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Abstract. Based on the literature, Pólya was influential in problem-posing research.
The present paper draws attention to a book written with Pólya’s collaboration, which
has not yet received sufficient emphasis in the problem-posing literature. On the other
hand, Pólya’s impact on mathematics education in Hungary has been significant, includ-
ing the problem-posing paradigm. Two works, published only in Hungarian, that rely
heavily on problem-posing are highlighted. Furthermore, it is presented how problem-
posing appeared in the Hungarian Complex Mathematics Teaching Experiment (1962-
78) led by Tamás Varga.
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Introduction

Many think of Pólya1 as the “father of the modern focus on problem-solving

in mathematics education” (Passmore, 2007, p. 44). In addition, characteristics

of mathematics teaching in Hungary are often thought of as a tradition of talent

management (Hersh & John-Steiner, 1993; Stockton, 2010) and problem-based

curriculum development (Andrews & Hatch, 2000, 2001).

These two statements are related, as Pólya’s influence is still evident in the

teaching of mathematics in Hungary (Gosztonyi, 2016, 2020; Győri et al., 2020;

1In this paper, the author keeps the Hungarian spelling of Pólya’s name in the text.
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Máté, 2006). However, the reality in both cases is much more complex, exciting,

and nuanced. In this paper, a common feature in the picture of Pólya and math-

ematics education in Hungary is emphasized: problem-posing. Specifically, that

Pólya played an essential role in problem-posing research as a partially indepen-

dent field in mathematics education is demonstrated. Moreover, the paper aims to

show that mathematics education in Hungary has a tradition of problem-posing.

After writing about problem posing in general, the author presents Pólya’s

contribution to the field, bringing out a work (Pólya & Szegő, 1925) that has

received perhaps little attention in the problem-posing literature. Then, from the

history of the Hungarian problem-posing tradition, the author addresses the activ-

ities of four personalities (Rózsa Péter, Tibor Gallai, Tamás Varga, and Julianna

Szendrei), mainly based on their works in Hungarian, which are little known

in the international research community. Lastly, the author demonstrates that

problem-posing is still a part of math education practice in Hungary, especially

in talent care.

Problem-posing

Problem-posing is an essential element of mathematical literacy alongside

problem-solving (Niss & Jablonka, 2014). Although problem-posing has been re-

searched for decades (English, 2020; Koichu, 2020; Silver, 2013), scholars’ under-

standing of problem-posing is inconsistent. Silver’s (1994) concept has received

wide attention. It involves creating new problems based on situations and reformu-

lating existing ones. Problem-posing has been described by Stoyanova and Eller-

ton (1996) as the creation of personal interpretations of concrete situations and

the structuring of concrete situations as relevant mathematical problems. Accord-

ing to Cai and Hwang (2020), problem-posing in mathematics education involves

teachers and students conceiving (or reformulating) and conveying a problem

or assignment in a particular pedagogical context. According to Papadopoulos

et al. (2021), there are five types of problem-posing methods: generating new

problems only; reformulating existing or given problems only; generating and re-

formulating problems simultaneously; posing questions; and modeling. Despite

the diversity, one of two concepts of problem-posing appears in most research pa-

pers (Baumanns & Rott, 2021). According to the first concept, problem-posing

includes developing a new problem or reformulating an existing problem before,

during, or after problem-solving. According to the second concept, problem-posing
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is the process through which students interpret experiences as mathematical prob-

lems. In the present paper, the author uses problem-posing in both senses.

Kontorovich et al. (2012) suggest a framework for handling the complexity of

students’ mathematical problem-posing in small groups. The framework has five

modules: (1) task organization, (2) knowledge base, (3) problem-posing heuristics,

(4) group dynamics, and (5) aptitude. Although the conditions of problem-posing

in the present article vary from those in Kontorovich et al.’s paper, the author be-

lieves numerous components of that framework are applicable in general. In the

present article, problem-posing heuristics play a crucial role. Brown and Wal-

ter (1990) systematized the “what if not” problem-posing heuristic strategy. The

function of the strategy is to pose new problems from already solved ones by vary-

ing the conditions or goals of the given one. Here, the problem-posing heuristic is

guided by a specific question. The method consists of four steps, namely, (1) the

listing of attributes of the original problem; (2) posing “what if not?” questions

for attributes; (3) posing mathematical questions about the altered problem; and

(4) problem analysis: discovery of the self-posed situation.

