
1/2 (2003), 203–218

The Frobenius exchange problem on

competitions and in classroom

Géza Kiss

Abstract. Let a1, . . . , an be relatively prime positive integers. The still unsolved Frobe-
nius problem asks for the largest integer which cannot be represented as

∑

xiai with
non-negative integers xi, and also for the number of non-representable positive integers.
These and several related questions have been investigated by many prominent mathe-
maticians, including Paul Erdős, and a wide range of partial results were obtained by
various interesting methods differing both in character and difficulty. In this paper we
give a self-contained introduction to this field through problems and comments suitable
also for treatment in a class of talented students.
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1. The greatest non-representable number

In this presentation we show some possible educational aspects of an extensive

number-theoretical problem. Though there have been published some 200 papers

on this topic, as far as we know, nobody has dealt yet with the possibility of

applications at school. We hope to enlighten that problems of this type can be

used well in teaching talented students.

We also give a sketchy summary of the whole Frobenius problem in order to

systemize the material and the exercises in a unified frame.

The first appearance of the coin exchange problem on mathematical compe-

titions was in the academic year 1982/83.

Copyright c© 2003 by University of Debrecen
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Problem 1 (International Mathematical Olympics, Paris [14]). Let a, b, c

be pairwise relatively prime positive integers. Show that

2abc− ab − bc − ca

is the largest integer, which cannot be written in the form

xbc + yca + zab,

where x, y, z are non-negative integers.

Problem 2 (Hajós György Competition for Technical College students, Bu-

dapest). Someone suggested to mint 3 forint coins besides the existing ones. The

idea was based on the opinion that any integer denomination greater than 7 forints

can be payed using only 3 and 5 forint coins without exchange. Is this statement

true?

Both exercises are special cases of the number-theoretical Frobenius problem,

which can be formulated in general as follows: Let a1 < a2 < · · · < an be positive

integers, gcd(a1, . . . , an) = 1. Find the greatest positive integer K, for which the

equation K =
∑n

i=1
xiai has no solution in non-negative integers xi.

We denote this largest positive integer by G(a1, . . . , an), and the number of

all positive integers K, for which the equation K =
∑n

i=1
xiai has no solution

(with xi ≥ 0) by N(a1, . . . , an).

Before turning to further problems, let us solve Problem 2. By our new

notation we have to prove G(3, 5) = 7. Obviously, the multiples of 3 can be

represented. The same is true from 5 for those numbers which give 2 as a residue

divided by 3. The minimal representable number with residue 1 divided by 3

is 10. Thus in the last two residue classes mod 3 the greatest non-representable

elements are 7 and 2, resp. The largest one among them is 7. �

Analogously to the previous proof we can show:

Problem 3. G(a1, a2) = (a1 − 1)(a2 − 1) − 1, if gcd(a1, a2) = 1.

For the proof we have to use, that if gcd(a1, a2) = 1 and a1 < a2, then 0, a2,

2a2, . . ., (a1 − 1)a2 contain exactly one element from each residue class mod a1.

We call such numbers a complete residue system mod a1.

It is not evident that there always exists a maximal non-representable number

also in the case of more than two ai’s.
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Problem 4. If gcd(a1, . . . , an) = 1, then there always exists a number

G(a1, . . . , an) such that, for K > G(a1, . . . , an) the Diophantine equation K =
∑n

i=1
xiai can be solved in non-negative integers.

This exercise, which could be called the fundamental theorem of the Frobe-

nius problem, appeared in the Mathematical and Physical Journal for Secondary

Schools in 1997 attached to Béla Vı́zvári’s [18] articles.

We prove the statement by mathematical induction on n. The case n = 2 was

indicated in the previous problems. If n > 2, then assume that the statement is

true for k and let us examine it for k+1. In the case n = k+1 let d be the greatest

common divisor of the first k numbers: d = gcd(a1, . . . , ak). By the induction

hypothesis, every sufficiently large positive integer can be represented by the

numbers a1

d
, a2

d
, . . . , ak

d
. Hence there exists a number u such that (u, ak+1) = 1

and u = v1
a1

d
+ v2

a2

d
+ . . . + vk

ak

d
, where v1, v2, . . . , vk are non-negative integers.

