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Promoting a meaningful learning of
double integrals through routes
of digital tasks
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Abstract. Within a wider project aimed at innovating the teaching of mathematics for
freshmen, in this study we describe the design and the implementation of two routes of
digital tasks aimed at fostering students’ approach to double integrals. The tasks are
built on a formative assessment frame and classical works on problem solving. They
provide facilitative and response-specific feedback and the possibility to request differ-
ent hints. In this way, students may be guided to the development of well-connected
knowledge, operative and decision-making skills. We investigated the effects of the inter-
action with the digital tasks on the learning of engineering freshmen, by comparing the
behaviours of students who worked with the digital tasks (experimental group, N=19)
and students who did not (control group, N=19). We detected that students in the ex-
perimental group showed more flexibility of thinking and obtained better results in the
final exam than students in the control group. The results confirmed the effectiveness
of the experimental educational path and offered us interesting indications for further
studies.
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Introduction

This paper concerns two routes of digital tasks for engineering students,

designed within the frame of formative assessment, and aimed at fostering their

approach to calculate double integrals. Multivariable calculus is a basic course for
107
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engineering students, and it often represents an obstacle in their academic career

(Kashefi et al., 2011; Çekmez, 2021).

Often university students, mainly freshmen attending applied studies,

react to the increasing abstraction of contents with a rote procedural behaviour,

neglecting to deepen the conceptual meanings of the topics at stake. The inte-

gration of functions of one or more variables is perceived by students as one of

the most difficult topics of calculus courses (Kiat, 2005; Mahir, 2009; Pino-Fan

et al., 2018), because typically it is not sufficient to apply procedures to correctly

calculate integrals. Hence, “more research is needed to understand the way stu-

dents think about and work with integrals in an applied context’ ’ (Larsen et al.,

2017, p. 539). Moreover, within the integration of two-variable functions, specific

difficulties can arise, concerning the handling of subsets of R2. Indeed, solving

a multiple integration problem requires not only knowledge and technical skills,

but also decision-making processes: students have to know and correctly apply

integration techniques, but also be able to recognize and suitably describe the

domain of integration, evaluate different available strategies, and finally choose

among them the most convenient one. In this respect, we identify two phases in

the solving process of a problem requiring the calculation of double integrals. The

first phase concerns the setting up of the problem and asks for taking decisions

on the modeling (calculation of an area, of the coordinates of a center of mass,

of an inertia moment, etc.), the identification of the integration domain and of its

available representations, in order to apply Fubini’s Theorem and calculate the

original integral as iterated integrals. In this phase, which has a strategic nature,

coordination and conversions between graphical and analytical representation of

the integration domain turn out to be very useful or even necessary (Duval, 2006);

moreover, flexibility of thinking is required (Xu et al., 2017). The second, more

procedural phase, envisages the actual calculation of the integral, making use of

the correct reduction formulae given by Fubini’s Theorem.

Behind the cognitive difficulties related to the mathematical content, in some

educational situations, obstacles of psychological and sociological nature arise,

related to the transition from secondary school to university (Durand-Guerrier et

al., 2018; Di Martino & Gregorio, 2019). Generally, in our country, engineering

students encounter the topic of integration of multivariable functions during their

first university year, when they pass from the classroom environment to the uni-

versity context, facing a radical change of didactic contract (Gueudet & Pepin,

2015). Here, the high number of students, their heterogeneous backgrounds and
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the detached relationship with the teacher can create difficulties to freshmen, who

may experience a lack of recognition of their identity (Fazey & Fazey, 2001).

Following these considerations, we believe that it is necessary to support

students in overcoming their difficulties in setting up the calculation of double

integrals, by enacting impactful interventions at all levels of learning. On the one

hand, actions are needed for a better understanding of the mathematical content,

and the design of the tasks in this perspective is essential (Breen & O’Shea,

2010); on the other hand, the student’s perception of the university environment

and teaching must be improved.