Moreover, simple questions concerning, for example, the number of solutions

or the generalization of the result, also belong to problem-posing heuristics (Bax-

ter, 2005). For example, such questions may include the following: How many?

Is it always true? Is there a pattern? How do we know we have them all? Is there

a largest (or smallest) value?

Pólya and his role in the problem-posing research

Pólya’s impact is often highlighted in works on problem-posing, mainly re-

garding his books (1945, 1954, 1981). Silver claims in his seminal work (1994) that

Freudenthal and Pólya were among the first researchers to show that posing prob-

lems is an integral part of teaching mathematics, referring to (Freudenthal, 1972)

and (Pólya, 1954). Leung (2013) stresses that problem-solving is often based on

“great problems” at its heart, and this aspect of problem-posing has been viewed

as important by many authors, including Pólya. Cai et al. (2015) point out that

problem-posing strategies have a long history; in many cases, these strategies rely

on Pólya’s four-step model. Brown and Walter (1990) based their “what if not”

technique on Pólya’s “look back” stage. Gonzales (1998) complements Pólya’s

four-step method with a fifth step called “posing related problems.” Cai and

Brook (2006) also embedded generating, analyzing, and comparing alternative

solutions into the “look back” phase.
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Kilpatrick (1987) examines the different phases of Pólya’s problem-solving

model. During the planning phase, a student could use Pólya’s heuristic advice to

see if changing the conditions of the problem or breaking it up into more problems

makes the original problem easier to solve. Auxiliary problems are frequently

generated and solved throughout problem-solving processes (Cai et al., 2020).

Davis (1985) also points out that newer reformulations of the problem may be

needed in the process of problem-solving: “problem formulation and problem

solution go hand in hand” (p. 23). After a problem has been solved, the solution or

the problem itself can suggest additional problems in the “look back” phase. The

learner also looks back at a problem they have solved improperly or incompletely

to see if resolving it in a different method leads to a better answer. If the student

becomes an “autonomous problem formulator” (Kilpatrick, 1987, p. 202), he/she

can ask questions, such as “How many?”, “What is the most/least?”, “What

makes this work?” (Mason et al., 2010, pp. 165–166). Problem-posing becomes

second nature after a period of practice with these types of questions; in Marion

Walter’s words, one appears to view the world through “problem-posing colored

glasses” (Baxter, 2005, p. 122).

Pólya, in his book (1954), highlighted the importance of analogies in math-

ematics learning. Kilpatrick (1987) claims that Pólya “showed that analogy can

be a fertile source of new problems” (p. 208), especially how mathematicians used

them to uncover new concepts (Lee & Sriraman, 2011). Likewise, “when math-

ematicians engage in the intellectual work of discipline, it can be argued that

self-directed problem-posing is an important characteristic,” Silver (1994, p. 22)

argues.

Pólya has developed several examples to illustrate his principles. Perhaps one

of the most frequently cited examples is the Pythagorean theorem, which he has

dealt with on several occasions (Pólya, 1948, 1954, pp. 15–17). This well-known

example illustrates the role of special cases, the general case, and analogies in

problem formulation (Walter & Brown, 1977).

Another book was written with Pólya’s participation (Pólya & Szegő, 1925),

which is rarely cited in works on problem-posing but which influences the Hun-

garian problem-posing tradition. This includes the organization of problems into

problem sequences, where successive elements of the problem sequence can be

considered variants of the preceding members. The role of problem sequences in

the Hungarian tradition is discussed in detail by Gosztonyi (2016), albeit without

referring to (Pólya & Szegő, 1925).
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Pólya and Szegő (1925) paid particular attention to the relative arrangement

of the book’s challenges (Schoenfeld, 1987; Tamarkin, 1928); the problem solver

is continuously asked to pay attention to how and where he is questioned. Much

advice will appear later in the book How to Solve It. For example, the authors

emphasize the role of generalization in the preface (p. VII):

A more general statement may be easier to prove than a more partic-

ular; in such cases, the most important achievement consists precisely

in setting up the more general statement, extracting the essential, and

realizing the complete picture.

In the present paper, the author does not promise to explain how even a

single chapter is put together, but he provides a series of problems to illustrate

the essence of the authors’ method (Figure 1). The theme of Section 1 of Part 1

is “Additive Number Theory, Combinatorial Problems, and Applications.” The

setup is based on three problems: the change problem, the postage stamp problem,

and the weighing problem.