Since d and ak+1 are relatively prime, otherwise a1, a2, . . . , ak+1 would have a

common divisor greater than 1, thus also ud and ak+1 are relatively prime. Using

that the statement is true for n = 2, we have that with finitely many exceptions

every positive integer can be written in the form

x1du + x2ak+1 = x1v1a1 + x1v2a2 + . . . + x1vkak + x2ak+1,

where x1v1, x1v2, . . . , x1vk, x2 are non-negative integers. �

In spite of the fact that this general result is actually known from the first

appearance of the problem, the exact determination of G(a1, . . . , an) seems to be

a difficult task in most cases. Already in the case of 3 different coins no general

formula can be given. Inserting a new denomination into our set of coins either

has no effect on the greatest non-representable number (because the new coin

is a multiple of a smaller one, or it is greater than the largest number which

was not representable by the previous coins), or, on the contrary, it reduces the

limit of representation by enriching tremendously the combinatorial choices of the

denominations. In this case the structure of the smallest representatives in the

residue classes becomes almost confused.

Therefore, most publications deal with some special conditions in order to

make this structure more treatable. This yields actually also the possibility of

constructing exercises. Let us examine first the case of three consecutive odd

numbers.

Problem 5. Determine G(2k + 1, 2k + 3, 2k + 5).
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The key for the solution is in looking at the residues of the other two numbers

modulo 2k + 1. These will be multiples of 2 and 4 for every linear combination.

The numbers 0, 2, 4, . . . , 4k form a complete residue system modulo 2k + 1. To

reach the largest residue we have to use the element 2k + 5 exactly k times (or,

if instead we take 2k + 3 a few times, we definitely go wronger). Also the smaller

residues can be represented from at most this many elements, so the maximal non-

representable element is G(2k+1, 2k+3, 2k+5) = k(2k+5)−(2k+1) = 2k2+3k−1.

�

Roberts [15] proved in 1962 by similar methods that

Problem 6. Let ai form an increasing arithmetical progression: a1 = a,

a2 = a + d, . . . , an = a + (n − 1)d, where gcd(a, d) = 1. Then

G(a1, a2, . . . , an) =

⌊

a − 2

n − 1

⌋

a + (a − 1)d.

From the 1960’s this problem became quite popular among mathematicians

and they determined the exact value of G(a1, . . . , an) in many special cases. There

were two important centres: one was led by the German Hofmeister, the other

was led by the Norwegian Selmer. The paper of Ramı́rez Alfonsin [13] published

in Bonn in 2000 gives an extensive survey of the most important papers in this

topic.

Let us finish this section with solving Problem 1, which can show us with

its level of difficulty, with its ideas and methods in the solution, and with its

harmonic structure (hopefully) quite a lot from the beauties of the Frobenius

problem.

We prove first that T = 2abc− ab − bc − ca is non-representable in the form

xab+ybc+zca, where x, y and z are non-negative integers. If it were representable,

i.e.

xbc + yca + zab = 2abc − ab − bc − ca,

then

(x + 1)bc + (y + 1)ca + (z + 1)ab = 2abc

would hold. Since for example bc and a are relatively prime, a divides x + 1, so

a ≤ x + 1; analogously b ≤ y + 1, and c ≤ z + 1, which imply

2abc = (x + 1)bc + (y + 1)ca + (z + 1)ab ≥ 3abc,

clearly a contradiction.
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Now we show, that to any positive integer t′ there exist non-negative (more-

over positive) integers x, y and z, for which

xbc + yca + zab = 2abc + t′

is true. This means that every integer t > 2abc is representable in the form

xbc + yca + zab = t, where x, y, and z are positive integers.

We observe that

bc, 2bc, 3bc, . . . , (a − 1)bc, abc

give different residues divided by a, so they form a complete residue system mod

a, hence one of them, say x1bc is in the same residue class as t, so

x1bc ≡ t (mod a), 1 ≤ x1 ≤ a.

Analogously, we get that there exist integers y1 and z1 such that

y1ca ≡ t (mod b), 1 ≤ y1 ≤ b,

z1ab ≡ t (mod c), 1 ≤ z1 ≤ c.

This implies that

(x1bc − t) + y1ca + z1ab = x1bc + y1ca + z1ab − t

is divisible by a, as well as by b and c, and since a, b and c are pairwise relatively

prime, it is divisible by abc, so

s = x1bc + y1ca + z1ab ≡ t (mod abc).

This means that s and t, and hence s − 1 and t − 1 give the same residue mod

abc, namely

t − 1 = q · abc + r,

s − 1 = q′ · abc + r (0 ≤ r < abc).

