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Why is the gamma function

so as it is?

Detlef Gronau

Abstract. This is a historical note on the gamma function Γ. The question is, why is Γ(n)
for naturals n equal to (n−1)! and not equal to n! (the factorial function n! = 1·2 · · ·n) ?
Was A. M. Legendre responsible for this transformation, or was it L. Euler? And, who
was the first who gave a representation of the so called Euler gamma function?
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0. Introduction

I often asked myself the following question:

“Why is Γ(n) = (n − 1)! and not Γ(n) = n! ?” (Q)

The standard answer to this question is: Euler1 introduced the gamma func-

tion as an interpolating function for the factorials n! =
∏n

k=1 k. Legendre2 intro-

duced the notation Γ together with this shift such that Γ(n) = (n − 1)! . But it

ain’t necessarily so.

As a matter of fact, it was Daniel Bernoulli3 who gave in 1729 the first

representation of an interpolating function of the factorials in form of an infinite

product, later known as gamma function.

1Leonhard Euler, 15. 4. 1707, Basel – 18.9̇. 1783, St. Petersburg.
2Adrien Marie Legendre, Paris, 18. 9. 1752 – 9. 1. 1833, Paris.
3Daniel Bernoulli, 8.2.1700, Groningen – 17. 3. 1782, Basel.
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Euler who, at that time, stayed together with D. Bernoulli in St. Peters-

burg gave a similar representation of this interpolating function. But then, Euler

did much more. He gave further representations by integrals, and formulated

interesting theorems on the properties of this function.

In this note we give a short sketch on the early history of the gamma function

and give a (partial) answer to question (Q).

To begin with let us remind of the generally known representations of the

gamma function Γ(x), defined for x ∈ (0,∞):

Γ(x) = lim
n→∞

n! nx

x(x + 1) . . . (x + n)
, (1)

and also

Γ(x) =

∫ ∞

0

e−ttx−1dt, (2)

Γ(x) =

∫ 1

0

(− log y)x−1dy, (3)

Γ(x) =

∫ ∞

−∞

exze−ez

dz. (4)

All these four representations of the gamma function were given in essential by

Euler. The integrals (2), (3) and (4) are equivalent. (3) and (4) follow from (2)

by substitution of the variables y = e−t and z = log t, respectively. There is

no evidence that Euler gave a proof of the fact that (1) and (2) yield the same

function.

1. The interpolation problem

In the 17th century the problem of interpolation started to come into fashion

(see e.g. [13]). The problem is, for a given function or operation (for example the

nth power qn) which is in a natural way defined for natural numbers n, to find

also an expression for non integers, e.g. qx for all reals x.

Take for example the geometric series and its sum

S(n) :=
n

∑

i=1

qi = 1 + q + · · · + qn =
q(n+1) − 1

q − 1
.

Here we can express the value of S(n) also for non naturals n, although the

definition of S(n) makes sense only for naturals n. More complicated is the case

where we don’t have an explicit expression for the given function.
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Questions of these kind were treated by Christian Goldbach4 in a compre-

hensive way during all his life. He considered sums of the form

n
∑

i=1

f(i) with a given function f : N → R

and specially the sum 1 + 1 · 2 + 1 · 2 · 3 + . . . . The problem is to find the general

term of this series.

Goldbach, well known by the Goldbach conjecture, has completed a study of

law and was an autodidactic mathematician. He published several papers in num-

ber theory, infinite series, integration of functions and differential equations. He

used to cultivate contacts with several famous mathematicians, so with members

of the family Bernoulli and with Leibniz5. Goldbach travelled to many places.

Finally at the age of 35 in 1725 he earned his first professional position as a sec-

retary of the Academy of Sciences in St. Petersburg. It is not known whether he

had contact with Euler already at that time. At the beginning of 1725 Goldbach

moved to Moscow as the court of the tsars did. He was tutor of the tsarevitch.

From Moscow a correspondence between Euler and Goldbach began which lasted

up to the death of Goldbach in 1764 (see [6] and [7]).

The starting point of this extensive correspondence was the later so called

gamma function. Goldbach, considering especially the problem of interpolating

the factorials, asked several mathematicians for advice, so for example in 1722

Nikolaus Bernoulli6 and later on in 1729 his brother Daniel. In the sequel Gold-

bach received three letters which were essential for the birth of the gamma func-

tion.

2. Three letters on the gamma function

The first letter: The first known letter which contains an interpolating

function for the factorials was written by Daniel Bernoulli on October 6, 1729.