The change problem (Problem 1): In how many different ways can you change

one dollar? That is, in how many different ways can you pay 100 cents using five

different kinds of coins, cents, nickels, dimes, quarters and half-dollars (worth 1,

0, 10, 25, and 50 cents, respectively)?

Figure 1. The structure of problems in the first section of the book
by Pólya and Szegő (1925)
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The postage stamp problem (Problem 3): In how many ways can you put the

necessary stamps in one row on an airmail letter sent inside the U.S., using 2, 4,

6, 8 cents stamps? The postage is 10 cents. (Different arrangements of the same

values are regarded in different ways.)

The first weighing problem (Problem 5): Someone has a set of eight weights of

1, 1, 2, 5, 10, 10, 20 and 50 grams. In how many different ways can 78 grams be

composed of such weights? (Replacing one weight with another one of the same

value counts in a different way.)

The elementary formulation of the starting problems is immediately followed

by generalizations, e.g., in the case of the change problem, one looks for the

number of solutions of the Diophantine equation x+5y+10z+25y+50v = n in

nonnegative integers (Problem 2). Later, the authors arrived at the most general

question, which is:

9. Generalize the preceding examples by replacing the particular values of the

coin, stamp and weight with a1, a2, . . . , al.

The point of this general problem is that all previous solving methods were

similar and based on a series expansion of certain rational polynomials; this

method can be the “kernel” (Katona, 2020) of the problem sequence. The follow-

ing problems are elementary combinatorial problems, which the authors approach

from the general method. For example,

13. Consider the general homogeneous polynomial of degree n in the p variables

x1, x2, . . . , xp. How many terms does it have?

Further problems arise in applying problems that have already been solved.

For example:

20. [Prove that] Each positive integer can be decomposed into a sum of different

positive integers in as many ways as it can be decomposed into a sum of equal or

different odd positive integers.

Overall, it can be concluded that Pólya’s principles laid down in How to

Solve It and other later works appeared much earlier in his oeuvre, and that by

sequencing problems, he added a new dimension to problem-posing that merits

further research.
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Tibor Gallai and Rózsa Péter

In 1949, Tibor Gallai and Rózsa Péter published their mathematics textbook

for 9th-grade students (Gallai & Péter, 1949), which opened a new period in

Hungarian mathematics education (Gosztonyi, 2016). After the formalism of the

previous decades, the textbook broke with everything that could lead to formalism

in teaching mathematics (Győri et al., 2020). The authors were prominent figures

in Hungarian mathematics. Tibor Gallai (1912-1992) worked in combinatorics

and graph theory. Rózsa Péter (1905-1977) was a researcher in the theory of

recursive functions, but her book Playing with Infinity (Péter, 1961) brought her

international fame as well.

Of the authors, little is known about Tibor Gallai’s views on mathematics

teaching. He wrote an article in Hungarian on methodological issues in univer-

sity education for the journal Felsőoktatási Szemle [Higher Education Review],

of which he was also a member of the editorial board (Gallai, 1952). However, the

author is unaware of Gallai’s theoretical work on public education.

Rózsa Péter worked in primary teacher training and mathematics teacher ed-

ucation for many years. In addition to her joint textbook with Gallai, she wrote a

university booklet (Péter, 1948) and participated in developing the curriculum for

classes with a special mathematics program. Péter was acquainted with Pólya’s

work, and there are some direct indications of this in her works. First, as early

as 1948, four years after the first edition of How to Solve It and one year before

the release of the book she wrote with Gallai, she recommended Pólya’s book as

reading material in her university booklet for primary school prospective teach-

ers (Péter, 1948). At that time, Pólya’s book had not yet been translated into

Hungarian, and it is unlikely that Péter’s students would have read in its origi-

nal form, so its inclusion certainly reflects the impression Pólya made on Péter.

Second, in an obituary (Péter, 1976) written on the death of her famous contem-

porary and colleague, László Kalmár (1905-1976), Péter draws parallels between

the “Pólya–Szegő” problem book and Kalmár’s teaching method (p. 730).

As for teaching mathematics, Kalmár already knew [during the university

years of Péter and Kalmár, i.e., in the 1920s] one of the basic ideas behind

the modernization of mathematics education today: that it is effective if

students discover almost everything through a suitable series of problems.