Here q ≥ 2, since t > 2abc, and q′ ≤ 2, since s ≤ 3abc by the upper bounds on

x1, y1 and z1. Subtracting the two previous equations we obtain

t − s = (q − q′)abc,

t = s + (q − q′)abc = (x1 + (q − q′)a)bc + y1ca + z1ab,
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proving the assertion, because x = x1 + (q − q′)a, y = y1, and z = z1 are positive

integers. �

Let us stay for a few more moments at this problem. We can give a short

proof via a more general result which, however, at the same time may hide the

essential points of the question.

Johnson [6] published the following statement in 1960, which can be inter-

preted and verified easily:

Problem 7. Let a1, a2, a3 be relatively prime positive integers and d =

(a1, a2) the gcd of the first two numbers. Then

G(a1, a2, a3) = d · G
(a1

d
,
a2

d
, a3

)

+ (d − 1)a3.

At first sight the statement does not seem to be very interesting, but on the

one hand it can be largely generalized, and on the other hand it gives a quick

solution to Problem 1. We also use that a | ab implies G(a, b, ab) = G(a, b) =

ab − a − b if a and b are relatively prime. Thus

G(bc, ca, ab) = c·G(b, a, ab)+(c−1)ab = c(ab−a−b)+(c−1)ab = 2abc−ab−bc−ca.

2. About the number of non-representable integers

Together with Problem 3 of the previous section also the following related

question appeared among the problems of Sylvester [17] in 1884:

Problem 8. We have sufficiently many coins of two different denominations.

Determine the number of those positive integers which “cannot be payed” by using

these two types of coins without exchange.

Using our earlier notation we want to find the exact value of N(a1, a2). We

make use of the fact that

a2, 2a2, . . . , (a1 − 1)a2

cover each non-zero residue class mod a1, i.e. ta2 ≡ kt (mod a1), 1 ≤ t ≤ a1 − 1,

where k1, . . . , ka1−1 is a permutation of 1, 2, . . . , (a1 − 1). These ta2 elements will
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be the smallest representable elements of the residue classes. Hence the number

of non-representable elements in the ta2 residue class is

⌊

ta2

a1

⌋

=
ta2 − kt

a1

.

Taking the sum of these numbers over all non-zero residue classes we obtain the

total number of the non-representable elements:

a2 − t1

a1

+
2a2 − t2

a1

+ . . . +
(a1 − 1)a2 − ta1−1

a1

=
(1 + 2 + . . . + (a1 − 1))a2 − (t1 + t2 + . . . + ta1−1)

a1

=
(1 + 2 + . . . + (a1 − 1))(a2 − 1)

a1

=
(a1 − 1)(a2 − 1)

2
. �

Selmer [16] used the previous method in a more general context. Let H be

a complete residue system mod a1. To every h ∈ H there exists an rh ≡ h

(mod a1), which is representable as rh = a2y2 + a3y3 + . . . + anyn and is the

minimal with this property. Then by this notation

N(a1, a2, . . . , an) =
1

a1

∑

h∈H

rh −
a1 − 1

2
.

Let us apply this interpretation in further exercises.

Problem 9. Let ai form an arithmetical progression, a1 = a, a2 = a + d, . . .,

an = a + (n − 1)d, and write a − 1 = p(n − 1) + s, where 0 ≤ s < n − 1. Then

N(a1, a2, . . . , an) =
1

2
((a − 1)(p + d) + s(p + 1)) .

First we determine the smallest representable rh residues in each class. The

numbers 0, d, 2d, . . . , (a − 1)d form a complete residue system mod a. Our goal

is to represent even the largest residue using the least possible number of ai’s.

Therefore, we take an (which has residue (n − 1)d) with the largest possible

multiplier p:

p(n − 1) ≤ a − 1 < (p + 1)(n − 1).

This means that

(a − 1) = p(n − 1) + s; 0 ≤ s < n − 1.
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Accordingly, the residue of pan + as+1 is equal to the residue of (a − 1)d mod a.

The rh system can be arranged in a table:

a2 a3 . . . an−1 an

a2 + an a3 + an . . . an−1 + an 2an

. . . . . . . . . . . . . . .

a2 + (p − 1)an a3 + (p − 1)an . . . an−1 + (p − 1)an pan

a2 + pan . . . as+1 + pan.