Bernoulli suggests for an arbitrary (positive) x and an infinite number A the

infinite product

(

A +
x

2

)x−1
(

2

1 + x
·

3

2 + x
·

4

3 + x
· · ·

A

A − 1 + x

)

(5)

4Christian Goldbach, 18. 3. 1690, Königsberg (now Kaliningrad) – 1. 12. 1764, St. Petersburg.
5Gottfried Wilhelm Leibniz, 1. 7. 1646, Leipzig – 14. 11. 1716, Hanover.
6Nikolaus II Bernoulli, 6. 2. 1695, Basel – 26. 7. 1726, St. Petersburg.
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as interpolating function, hence7

x! = lim
n→∞

(

n + 1 +
x

2

)x−1 n
∏

i=1

i + 1

i + x
. (6)

For x = 3
2 and A = 8 Bernoulli gets an approximate value 3

2 ! = 1.3004 (here

Bernoulli fails, I got the value 1.32907) and for x = 3 and A = 16 the formula

(6) yields instead of 3! = 6 the value 6 1
204 . With these remarkable results the

correspondence between Bernoulli and Goldbach on interpolation has ended ([6],

p. 143).

The second letter: Euler has lived in St. Petersburg since 1727. He gained

a position at the Academy of Sciences by the recommendation of Nikolaus and

Daniel Bernoulli. So he had good personal contacts to Daniel Bernoulli and knew

about the discussion on the interpolating function of the factorials. Euler found

his own solution. Encouraged by Bernoulli Euler wrote a letter to Goldbach dated

October 13, 1729 containing the “terminum generalem” of the argument m:

1 · 2m

1 + m
·
21−m · 3m

2 + m
·
31−m · 4m

3 + m
·
41−m · 5m

4 + m
etc. (7)

thus the term of the nth approximation is

1 · 2 · 3 . . . n · (n + 1)m

(1 + m)(2 + m)(3 + m) . . . (n + m)
. (8)

This is almost8 Γ(m + 1) in the representation (1).

The representation (5) of Bernoulli and that of Euler (7) are formally differ-

ent, though both formulas (6) and (8) yield in the limit the same value. Numerical

experiments show that the formula of Bernoulli converges much faster to its limit

than that of Euler. However both of them are equivalent to the product (1) which

(in my opinion erroneously) bears the name of Gauss.9

The letter of Euler to Goldbach contains much more. So Euler writes that

he has calculated for the argument 1
2 the value of the product (7) as

√
π

2 . In his

own words:

7The notation n! was, however, firstly introduced in 1808 by Christian Kramp (1760–1826,

professor for mathematics at Strasbourg). Euler used later on in 1771, Eneström No. 421 the

notation [n] and in [4] the symbol ∆, i.e. ∆(n) = n!.
8The term (8) has the same limit as Γ(m + 1) in the representation (1).
9Carl Friedrich Gauss, 30. 4. 1777, Braunschweig – 23. 2. 1855, Göttingen.
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Terminem autem exponentis 1
2 aequalis inventus est huic 1

2

√

(
√
−1 · l − 1)

seu, quod huic aequale est, lateri quadrati aequalis circulo, cujus diameter = 1.

This means 1
2 ! = 1

2

√√
−1 · ln(−1) =

√
π

2 . Euler uses here the extension
of the logarithm to negative numbers as he already has discussed with Johann

Bernoulli,10 the father of Nikolaus and Daniel. Here he means the natural loga-

rithm as a multi valued function, especially we get

ln(−1) = iπ + k · 2πi, k ∈ Z where i =
√
−1.

In this letter Euler uses for the number π the paraphrase rationem peripheria ad

diametrum; in later publications, e.g. 1736, he uses also the symbol π, which most

probably was first introduced in 1706 by William Jones.11

Euler calculates also some special values: 1
2 ! = 0.8862269 and 3

2 ! = 3
2 · (1

2 !) =

1.3293403. These values coincide with the exact values in all the given decimals.

Further he mentions that it is easy to calculate also the values of the factorials

for the arguments 5
2 etc. 1

4 , 3
4 , 5

4 , 7
4 etc. and 1

8 , 3
8 , 5

8 etc.

The third letter: This is the second letter of Euler to Goldbach, dated Jan-

uary 8, 1730. In this letter Euler first presents an integral representation of the

interpolating function of the factorials and explains the properties of a definite

integral taken from 0 to 1, where the integrand depends from a further variable.

Then he defines the interpolating function for the factorial in the form

∫

dx(−lx)n.

In our notation this means

n! =

∫ 1

0

(− lnx)ndx. (9)

Euler writes: Denotat autem lx logarithmum hyperbolicum ipsius x. Then, in

answering of a question in Goldbach’s letter of December 1, 1729, Euler gives a

short sketch of the hyperbolic (= natural) logarithm with the aid of an arithmetic

and a geometric series where he also emphasizes that this logarithm stems from

the quadrature of the hyperbola.