However, unfortunately, the excellent book by György Pólya and Gábor

Szegő, which introduces analysis in this way, was not known at the time;
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Kalmár was the living “Pólya–Szegő” of his fellow students; he introduced

the most diverse problems of mathematics with such a series of problems.

The spirit of the textbook (Gallai & Péter, 1949) is entirely in line with

the ideas of Pólya. In this paper, only one problem has been chosen from this

textbook, which is included as part of the supplementary material (Geometric

maximum and minimum problems, geometric inequalities), so it is intended for

higher-ability students.

Problem: Find the shortest path from one point to another if you have to touch

a point on a line.

The solution depends on the position of the points, but for now, only the

case where the line does not separate the points (Figure 2) will be considered.

The analysis of the problem itself is an excellent manifestation of the heuristic

method, with the transformational approach as the source of intuition. However,

in the following, the author will only deal with the “look back” phase and the

problem sequence generated within it.

Figure 2. The “shortest path” problem in (Gallai & Péter, 1949)

The authors suggest several problem variations, all of which can be formulated

using the paradigm of the “what if not” method. What if not. . .

I) we must touch not one line but two.

II) we are not looking for the shortest path but the longest.

III) we investigate not PA+PB− t but |PA−PB|, i.e., the difference between

the segments to the line. What are its maximum and minimum?

Particularly noteworthy are questions where there is no extremum. E.g., for

Problem II, where the set of path lengths is not bounded from above, and the
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Figure 3. A special case for problem variation III

answer is easy to justify by elementary tools. Concerning Problem III, the ques-

tion about |PA − PB| is more challenging. While |PA − PB| ≤ AB is always

valid, there is no maximum if AB is parallel to the given line (Figure 3). The

mathematical background for solving the problem goes beyond the mathematical

knowledge of ninth-graders. The authors do not hide this fact nor make the stu-

dent believe that a naive explanation is a proof, but they draw attention to how

attractive the phenomenon is (p. 397).

We suspect that the further away P is, the larger the distance difference

will be. This suspicion is true, but we will not go into the lengthy proof.

We only want to point out the interestingness of the result. As P gets

further away, the difference in the distances in question becomes increas-

ingly greater; however, it cannot be arbitrarily large, since it must always

be less than the length of section AB. [. . . ] It seems odd that there is

no maximum, since, in everyday life, we are used to other things.

Several pedagogical principles can be discovered in the above example. First,

the authors take a vertical approach to the curriculum. The issue could be ad-

dressed by using coordinate geometry, where the position of P can be defined by

a variable t on the line, which could be the x-axis. The investigation of the function

d(t) = |PA − PB|(monotonicity, extrema, limit at infinity) is the mathematiza-

tion of the problem. The necessary mathematical tools are not yet available to

the students, but the problem is understandable to them. Second, the authors

build the student’s interest in cognitive conflict: the mathematical facts do not

necessarily correspond to our intuitive experience (that there is always a max-

imum in a finite set of numbers). Both phenomena, vertical curriculum design

and cognitive conflict, are prominent in the literature on mathematics education

(e.g., Freudenthal, 1972; Fujii, 2014).
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Similarly, both phenomena play a role in the work of our next author, Tamás

Varga, who also incorporated an “accepting attitude toward unfamiliar cognitive

problems” (Klein, 1980, p. 47) into the principles of the Hungarian Complex

Mathematics Teaching Experiment between 1963 and 1978.

Tamás Varga

Tamás Varga (1919-1987) was a leading figure in Hungarian mathematics

education in the second half of the 20th century. His significance is due to the

reform project called the “Complex Mathematics Teaching Experiment,” which

Varga spearheaded between 1963 and 1978, which led to the national curriculum

in 1978 and still influences Hungarian mathematics education today. The reform

offered a new curriculum, strategy, material, resources, and teaching styles. Varga

focused on students’ intellectual, physical and social activity, problem-solving, and

inquiry (Gosztonyi, 2020).

Varga’s principles included the application of problem-posing in the teaching

process. In his work, problem-posing primarily based on open situations was

observed. He writes about the situation as a problem source (1987, p. 29):

Nobody disputes the importance of ready-made math problems in schools,

both with and without texts. However, an important recognition is that

it does not permeate school practice enough today: open-ended situations

in which pupils recognize and formulate a mathematical task are needed,

often several different ones. Life does not present mathematical problems

in textbook language but situations. It provides the raw material for the

tasks.

