

further details). [31] mentions an interesting relation between the positive real

solutions of (1) and the convergence of the “power-tower” sequence

a1(x) := x and an+1(x) := xan(x),

where x ∈ R+ and n→ +∞. This sequence also appears in [15], and a variant in

[26]. Refer – of course – to [25] as well.

For a functional representation of the W -function and of x
1
x = y

1
y , see [33],

the latter equation being intimately connected to (1), see e.g. [32].

Acknowledgement. The author would like to thank the referees for their

helpful remarks and suggestions about the paper.
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