The last row occurs only in the case s > 0.

The sum of the multiples of d in the table is (by the original formula)

d + 2d + . . . + (a − 1)d = d
a(a − 1)

2
.

The sum of the multiples of a is

(n−1)a+2(n−1)a+ . . .+p(n−1)a+(p+1)sa = a

(

(n − 1)p(p + 1)

2
+ (p + 1)s

)

.

Hence

N(a1, a2, . . . , an) =
1

a

∑

h∈H

rh −
a − 1

2

=
(n − 1)p(p + 1)

2
+ (p + 1)s +

(a − 1)

2
(d − 1)

=
1

2

(

(p + 1)(p(n − 1) + 2s) + (d − 1)(a − 1)
)

=
1

2

(

(a − 1)(p + d) + s(p + 1)
)

. �

We can also see from the table that the largest non-representable number in

the case of s > 0 is

as+1 + pan − a = a + sd + pa + p(n − 1)d − a = pa + (a − 1)d.

If s = 0, then for the largest non-representable number we get the following

formula:

pan − a = pa + p(n − 1)d − a = (p − 1)a + (a − 1)d.

These two formulas can be combined into one, since for s > 0,
⌊

a − 1

n − 1

⌋

=

⌊

a − 2

n − 1

⌋

= p, whereas for s = 0,

⌊

a − 2

n − 1
= p − 1

⌋

.

Herewith we have proved also the statement of Problem 6. �
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Our next, less known result is related to Problem 1.

Problem 10. Let a, b, c be pairwise relatively prime positive integers. Then

the number of positive integers not representable in the form xbc+yca+zab with

x, y, z non-negative integers is

N(bc, ca, ab) =
2abc− bc − ca − ab + 1

2
.

Also in this case we can nicely arrange the smallest elements of each residue

class mod ab, which are representable with the help of bc and ca:

0 bc 2bc . . . (a − 1)bc

ca bc + ca 2bc + ca . . . (a − 1)bc + ca
...

...

(b − 1)ca bc + (b − 1)ca 2bc + (b − 1)ca . . . (a − 1)bc + (b − 1)ca.

The table contains exactly ab elements. Hence it is enough to prove that they are

pairwise incongruent mod ab. Otherwise

x1bc + y1ca ≡ x2bc + y2ca (mod ab).

This means that ab divides

x1bc + y1ca − x2bc − y2ca = (x1 − x2)bc + (y1 − y2)ca.

We immediately see that x1 − x2 is divisible by a, and y1 − y2 is divisible by b.

Since 0 ≤ x1, x2 ≤ a − 1, and 0 ≤ y1, y2 ≤ b − 1, the divisibility can be true only

if x1 = x2 and y1 = y2, as claimed.

Let us add now the representatives:

a−1
∑

i=0

b−1
∑

j=0

(ibc + jca) =
a(a − 1)b2c

2
+

b(b − 1)a2c

2
=

abc

2
[b(a − 1) + a(b − 1)] .

We apply the Selmer formula:

N(ab, bc, ca) =
1

ab
·
abc

2
[b(a − 1) + a(b − 1)] −

ab − 1

2
=

2abc − ab − bc − ca + 1

2
.

�

During the determination of the non-representable numbers actually we got

a third solution to Problem 1, because the largest rh mod ab is clearly (a−1)bc+

(b − 1)ca. Hence

G(ab, bc, ca) = (a − 1)bc + (b − 1)ca − ab = 2abc− ab − bc − ca.
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Comparing N(a1, a2, . . . , an) with G(a1, a2, . . . , an) we can make interesting

observations. Comparing the formulas of Problems 1 and 10, and also of Prob-

lems 3 and 8, we find that

N(a1, a2, . . . , an) =
G(a1, a2, . . . , an) + 1

2
.

We got important borderline cases of a theorem of Nijenhuis and Wilf [12], who

noticed the simple fact that for arbitrary positive integers x and y with x + y =

G(a1, a2, . . . , an), at most one of them is representable by a1, a2, . . . , an, hence

N(a1, a2, . . . , an) ≥
G(a1, a2, . . . , an) + 1

2
.

As an obvious upper bound we have N(a1, a2, . . . , an) ≤ G(a1, a2, . . . , an).

This bound is sharp, since for

a1 = k, a2 = k + 1, a3 = k + 2, . . . , ak = 2k − 1

we clearly get N(a1, a2, . . . , an) = G(a1, a2, . . . , an) = k − 1.