Digital environments play a significant role in this respect (Descamps et al.,

2006; Albano, 2011; Leung & Baccaglini-Frank, 2017). From the cognitive per-

spective, they can stimulate the learners through different channels, allowing

exploration and visualisation of mathematical contents; from the metacognitive

perspective, students’ monitoring of their learning can be fostered by automatic

feedback and guiding questions. Finally, the interaction with digital activities

could favour the valorization of the individual and the cooperation among peers.

This research is set in the stream of studies focused on the use of technol-

ogy to favour the secondary-tertiary transition by fostering a university teach-

ing/learning tailored to individual needs (Bardelle & Di Martino, 2012; Sosnovsky

et al., 2013; Silverman & Hoyos, 2018; Alessio et al., 2019; Lepellere et al., 2019;

Cusi & Telloni, 2019, 2020; Telloni, 2020, 2021). In particular, we aim at giving

a contribution in favoring meaningful learning of a topic that has received little

attention by the literature, i.e., the setting up and calculation of double inte-

grals. The formative assessment framework (Wiliam & Thompson, 2008; Black

& Wiliam, 2009) provides us the key theoretical element to design two routes of

digital tasks, RT1 and RT2, aimed at valuing the individual learning needs and

identity through response-specific feedback and hints. The RT1 is focused on the

description of subsets of the plane, which is the first useful step to set up the

calculation of a double integral, and on the conversions between graphical and

analytical representations of subsets in the plane, in Cartesian or polar/elliptic

coordinates. The design of the RT1 has been discussed in detail in Alessio et al.

(2019).

The RT2 is focused on the description of subsets of the plane as normal

domains, defined later (p. 114). This is related to the applicability of Fubini’s

Theorem and the identification of the correct limits of integration of the iterated

integrals to which a double integral can be reduced. The processes which lie at

the basis of the calculation of a double integral require conceptual understanding
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and the development of decision-making skills and flexibility of thinking. Indeed,

there are no general rules to establish what representations are available for a

general integration domain as a normal domain, and to identify the most effective

one. Both RT1 and RT2 (from now the RTs) have been implemented by using

GeoGebra1 and given to students through a Moodle platform2. Based on the

RTs, we carried out an educational path with engineering freshmen at Università

Politecnica delle Marche (Ancona, Italy).

The overall didactical aim of our educational path is to lead students, when

facing a problem that involves double integrals, to:

• be able to represent the integration domain and acquire awareness about the

usefulness of its graphical and symbolic representations;

• be able to recognize and describe the limits of integration in order to write

a double integral as iterated integrals;

• be able to choose the most effective description of the integration domain

towards the calculation of a given integral.

The research and educational questions we address in our project are the following:

• Could interactive digital tasks, properly implemented on an online platform,

foster the approach to setting up the calculations of double integrals?

• Could suitable online tasks help the students in identifying the available rep-

resentations of a planar region and in choosing the most efficient one towards

a specific objective?

• How does the interaction with the digital tasks change the students’ attitude

and anticipatory capabilities along the educational path?

In this paper, we address the first two issues, while the third one is left for future

work.

The structure of the paper is as follows: in the next section, the essential ele-

ments of the theoretical and analytical background are introduced. In Section 3,

we describe the methodology we adopted, describing first the task design of the

RT2 and then the implementations of the RTs with students. In Section 4, we

report the analysis of the outcomes of the cases of study. We conclude the paper

with a general discussion on the results and an outlook for future works.

1 geogebra.org
2 moodle.org
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Theoretical and analytical background

For the essential elements which guided the design of our RTs from a cognitive

point of view, namely the common misconceptions in Multivariable Calculus and

the difficulties with conversions between different semiotic registers, we refer to

Alessio et al. (2019), in particular, Section 2 and the bibliography. Here we present

the formative assessment framework (Black & Wiliam, 2009), and integrate it with

the characterization of “the good solver” (Lompscher, 1975; Schoenfeld, 1982,

1992), considering the activities in which the students are involved as problem

solving ones. These theoretical elements have been used for the design of the

digital tasks and as lenses to analyse the students’ outcomes.