10Johann Bernoulli, 6. 8. 1667, Basel – 1. 1. 1748, Basel.
11William Jones, 1675, Wales – July 3, 1749, London.



48 Detlef Gronau

3. The Euler product

How Euler got his infinite product (7)? This can be read in a later paper [4],

De termino generali serium hypergeometricarum. Here, p. 142, Euler claims:

. . . quod huiusmodi series in infinitum continuatae tandem cum progressione ge-

ometrica confundantur.12 So, in Euler’s notation, if i is an infinite number then

Euler claims (here he uses the term ∆ for the interpolating function)

∆ : (i + n) = in∆ : i

or, which yields the same

∆ : (i + n) = (i + α)n∆ : i

for any finite number α. Thus, in our notation, with x instead of n, n ∈ N instead

of i and α = 1 we get from the last formula

∆(n + x) ≈ (n + 1)x∆(n) for n → ∞.

This has to be interpreted as lim
n→∞

(n+1)x∆(n)
∆(n+x) = 1, from which one easily gets (8).

4. The Euler integrals

We come back to Euler’s second letter to Goldbach and the integral rep-

resentation of the interpolating function. In his paper [3], 1730, De progres-

sionibus transcendentibus seu quarum termini generales algebraice dari nequeunt,

Eneström No. 19, Euler treated this problem in more detail. Here, Euler does not

use a specific symbol for the interpolating function, but in later papers he uses the

symbol ∆. Firstly he considers the above mentioned product (7). He calculates

its value for the argument 1
2 . For the sake of convenience we will already here

denote the value of the product (7) for the argument m by ∆(m), hence

∆ (1/2) =

√

2 · 4

3 · 3
·
4 · 6

5 · 5
·
6 · 8

7 · 7
·
8 · 10

9 · 9
· etc. (10)

12. . . this series should be determined close to infinity like the geometric series.
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Euler compared it with the infinite product representation π given by Wallis.13

Wallis investigated the integral

f(p, n) =
1

∫ 1

0

(

1 − x1/p
)n

dx

in connection with the problem of squaring the circle. For naturals n and p we

get f(p, n) =
(

n+p
p

)

and for n = p = 1
2 we have

f

(

1

2
,
1

2

)

=
4

π
=

3

2
·
3

4
·
5

4
·
5

6
·
7

6
. . . .

So we have ∆(1/2) =
√

π/2. This showed the genius Euler that integrals are the

appropriate tool to give the “right” representation of the interpolating function.

Firstly Euler considered the integral
∫

xedx(1 − x)n, (11)

where the integration has to be taken from 0 to 1, hence in our notation

E(e, n) =

∫ 1

0

xe(1 − x)ndx. (12)

This integral, slightly modified was called by Legendre the Euler integral of the

first kind or beta function

B(m, n) =

∫ 1

0

xm−1(1 − x)n−1dx. (13)

It satisfies the identity

B(m, n) =
Γ(m)Γ(n)

Γ(m + n)
. (14)

Euler calculates for naturals n

(e + n + 1)

∫

xedx(1 − x)n =
1 · 2 · 3 · · ·n

(e + 1)(e + 2) . . . (e + n)
.

Now comes Euler’s trick: for e he substitutes e = f
g . In this way he gets for

naturals n:
1 · 2 · 3 · · ·n

(f + g)(f + 2g)(f + 3g) . . . (f + ng)
gn.

13John Wallis, 23. 11. 1616, Ashford – 28. 10. 1703, Oxford, professor in Oxford, one of the

founding members of the Royal Society.
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After some further calculation he comes to

f + (n + 1)g

gn+1

∫

x
f
g dx(1 − x)n =

1 · 2 · 3 · · ·n

(f + g)(f + 2g) . . . (f + ng)
. (15)

The right hand side of (15) yields after substituting f = 1 und g = 0 the desired

1 · 2 · · ·n. Thus the general term for the factorials is

∫

x
f
0 dx(1 − x)n

0n+1
.

“The meaning of this term will be explained in what follows”, writes Euler. Us-

ing a well known rule (“regulam igitur cognitam”), taking the limit g → 0 of

the derivatives of both, nominator and denominator inside of the integral, Euler

arrives to the expression
∫

dx(−lx)n. Thus we have another form of the interpo-

lating function of the factorials:

∆(n) =

∫ 1

0

(− lnx)n dx. (16)

Euler deduced with this from the Euler integral of the first kind (11) the (by

Legendre) so called Euler integral of the second kind.