3. The extremal Frobenius problem

We saw that the task of determining G(a1, a2, . . . , an) seems to be almost im-

possible in many cases. Perhaps this is the main reason that many (mainly upper)

estimates are known, which give upper bounds for the largest non-representable

number under various special assumptions. One of the first such results was

achieved by Erdős and Graham [3] in 1972 using Kneser’s theorem:

G(a1, a2, . . . , an) ≤ 2an−1

⌊an

n
− an

⌋

.

Probably these estimations gave the inspiration for examining that choosing a

fixed number of ai’s below a given bound, in which case is the largest non-

representable number maximal. We introduce the following notation:

g(n, t) = max G(a1, a2, . . . , an),

where each ai is at most t and their gcd is 1. Also, we shall denote the set

{a1, a2, . . . , an} by A, and the set of integers representable using the elements

of A by S(A).
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Of the many nice estimates on g(n, t), I would like to mention here the very

strong result by Dixmier [1], which too, uses Kneser’s theorem:

g(n, t) ≤ 3vt − v(v + 1)n + v2 − v − 1, where v =

⌊

t − 2

n − 1

⌋

. (1)

Now we determine g(n, t) in some special cases. The solution of the following

exercise is straightforward from Problem 3.

Problem 11. Let t > 2 be positive integer. Then

g(2, t) = (t − 1)(t − 2) − 1.

Using Dixmier’s previous theorem also the cases n = 3 and n = 4 can be

settled. Lewin [10] had determined the value of g(3, t) already 20 years earlier:

g(3, t) =

⌊

1

2
(t − 2)2

⌋

− 1.

Approaching the problem from the direction of “too many” coins, Nagata

and Matsumura [11] used densitely considerations. Their result can be proved

also by induction on k:

Problem 12. Let n and k be positive integers, and k ≤ n − 1. Then

g(n, n + k) = 2k − 1.

This result was improved by Paul Erdős [2] in a problem proposed by him:

Problem 13.

g(n, 2n) = 2n + 1,

g(n, 2n + 1) =

{

2n + 5, if n 6≡ 2 (mod 3)

2n + 3, if n ≡ 2 (mod 3)
n > 2.

The proof of the first, less complicated statement allows us to have an insight

also to the methods of proofs of more difficult theorems. First we show, that for

each possible A we have

G(A) ≤ 2n + 1.



214 Géza Kiss

We may assume an = 2n, because otherwise

G(A) ≤ g(n, 2n− 1) = 2(n − 1) − 1 = 2n− 3,

by the statement of Problem 12. If 2n + 1 is the sum of two elements of A, then

we can insert it into A, and use again Problem 12 for the set A′ = A ∪ {2n + 1}:

G(A) = G(A′) ≤ g(n + 1, 2n + 1) = 2n − 1.

Hence we can assume that 2n + 1 6= ai + aj .

This means that at most one of L and 2n + 1 − L can be an element of A,

but since the number of elements in A is n, so exactly one of L and 2n + 1 − L

belongs to A.

Let us assume first that an−1 = 2n − 1. Then 2 6∈ A. Let r > 2 be the

smallest element of A. So

2n, 2n− 1, . . . , 2n + 1 − (r − 1) = 2n − r + 2 ∈ A.

Adding r to the last two ones

2n − r + 2 + r = 2n + 2 ∈ S(A) and 2n + 1 − (r − 2) + r = 2n + 3 ∈ S(A).

Enlarging A by these two numbers we get a set A′ with n + 2 elements. Hence

G(A) = G(A′) ≤ g(n + 2, n + 2 + n + 1) = 2(n + 1) − 1 = 2n + 1.

Finally, if an−1 < 2n− 1, then 2 ∈ A and so each even number is an element

of S(A). Adding 2 to the smallest odd number in A (which surely exists, because

the elements of A are relatively prime) we can represent every larger odd number

too.

Thus we proved that G(A) ≤ 2n + 1 for every possible set A, i.e.

g(n, 2n) ≤ 2n + 1.

We also have to verify that there exists such an A, for which equality holds.