Formative assessment (FA) is a method of teaching/learning such that “ev-

idence about student achievement is elicited, interpreted and used by teachers,

learners or their peers, to make decisions about the next steps” (Black & Wiliam,

2009). According to the model proposed by Wiliam and Thompson (2008), there

are five key strategies of FA:

(A) clarifying and sharing learning intentions and criteria for success;

(B) engineering effective classroom discussions and other learning tasks that elicit

evidence of students’ understanding;

(C) providing feedback that moves learners forward;

(D) activating students as instructional resources for one another;

(E) activating students as the owners of their own learning.

An extension of this model (Cusi et al., 2017) highlights the role of technology

in promoting FA purposes through three main functionalities:

(a) sending and displaying tasks and solutions;

(b) processing and analysing data;

(c) providing an interactive environment.

Even if the FA model is mainly conceived for a classroom environment, we de-

signed our RTs for tertiary level students in this frame. Indeed, in tune with earlier

works (Nı́ Fhloinn & Carr, 2017; Alessio et al., 2019; Cusi & Telloni, 2019; Ţ̂ıru,

2019; Cusi et al., 2020), we think that FA could offer a significant opportunity to

increase the interactions of the students with the teacher and their peers at the

university level, as well as students’ awareness, autonomy and focused attitude in

learning mathematics. In our project, the FA strategies and the functionalities

of technology are used as critical tools to foster an aware approach to setting up

the calculations of double integrals.
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The tasks we proposed to our students are designed so that the necessary

conceptual knowledge is strengthened and multiple approaches to the solution are

available. Tasks of this kind are “a unique challenge for formative assessment”

(Bhagat & Spector, 2017): according to FA strategy (B), they allow to elicit

evidence of students’ understanding and could make the learners move forward in

the learning through appropriate and timely feedback. Moreover, these tasks can

be intended as “problems”, although they are not exactly “tasks that cannot be

solved by direct effort and will require some creative insight to solve” (Liljedahl et

al., 2016). Indeed, even if the students have learned some resolution schemes on

integration problems over a general domain, they still have to face the question

of determining the correct integration order with the proper limits of integration

and the most effective one.

For these reasons, in this study we refer to the literature about problem solv-

ing and, in particular, to the characterization of the good mathematical problem

solver proposed by Schoenfeld (1992) as a component of the framework to be

integrated with the FA.

Schoenfeld (1992) identifies the following factors for success in mathemati-

cal problem solving: knowledge, strategies, control, beliefs and practices. Good

solvers have extensive and well-connected knowledge; they ground their strategies

on structural features of problems rather than on surface ones; and they display

clear metacognitive capabilities. Finally, good solvers are often influenced by pos-

itive individual and environmental beliefs, and by the practices they are involved

in as problem solvers. According to Schoenfeld (1982), a good problem solver is

also characterised by flexibility of thought:

He will bring up a variety of plausible things: related facts, related problems,

tentative approaches. All of these have to be juggled and balanced. He may make

an attempt solving it in a particular way, and then back off. He may try two or

three things for a couple of minutes and then decide which to pursue. In the midst

of pursuing one direction, he may go back and say “that’s harder than it should

be” and try something else. Or, after the comment, he may continue in the same

direction.

In solving problems, good solvers are able to explore strategies, try some of

them, decide if to pursue a strategy or abandon it, and try another one. Good

problem solvers have the courage to change their approach.

In tune with the studies by Pólya (2014), as a further element to characterise

the good solvers’ behaviour, we consider the following actions (Lompscher, 1975),

which can be associated with specific heuristics.



Promoting a meaningful learning of the theory of double integrals 113

• Reduction: the problem is reduced into its essential components; typical

heuristic tools for this phase are visualisation aids, like graphs or tables.

• Reversibility : capability of moving back and forth along the stem of thoughts;

a typical heuristic for this phase is working in reverse.

• Consideration of aspects: many aspects of the problem are considered and

integrated, as a manifestation of connected knowledge; a heuristic correspond-

ing to this phase is the application of symmetry or invariance principles.

• Change of aspects: the assumptions and perspectives are changed to find

a solution to the problem.

• Transferring: the knowledge is transferred from one context to another.