This idea is not far from what Pólya writes about ready-made problems and

problems seen in the environment (1981, p. 157).

Problems with a background connected with the world around us, or with

other domains of thought, and problems involving plausible reasoning,

challenging the judgment of the students, have more chance to lead them

to intellectual maturity than the problems that fill the textbooks and

serve only to practice this or that isolated rule.

The next task illustrates Varga’s idea from the 5th-grade textbook written

under his guidance.
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What does Table 1 say about the number of cars and motorcycles? Formulate

questions! (Eglesz et al., 1979, p. 159)

Table 1. Number of cars and motorcycles. Reconstruction of the table
from (Eglesz et al., 1979)

The table contains actual data from a statistical yearbook. Some possible

questions are also described in the teaching manual (Eglesz et al., 1981), e.g.,

asking students to estimate data for years not included in statistical yearbooks.

The handbook also encourages teachers to formulate questions themselves and

pupils to explore different situations themselves (p. 52):

To practice reading tables and graphs, it is a good idea to get a statistical

pocketbook and look up different problems. Then, have the children try

to explain a graph or table independently. [. . . ] In this way, the pupil

can see the close connection between reality (the environment and its

phenomena) and mathematics.

In his joint paper with Halmos (Halmos & Varga, 1978), they define the

cognitive goals of mathematics education in terms of a dual system of thinking

operations (synthesis and analysis) and student behavior (receptive-reproductive

and productive). The article also provides an illustrative example of a problem-

posing situation for 15- to 18-year-old students. This example is also crucial

because problem-posing arises as a modeling task.

What time do you need to leave for school to arrive on time?

The situation is given but not precisely explained. The student must formu-

late the problem in concrete terms and describe the circumstances. For example,

interpret what it means “to arrive on time.” A possible question might be the
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following: We cycle to school. The journey time is 15-20 minutes, depending on

traffic. What time should we leave so that we have at least an 80% probability

of arriving at 7:55? This particular problem formulation is not mentioned in

(Halmos & Varga, 1978), but the author of the present paper has used it in this

form several times.

The student can obtain the empirical distribution diagram of travel times by

measuring the time on the transport device used or by building a model of the

problem. Then simplify the problem so that the delay is 0, 1, 2, 3, 4, or 5 minutes

relative to the 15-minute minimum travel time. Students could test the question

on the basis of a uniform distribution, for example, by throwing dice, where the

number is thrown minus 1 is the delay. One can set up a model where the prob-

ability of the extreme cases is smaller than the probability of the intermediate

cases. Halmos and Varga propose the repeated addition of random numbers (0 or

1 in the simplest case) thrown by a pocket calculator. This is considered a “di-

dactic” model, because the result obtained from the calculator (currently more

like from a computer simulation) can be compared with the calculated probabil-

ity, which is an easy combinatorial problem for the student to approach. The

probability of a k-minute delay is:

p(k) =

(
5
k

)
25

, k = 0, . . . , 5.

In the end, Halmos and Varga refer to statistical distribution functions. The

above mathematical model of the problem is based on the binomial distribution.

Among others, Varga’s colleague, Julianna Szendrei, who was renowned both

in Hungary and abroad, continued Varga’s legacy after Varga’s death.

Julianna Szendrei

Julianna Szendrei (1948-2013) worked closely with Tamás Varga in the Com-

plex Mathematics Teaching Experiment and was involved in curriculum develop-

ment. Moreover, she was an outstanding figure in teacher training in Hungary.

Her scientific interests are wide-ranging, including issues of proof and reasoning

(Szendrei-Radnai & Török, 2007) and general theoretical questions in mathemat-

ics education (Boero & Szendrei, 1998). From 1988-1992, she was Vice-Chairman

of the CIEAEM International Commission for Mathematics Education, and in

2003, she became its president.
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In a dialog-form book (Szendrei, 2005), she expresses her views on the teach-

ing of mathematics to teachers, parents, and the general public. This work reflects

Pólya’s considerable influence. Concerning Pólya’s “look back” phase, the imag-

inary partner asks a question about the value of problem-posing (p. 130):

Would it not be better to solve another problem instead?

