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Abstract. We propose a method for proving the existence of
√

2 and finding its approx-
imate value in secondary education.
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1. In the secondary education the proof of
√

2 being an irrational number is

well-known. Although the truth is that the proof does not assert the existence of√
2. Therefore it does not even assert that there exist irrational numbers, not even√
2. If we assume that the set of rational numbers is known then the statement

in question can be formulated in the following way.

Theorem 1. There is not any rational number whose square is 2.

So the problem is how to demonstrate the existence of
√

2 by a quick deter-

mination of approximate values in the secondary education.

2. According to my memories during the secondary education the existence

of a length (positive number) whose square is 2 was proved geometrically and it
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was called
√

2. Consider the number line s in the plane S, in which the points 0

and 1 are marked and the point 0 precedes 1 (Figure 1).

Then let 0 < r = n
m

< 1 be an arbitrary rational number where n and m are

natural numbers. Draw a ray f from the point 0 in the plane S which forms an

acute angle with s. Measuring some distance d > 0 m and n times on f (starting

from the point 0) we obtain the points E and R (m = 11, n = 5 in Figure 1).

Connect E and 1 by a line and draw a straight line parallel to this through R.

This parallel line intersects the line s at r which will be identified by the rational

number r = n
m

. In this way, by a Euclidean construction, we can assign points

on the number line to any rational number, because each rational number can be

uniquely written as n+r where n is an integer (n ∈ Z) and r is a rational number

in [0, 1[. Thus we obtain points of all rational coordinates on the number line s.

3. If we draw a perpendicular m at the point 1 to the line s in the plane S and

we measure the unit distance 01 on m starting from the point 1 then we obtain

the point I (Figure 2).

Then by the Pythagorean theorem for the right-angled triangle 01I:

c2 = 12 + 12 = 2

where c is the length of the hypotenuse OI. That is, c is a positive length whose

square is 2. By a Euclidean construction, this distance c can be measured online

s and we will obtain the point c =
√

2 on s (Figure 2). A point like this exists

on line s and for its coordinate c2 = 2 holds. Hence we can state that c =
√

2.

On the other hand, there is a “hole” on the number line s at point c in the sense
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that in the construction described in Section 2, by virtue of the theorem 1 at

that point there can not be a rational point. At the same time c =
√

2 is an

existing real length (that is, a “real” number), which exists according to the facts

mentioned above.

4. The above reasoning does not bring us closer to the concept of real num-

bers. Namely, according to Sections 2 and 3 only the constructible points can be

assigned to points of the number line s. But it is not so in the case of a point

P for which OP = π (as π is not a constructible distance). Therefore there are

other “holes” on the number line. To solve the problem we can not evade the con-

tinuity axiom used by Hilbert which is, as far as I know, ignored in the secondary

education (Hilbert [5]).

5. The concept of real numbers is treated in a deductive way at universities.

The set R of real numbers is an ordered complete field in which we assign sets of

natural numbers (N), integers (Z) and rational numbers (Q). It is easy to show

that Q is an ordered field therefore the assumption of the axiom of completeness

draws a distinction between Q and R. We know it well that several equivalent

axioms can be given for the concept of completeness. The following two state-

ments remain always true in R (they are axioms or consequence of axioms) (see

Ebbinghaus [3], Stromberg [6]).

(a) Archimedean order : the set of natural numbers N is not bounded above

(from which it follows that

lim
n→∞

1

n
= 0).
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(b) Cantor’s theorem (axiom): if In := [an, bn] (an < bn; an, bn ∈ R, n ∈ N)

is a sequence of closed intervals such that In+1 ⊆ In holds for every n ∈ N then

∞
⋂

n=1

In 6= ∅.

Additionally, it is also true that if in (b)

lim
n→∞

(bn − an) = 0,

then the set
∞
⋂

n=1

In

has only one member, that is, there exists one and only one real number x ∈ R

such that x ∈ In for every n ∈ N. In this case this sequence In is usually called

a nested sequence of intervals that has a unique kernel x. If we represent data

mentioned above on the number line then we arrive at the continuity axiom used

by Hilbert. If in (b) for In = [an, bn] it is also true that an, bn are rational numbers

and

lim
n→∞

(bn − an) = 0,

then there exists exactly one point x on the number line such that it is in each

In (Figure 3).
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6. Gauss was 14 years old when he started to treat the following problem

(Gauss [4]). Let us fix 0 < x < y and a1 := x b1 := y. Then according to the

inequality between the arithmetical mean and the geometric mean

x <
√

xy <
x + y

2
< y.