Let A = {n + 1, n + 2, . . . , 2n}. It is clear that 2(n + 1) and all larger numbers

are in S(A), so

G(A) = 2n + 1. �

With a significant extension of the previous argument Erdős and Graham [3]

proved, that for k fixed, and n sufficiently large (n ≥ 9k2 + 15k + 2),

g(n, 2n + k) =

{

2n + 4k + 1, if n − k 6≡ 1 (mod 3);

2n + 4k − 1, if n − k ≡ 1 (mod 3).
(2)
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Their proof is complex, the easier part is the determination of the extremal set

A when equality is satisfied.

Problem 14. Let n and k be positive integers (n ≥ 9k2 + 15k + 2). Exhibit

a set with n relatively prime elements, each less than 2n + k + 1, and

G(A) =

{

2n + 4k + 1, if n − k 6≡ 1 (mod 3);

2n + 4k − 1, if n − k ≡ 1 (mod 3).

Consider first the case n − k ≡ 1 (mod 3). Write n = 3m + k + 1 and take

A =

2m+k
⋃

i=1

{3i} ∪

m+1
⋃

j=1

{6m + 3k + 5 − 3j}.

The least element of S(A), which is congruent to 1 modulo 3 is

2(3m + 3k + 2) = 6m + 6k + 4,

so

6m + 6k + 1 = 2n + 4k − 1 6∈ S(A).

Now we turn to the case n− k ≡ 2 (mod 3). Write n = 3m + k + 2 and define A

as

A =
2m+k+1

⋃

i=1

{3i} ∪
m+1
⋃

j=1

{6m + 3k + 7 − 3j}.

The least element of S(A), which is congruent to 2 modulo 3 is

2(3m + 3k + 4) = 6m + 6k + 8 = 2n + 4k + 4.

In the third case we can construct A with similar methods, as well. �

Also the determination of g(n, t) is an unsolved problem in many cases.

Lev [9] proved that the result (2) of Erdős and Graham can be extended for

t ≤ 3n − 2. The author of the present paper proved in [7], that (1) holds with

equality in several further cases not mentioned in Dixmier’s paper [1]. Namely, if

2 ≤ d < n, 0 ≤ k ≤ n − d, and n − k ≡ 0 or −1 (mod d + 1), then

g(n, dn + k) = d(d − 1)n + 2dk + d2 − d − 1. (3)

The constructions giving the largest non-representable number are generated “by

two elements” also in these cases.
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Another extremal question of the Frobenius problem is the following: how

should we choose n different denominations not larger than t so that the number

of non-representable integers should be maximal. The conjecture of Erdős and

Graham [4, p. 86] was that we obtain the most non-representable integers if we

choose the n largest consecutive elements. This can be proved by using one of

Dixmier’s theorems [1, Theorem 2], further, some computation shows that for

several values of n and t there exist other extremal sets too, namely the sets used

in the proof of (3) produce the same quantity of non-representable integers as

the n largest consecutive ones do, though the maximal non-representable integer

is far greater in this case [8]. Let us determine this extremal number of non-

representable integers:

Problem 15. Let n and t be positive integers, 1 < n ≤ t. Write t =

q(n − 1) + r, where 1 ≤ r ≤ n − 1. Then

N(t − n + 1, t − n + 2, . . . , t) =
(t − n + r − 1)q

2
.

Since the numbers ai = t− n + i are consecutive, all integers in the intervals

Jm = [m(t−n+1), mt] are representable, m = 1, 2, . . . Hence the integers without

a representation are those situated before J1, between J1 and J2, . . . , between

Jm−1 and Jm as long as these intervals are disjoint, i.e. (m− 1)t < m(t− n + 1),

or equivalently m(n − 1) < t. Hence the last value is m = q. So the number of

integers without representation is

q
∑

m=1

[m(t − n + 1) − (m − 1)t − 1] =

q
∑

m=1

(t − mn + m − 1)

= qt −
q(q + 1)

2
(n − 1) − q =

q

2
[2t − (q + 1)(n − 1) − 2]

=
q

2
[t + q(n − 1) + r − (q + 1)(n − 1) − 2] =

(t − n + r − 1)q

2
. �

All the above exercises can be treated in class at a secondary school after a

suitable preparation.

Sylvester’s article, in which he examined the case of two variables with sim-

ple methods, was published in 1884. A whole century passed till this problem

appeared on competitions, and also in a problem book for schools [5, Ex. 152 and

158]. We hope that our students who are interested in mathematics can meet

with these and similar exercises regularly in the future.
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Lapok, Budapest, 46 (1996), 386–391, 452–457.
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