Methodology

In this section, we first describe the essential features of the design of the

RTs, which is a key element of our educational methodology, since each task is

structured according to the expected approach by the students. Then, we illustrate

in detail the implementation of the RTs to the case study involving Engineering

students attending the course of Analisi Matematica 2. Finally, we describe our

research methodology.

Design of the RTs

Both RTs have been designed on the basis of a preliminary analysis along the

cognitive dimension (common difficulties afflicting the teaching/learning of mul-

tiple integrals), the epistemic dimension (theoretical fruitfulness and implications

of the content at stake) and the didactic dimension (educational opportunities

offered by the digital environment with respect to the mathematical topic).

The design and implementation of RT1, where we focused on multiple repre-

sentations of subsets of the plane, have been discussed in Alessio et al. (2019).

In this paper, we focus on the design of the RT2, concerning the description

of subsets of the plane as normal domains in Cartesian or polar coordinates, and

the choice of the most effective representation towards the calculation of a double

integral as iterated integrals through Fubini’s formulas.

We recall that a planar subset D ⊂ R2 is normal in the x-direction if there

exist two continuous functions α(x) and β(x) such that D = {(x, y) ∈ R2 |
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x ∈ [a, b], α(x) ≤ y ≤ β(x)}. In this case, the integral over D may be calcu-

lated as iterated integrals, first in the y variable, and then in the x variable:∫∫
D
f(x, y) dxdy =

∫ b
a

(∫ β(x)
α(x)

f(x, y) dy
)
dx.

D is normal in the y-direction if there exist two continuous functions γ(y)

and δ(y) such that D = {(x, y) ∈ R2 | y ∈ [c, d], γ(y) ≤ x ≤ δ(y)}. In this case,

first we integrate in the x variable, and then in the y variable:
∫∫
D
f(x, y) dxdy =∫ d

c

(∫ δ(y)
γ(y)

f(x, y) dx
)
dy.

We notice that describing a set as a normal domain means to understand

if it is possible to apply Fubini’s Theorem, identifying correctly the limits of

integration of the iterated integrals.

RT2 includes six digital tasks (T1–T6) requiring short open-ended (numerical

or symbolic) answers and one final open problem (P). The choice of open-ended

questions is motivated by the goal of avoiding trial and error approaches; it was

suggested by the outcomes of a pilot study carried out on the RT1 (Alessio et

al., 2019). As said, all the tasks in RT2 are implemented using GeoGebra. They

graphically give a planar region, and the students are required to provide its an-

alytical description as a normal domain in Cartesian coordinates (in the x- or

y-direction) or in polar coordinates. The tasks also provide the option of ask-

ing for some hints, if the student experiences difficulties and wishes to do that.

For each action by the student, automatic feedback returns, which is facilitative

and strongly dependent upon what the student did (Shute, 2008). The provided

feedback is of different kinds (interrogative, visual, dynamic, . . . ); in the case of

a wrong answer, the region selected by the student is shown, allowing him/her to

adjust the previous answer and deepen the covariation of the limits of integration

and the graphical representation of the set at stake. For these characteristics, the

feedback is not only on the task, but also on the process to solve the task and on

self-regulation (Hattie & Timperley, 2007). When a task is correctly performed,

the following one becomes available.

The first three tasks of RT2, T1, T2 and T3, are about the identifications

of normal domains (one in the x-direction, one in the y-direction but not in the

x-direction, the last again in the x-direction but not in the y-direction). In these

tasks, the definition of normal domain is recalled, and the student is required

to enter the functions with their intervals of definition, i.e., the limits of inte-

gration, which identify the domain as x-normal or y-normal. These tasks want to

strengthen the knowledge of the concept of normal domain, showing that this def-

inition may not apply even in simple examples. The task T4 deals with a domain

with circular symmetry: the student should choose the direction (x or y) in which
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the given region is a normal domain and describe the functions identifying it. Af-

ter the task is solved, the program shows that the region can also be described

using polar coordinates and precisely as a normal domain in the θ-direction. The

region in T5 is neither a normal domain in the x- nor in the y-direction, but it

can be described as a normal domain in polar coordinates (in the θ-direction).