Thus, by the notation

a2 :=
√

xy =
√

a1b1 and b2 :=
x + y

2
=

a1 + b1

2
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we have that

a1 < a2 < b2 < b1.

Going on with this procedure by the following iteration

an+1 =
√

anbn, bn+1 =
an + bn

2
(n = 1, 2, 3, . . . )

with the notation In = [an, bn] (n ∈ N) we obtain that In+1 ⊂ In and from

0 < bn − an ≤ y−x
2n−1 (n = 1, 2, 3, . . . ) it follows that

lim
n→∞

(bn − an) = 0.

Hence
∞
⋂

n=1

In = {M}

is a one-element set and

lim
n→∞

an = lim
n→∞

bn = M.

M is called the Gaussian arithmetical-geometric mean of x and y and denoted by

M = AG(x, y).

The basic problem of Gauss was how to determine the value of AG(x, y). At

the age of 19 he wrote his remarkable result in his diary that reveals

AG(1,
√

2)L =
π

2
,

where

L :=

∫ 1

0

dt√
1 − t4

is the lemniscate constant. Gauss’ result was a starting point of the theory of

elliptic integrals (see Gauss [4], Borwein–Borwein [1]).

7. Gauss’ idea can be applied to other theorems relating to mean values. In

the set of rational (or real) numbers it is easy to prove the inequality between the

harmonic and arithmetical mean values.

Theorem 2. If 0 < x < y then x < 2xy

x+y
< x+y

2
< y.
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Analogously to the problem treated in section 6, let us define the following

quantities by Gaussian iteration:

a1 := x b1 := y

an+1 :=
2anbn

an + bn

, bn+1 :=
an + bn

2
(n = 1, 2, 3, . . . ).

Then it is obvious that In+1 ⊂ In (n ∈ N) where In := [an, bn] (n ∈ N) and since

0 < bn − an ≤ y − x

2n−1
(n ∈ N)

we get

lim
n→∞

(bn − an) = 0.

Therefore by Cantor’s theorem there exists one and only one real number p > 0

such that
∞
⋂

n=1

In = {p}

and

lim
n→∞

an = lim
n→∞

bn = p.

On the other hand, it is easy to see that

an+1bn+1 = anbn (n ∈ N),

from which it follows that

an+1bn+1 = anbn = an−1bn−1 = · · · = xy

that is, p2 = xy holds. As p > 0 we have p =
√

xy and thus the Gaussian iteration

yields the geometric mean value.

8. In the secondary education facts described in section 7 can be discussed

with the initial values x = 1 and y = 2. Then a1 = 1, b1 = 2 and a2 = 2a1b1
a1+b1

= 4

3
,

b2 = a1+b1
2

= 3

2
are rational numbers from which by induction we can prove

that In = [an, bn] is a sequence of closed intervals having rational endpoints.

According to facts mentioned previously there exists only one p ∈ ]1, 2[ such that

p2 = 2. This existing real number is called
√

2. As an <
√

2 < bn for any n the
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determination of
√

2 by iteration can be carried out in the following way.

an bn

n = 1 1 2

n = 2 4

3

3

2

n = 3 24

17

17

12

n = 4 941664

665857

665857

470832

Calculating an, bn for n = 4, 5 up to 12 digits we have

a4 = 1.414211438475 b4 = 1.414215686275

a5 = 1.414213562372 b5 = 1.414213562375

We can see that the digits at the first 5 decimal places in a4, b4 are the same,

while in a5, b5 the digits at the first 11 decimal places agree (printed in bold).

It demonstrates that the iteration is very fast (certainly this concept can not be

treated in the secondary education).

9. As a closing-thought we can say that Theorems 1 and 2 can be considered

as part of the curriculum in the secondary education. Through a delicate practice

of an intermediate teacher it is easy to be believed that from facts in section 8 it

follows that there exists such a real number whose square is 2 and with today’s

modern technical background the approximate value of it can be determined very

quickly and with great precision. Certainly I do not state that all this can be

taught with perfect mathematical precision in the secondary education. The really

important thing is what my former grammar school teacher told me: “The teacher

should always tell true mathematical statements which the students believe and

understand easily. However the teacher should know where and why he or she

cheated.” During university education the existence of
√

a (a > 0) or that of
√

2

can be taught with full precision in the way mentioned above. The Gaussian

iteration can be defined to other pairs of mean values and researches relating to

these mathematical problems are being carried out even today (see Daróczy–Páles

[2] and the references therein).
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