The here used “well known rule” is nothing else than the rule of de l’Hospital.14

It goes back to Johann Bernoulli, who has introduced the aristocrat de l’Hospital

(for money) into the secrets of higher mathematics. No wonder that Euler was

familiar with this rule.

5. Legendre and the gamma function

Adrien Marie Legendre devoted several publications to Euler’s integrals. The

first time he mentions Euler’s first integral in 1792, [10]. Then in 1809, [11]

he treats both integrals and introduces the definition of Γ. One can find these

presentations in more detail in Traité des fonctions elliptiques et des integrales

Eulériennes, [12] in 1826. On p. 365 of [12] Legendre writes:

“Quoique le nom d’Euler soit attaché à presque toutes les théories impor-

tantes du Calcul intégral, cependant j’ai cru qu’il me serait permis de donner

plus spécialement le nom d’Intégrales Eulériennes, à deux sortes de transcen-

dantes dont les propriétés ont fait le sujet de plusieurs beaux Mémoires d’Euler,

14Guillaume–François-Antoine de l’Hospital, 1661, Paris – 2. 2. 1704, Paris.
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et forment la théorie la plus complète que l’on connaisse jusq’à présent sur les

intégrales définies.

La première est l’intégrale
∫

xp−1dx
n
√

(1−xn)n−q qu’on suppose prise entre les limites

x = 0, x = 1. Nous la représenterons, comme Euler, par la caractère abrégé (p
q ).

La seconde est l’intégrale
∫

dx(log 1
x)a−1, prise de même entre les limites

x = 0, x = 1, que nous représenterons par Γa, et dans laquelle Euler suppose que

a est égal à une fraction rationnelle quelconque p
q .

Nous considérons ces deux sortes d’intégrales, d’abord sous le même point de

vue qu’Euler; ensuite sous un point de vue plus étendu, afin d’en perfectionner la

thérie.”15

Now comes the question: Why introduced Legendre the gamma function in

this way that for naturals n we get Γ(n) = (n − 1)! ?

Remember, Euler introduced his integral of the second kind with (16), hence

∆(a) =
∫ 1

0
(− lnx)a dx. He obtained it from his first integral (11) or (12) such

that for naturals n the identity ∆(n) = n! holds.

The point is that Euler himself made this change in the parameters of his first

integral during the time between 1730 and 1768. In Euler’s Institutionem calculi

integralis, Vol. I, caput IX [5], p. 240, Legendre already found the first integral

just in this way as he wrote it in his traité, formula (17). If one substitutes in (17)

n = 1, then one gets exactly the beta function B(p, q) (see (13)). So, Eulers first

integral is originally also in this form from Euler.

Legendre deduced from this integral (17) in a similar way like Euler did the

second integral in the form
∫ 1

0
(log 1

x )a−1dx. This integral is denoted by Legendre

15Although the name of Euler could be attached to almost all important theories of the integral

calculus, however, I think that it would be permitted to me, specially, to give two types of

transcendent functions the name Euler integrals. Their properties have been the subject of

several memoirs of Euler and they build the mostly complete theory known about definite

integrals.

The first is the integral
∫

xp−1dx

n
√

(1 − xn)n−q
, (17)

taken in the limits x = 0, x = 1. We use like Euler the abbreviation ( p

q
).

The second is the integral
∫

dx(log 1

x
)a−1, also taken from x = 0 to x = 1. We will denote

it by Γ(a), where Euler supposed that a is some rational of the form p

q
.

We will consider these types of integrals firstly under the same point of view as Euler;

after that under a more extended point of view, in order to make the theory more perfect.
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with Γ(a). From

Γ(a) =

∫ 1

0

(

log
1

x

)a−1

dx

he gets easily the recursion formula

Γ(a + 1) = a · Γ(a)

([11], pp. 476–481, [12], pp. 405–409).

As a conclusion one can say that Euler himself was responsible for the fact

that Γ(n) = (n − 1)! holds. It will be the subject of some more extensive study

of the Opera omnia to understand why Euler came from [3], 1730 to [5], 1768 to

this change of the parameters in his integrals.

One possible reason for the change of the parameter in the first integral could

be the following. The nice relation (14) between the beta and gamma function

would be in terms of (12) with E and ∆ of the form

E(m, n) =
∆(m) · ∆(n)

∆(m + n + 1)
.

This relation is by sure not as nice as (14). But it is hard to believe that this was

a motivation for Euler or Legendre to do so as they did.
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classe des sciences mathématiques et physiques d l’institut de France, Année 1809,
416–509.
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