This is a difficult choice. Solving a challenging, new problem is a joyful

way to engage students. To “chew over” the one already solved requires a

great deal of mental effort on their part – an activity that is worth keeping

as brief as possible at first and only gradually increasing the time. The

time invested will pay off handsomely and is essential for progress.

The practical implementation of her principles is presented in the book-

let (Radnainé Szendrei, 1988) that was published in the series of Középiskolai

szakköri füzetek [Booklets for math circles for secondary school students]. This

particular problem collection was designed for secondary school students (grades

9-12) in vocational training, i.e., for students who were interested in mathematics

but (generally speaking) not exceptionally gifted in mathematics. The concep-

tion of the elaboration includes the principle of “searching for generalizations.”

For example, the author writes in the introduction:

We “play” with a problem even after finding a solution. By examining

the problem from several angles and searching for generalizations, the

aim is to integrate the newly acquired knowledge more deeply into the

solver’s previous knowledge and to give the reader a complete picture of

how mathematics is done.

In this short quotation, two essential insights were formulated: on the one

hand, through problem variation, the student’s schema for each mathematical

knowledge and concept was extended, and on the other hand, the student “culti-

vated” mathematics, i.e., behaved as a mathematician.

The following example illustrates the nature of the booklet.

Problem: Prove that the sum of squares of any five consecutive integers is always

divisible by 5.

The problem is a task from the final round of the National Competition of

Vocational Schools in 1982. One can quickly solve the problem using algebraic

operations after understanding and mathematizing the text. Let us denote the

middle number by a! The sum in question is:

(a− 2)2 + (a− 1)2 + a2 + (a+ 1)2 + (a+ 2)2 = 5(a2 + 2).
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The problem involves obvious generalizations and variations of problems. For

example, in the book, Szendrei poses two problem variations related to the number

of terms and divisibility.

Problem: For which n natural numbers are the following statements valid: S =

(a+1)2+(a+2)2+· · ·+(a+n)2 is divisible a) by 5, b) by n, where a is an integer?

The 5-remainders of successive square numbers form a periodic sequence:

1, 4, 4, 1, 0, 1, 4, 4, 1, 0, . . . , from which it follows that S is divisible by 5 for each

a if and only if n is a multiple of five. Moreover, by calculating S, one obtains

S = n · a2 + an(n + 1) + n(n+1)(2n+1)
6 . It follows that the answer to the second

question is that S is divisible by n, if and only if n is a multiple of neither 2 nor 3.

Do these variations fulfill what Szendrei promised? According to Schoen-

feld’s well-known system (Schoenfeld, 1985), mathematical problem-solving per-

formance is influenced by mathematical resources, heuristics, control, and belief

systems (p. 15). Here, the author will only deal with the first three components.

The mathematical background of the original problem was the knowledge of al-

gebraic manipulations, and the heuristic background is also simple: “calculate.”

Control has not been particularly concerned. Therefore, what is the added value

of these variations, and why are they worth considering? First, the logical struc-

ture of the variations makes them challenging for the targeted student. The task

is determining the set of n-s such that for every a, S is divisible by 5 or n. For

example, for n = 7, there exists a such that S is divisible by 7, but not all a has

this property. Similarly, the second statement is not true even for n = 2 (coun-

terexample). This analysis can help to understand the logical structure of the

task as part of the control process. The logical structure of the original problem

is obscured because of the mechanical solution, while in the problem variations,

Szendrei exploits this potential.

Second, the mathematical background broadens it and the more sophisticated

algebraic knowledge of the sum of squares complements the simple algebraic ma-

nipulation.

Third, calculating with remainders is a method that is often used in divisi-

bility problems and can be considered part of the heuristic knowledge.
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In the 2000s

Problem-posing is still a living tradition in Hungary, although it would be an

exaggeration to say that it is common in classrooms.

The author first highlights a problem book (Fazekas & Hreskó, 2006)2. The

possibility of rich generalizations characterizes the problems intended for gifted

seventh- and eighth-graders. The book’s unique feature is that students pre-

pared the solutions and problem variations presented under the guidance of their

teachers. The material shows that problem-posing, based on a given task, can

be a living and working classroom practice for gifted children. Next, the author

selects a typical problem from the book.

“Always square numbers.” Show that in all bases greater than four, 441a is a full

square.

The solution is direct: 441a = 1 · 1 + 4 · a + 4 · a2 = (2a + 1)2 = (21a)
2.