The last task, T6, displays a region that can be described as a normal domain in

both x- and y- directions, and also by using polar coordinates. In this case, the

student, in addition to finding the limits of integration, is required to indicate

the most efficient representation of the domain between the three available to

evaluate a given double integral. Through a suitable system of checkboxes, the

calculation of the integral according to the different representations of the domain

is provided, so that the student could detect the most efficient one. This sup-

ports the idea that, to foster the students’ flexibility and autonomy in problem

solving, comparing methods is more efficient than presenting them in sequence

(Rittle-Johnson & Star, 2007). The final problem (P) provides the analytical rep-

resentation of a planar region and requires the calculation of its area, together

with a justification of the adopted strategy.

The tasks of RT2 have an increasing level of difficulty, up to the final problem,

which calls not only for a deep understanding of the representation techniques,

but also for the metacognitive ability to compare different methods of solution.

Because of space limitations, we describe in detail the design of three tasks

of RT2 and the final problem3.

T2. A set D is shown on the right side of the screen (Figure 1). It is a normal

domain in the y-direction, as stated on the left side of the screen. The student is

required to insert the functions γ(y), δ(y), and the interval [c, d] identifying D as

a normal domain.

If a wrong description of the region is submitted, the student is provided

with visual feedback: the region corresponding to the given answer, if not empty,

is shadowed (Figure 2).

This feedback is about the task and about self-regulation for the student,

who can correct his/her answer by taking advantage of the feedback information.

Moreover, it is response-specific, since it strictly depends on the answer given

by the student. In our opinion, this is one of the most significant opportunities

offered by technology with respect to a paper and pencil approach concerning the

3 At the website https://math-diism.univpm.it/progetto/, the complete route of tasks RT2 is

available.



116 F. Alessio, L. Demeio and A. I. Telloni

Figure 1. The starting screen of task T2

Figure 2. The visual feedback within the task T2

same task: the students can see dynamically the covariation of the analytical and

the graphical representation of a normal domain.

When the description of D is correctly performed, the question “Is D a nor-

mal domain in the x-direction?” appears. If the student selects the wrong answer

“Yes”, interrogative feedback in verbal language appears, inviting him/her to

dynamically explore the opportunity of describing D as a normal domain in the
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x-direction by moving a slider (the segment linked to the slider becomes red when

it divides into two parts, see Figure 3).

Figure 3. The dynamic exploration allowed by the slider in task T2

Finally, if the answer is “No”, a feedback appears, explaining that the domain

is not x-normal, but it is the union of two x-normal domains, which are auto-

matically shown (Figure 4). This feedback should make clear to the student that

there are more possible ways to describe the given domain, for example, either as

a y-normal domain or as a union of x-normal domains.

Figure 4. The final screen of task T2
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This task should activate FA strategy (B), since it aims at eliciting evidence of

the students’ levels of learning; strategy (C) through different kinds of feedback,

given also by the hints; strategy (E), since the task, together with the whole RT2,

is a self-assessment tool based on the interaction computer-learner and aimed at

fostering the student’s awareness of his/her own learning progress.

T4. A circular sector D is shown on the right side of the screen, while on

the left side the student can choose (by checking one of two boxes) whether D is

a normal domain in the x- or the y-direction (Figure 5).

Figure 5. The starting screen of task T4

Since the region D can be described as a normal domain in both directions,

a different screen appears for each choice: if “normal in the y-direction” is selected,

the request of inserting the functions and the interval identifying D as a normal

domain in the y-direction appears; if the other option is selected, the program

requires inserting the functions (piecewise defined) identifying D as a normal

domain in the x-direction (Figure 6).

The same hints of task T2 are available. If a wrong description of the region is

submitted, the program signals the mistake and draws the region corresponding to

the given answer, if not empty. When the description of D is correctly performed

according to the initial choice, immediate feedback and also a brief explanation
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about alternative representations of D (as a normal domain in Cartesian coor-

dinates in the other direction and as a rectangle in polar coordinates) appear.