A pupil asks the question (recorded in the book) whether there are any other

“always squares,” i.e., numbers that are square numbers in all possible number

systems. The “How many?”, “How do we know we have them all?” questions

appeared, which is part of the classroom culture. They show other three-digit

“always squares”: 100, 121, 144, 169, and point out that 225 is not an “always

square number.” They said there is no two-digit “always square,” but the general

problem is left open in the book, thus providing additional material for later work.

Their teachers gave more problem variations. For example,

Are there any numbers that are not squares in any number system? (“Never

square numbers”)

The problem is challenging even for two-digit numbers if one wants to deter-

mine all the “never square” numbers. If the number is abk, then the question is

about the squares in the arithmetical sequence a · k + b.

The second example is connected again with talent care. Mathematics camps

are a long-established and perhaps the most compelling part of talent manage-

ment in Hungary (Győri et al., 2020). Student problem-posing as a method is

a committed element of the Pósa camps (Juhász, 2019). Bóra (2020) presents

a series of problems from the camp, the starting point of which was provided

by the session leader, but the students formulated further questions. The basic

principle of the process is that the initial problem is followed by a brainstorming

2The title, literally impossible to translate into English, contains a reference to the imaginary

country of “Bergengócia” in Hungarian folk tales.
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session, where the simpler questions are answered immediately. Then, they dis-

cuss what makes a new question good. For example, whether the posed question

is well defined. Does it add a new element to the problem?

Further research

Further research is needed to investigate current classroom practices of

problem-posing in Hungarian classrooms. As a step in this direction, the au-

thor of this paper and his coworker Eszter Kónya have added problem-posing to

the problem-based learning paradigm and looked into how problem-posing can be

used to aid in teaching mathematics in a typical school setting (Kónya & Kovács,

2019, 2022; Kovács & Kónya, 2021).

Conclusion

The author concluded that Pólya’s principles in How to Solve It and other

later works appeared much earlier in his oeuvre, namely, in (Pólya & Szegő,

1925). From the point of view of problem-solving, this fact has been pointed

out by several scholars, see, e.g., (Schoenfeld, 1987). However, by sequencing

problems, this book also added a new dimension to problem-posing that merits

further research.

Two types of problem-posing in 20th-century Hungarian mathematics teach-

ing practice were investigated. First, problem-posing based on a problem that

has already been solved can be seen in a textbook (Gallai & Péter, 1949) and a

book on problems for talent care (Radnainé Szendrei, 1988). Second, situational

problem-posing appeared in the principles of the Hungarian Complex Mathemat-

ics Teaching Experiment led by Tamás Varga.

Some of the relationships and interactions between the people presented in

this paper have already been studied by researchers, such as Gosztonyi, who inves-

tigated the relationship between Rózsa Péter and Tamás Varga (Gosztonyi, 2016,

2020) and the influence of Pólya on Tamás Varga (Gosztonyi, 2016; Máté, 2006).

In this paper, the author noted that, in addition to Tamás Varga, Pólya had a

significant influence on Julianna Szendrei, and he also listed some indications that

Pólya influenced Rózsa Péter, especially by (Pólya & Szegő, 1925).
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and above from the Pósa method. Teaching Mathematics and Computer

Science, 18 (3), 101–110. https://doi.org/10.5485/tmcs.2020.0480

Brown, S. I., & Walter, M. I. (1990). The art of problem posing (2nd ed.). Taylor

& Francis.

Cai, J., & Brook, M. (2006). Looking back in problem solving. Mathematics

Teaching, 196, 42–45.

Cai, J., Chen, T., Li, X., Xu, R., Zhang, S., Hu, Y., Zhang, L., & Song, N. (2020).

Exploring the impact of a problem-posing workshop on elementary school

mathematics teachers’ conceptions on problem posing and lesson design.

International Journal of Educational Research, 102 (August 2018), 101404.

https://doi.org/10.1016/j.ijer.2019.02.004

Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem

posing: Theoretical considerations, methodology, and directions for future

research. International Journal of Educational Research, 102 (February

2019), 101391. https://doi.org/10.1016/j.ijer.2019.01.001



250 Zoltán Kovács
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gálata [Psychological impact assessment of the complex mathematics teach-

ing method]. Akadémiai Kiadó.
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Péter, R. (1961). Playing with infinity. Dover.
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