In particular, the description in polar coordinates is given (Figure 7). This is to

enable students to compare different representations of the same domain. Task 4

is aimed at activating FA strategies (B) and (C) and (E).

Figure 6. A screenshot from task T4

Figure 7. The description of the region D in polar coordinates
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T6. The first part of this task is similar to the others, but in this case,

we immediately clarify the goal: the calculation of the integral
∫∫
D
y dxdy as an

iterated integral over a given domain D ⊂ R2 (Figure 8), perhaps after an initial

change of variables.

Figure 8. The starting screen of task T6

The student can choose to describe D as a normal domain in the x- or in

the y-direction, or by using polar coordinates referred to the origin of the axes.

Once the student has described D as a normal domain by inserting the functions,

a further question appears on the right side of the screen: “What is the best

representation of D in order to calculate the integral?” Now the student can see

the calculations that are needed with different methods of solution (Figure 9),

and thus realize by him/herself that different choices lead to different levels of

complications. This part of the task is engineered so that FA strategies B and E

are activated, to support the development of the student’s awareness about the

applications of definitions and techniques.

P. The student is required to calculate the area of the region D (shown in

Figure 10), given only through the analytic representation: D = {(x, y) ∈ R2 |
x2 + y2 ≤ 4, |x| ≤ y ≤

√
3}.

This open-ended problem explicitly asks to describe at least two different

methods to obtain the solution, to choose the most convenient one, to justify the

choice, and to perform the essential steps needed to solve the problem. Different

solution strategies are available: the region D can be described as a normal do-

main in the x- and y-directions, as a union of normal domains or by using polar

coordinates; moreover, D is symmetric with respect to the y-axis, so its area is
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Figure 9. A screenshot from task T6

Figure 10. The region D of problem P

twice the area of D+ = {(x, y) ∈ R2 | x2 + y2 ≤ 4, x ≤ y ≤
√

3, x ≥ 0}. Finally,

both D and D+ can be viewed as unions or differences of sets.

According to the framework described in Section “Theoretical and analytical

background”, all typical actions of good solvers (reduction, reversibility, consid-

eration, change of aspects and transferring) should be carried out for a successful

approach to the problem. Students should activate knowledge and technical skills,
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but also flexible thinking and capability to anticipate the level of difficulty of the

calculations required by each method.

The FA strategies (A) and (E) should be activated through problem P. In par-

ticular, the request clarifies that the choice of the most effective method is a cri-

terion for success (strategy A).

The implementation of the RTs with the students

The educational path has been carried out with voluntary freshmen of

Mechanical Engineering at Università Politecnica delle Marche (Ancona, Italy)

attending the course of Analisi Matematica 2. The course was taught in the

spring semester of the academic year 2017/18, after the preliminary course of

Analisi Matematica 1; it included 72 hours of face-to-face lectures and 20 hours of

practice sessions. Classical and digital resources were shared between the teacher

and the students on the Moodle platform of the university. There were 134 stu-

dents enrolled in the course and about 70 students (typically those who passed

the preliminary exam of Analisi Matematica 1) regularly took part in the lec-

tures. The main subjects treated during the course were: elements of differential

geometry of curves; differential calculus for functions of several real variables;

path and multiple integrals; smooth surfaces and surface integrals; conservative

and irrotational vector fields; and ordinary differential equations. The final as-

sessment was assigned through two partial written exams (mid-term and final)

in the first available session or a single total written exam in the other sessions;

when students passed the written exam, they faced a final oral exam.

For the present study, both the RTs have been handed out to voluntary

students in a computer room (and, for what concerns the RT1, also to a group

of students at distance) through the official university Moodle platform, under

the supervision of a teaching assistant. This methodology was aimed at observing

the students’ behavior to gain information about their typical approaches and to

obtain suggestions for future improvements to the digital tool, according to the

research-based design framework (Swan, 2013). However, the students’ typical

approach when facing the RTs is not discussed in the present paper, it is the

focus of a forthcoming one.

The RT1, concerning the conversion between graphical and analytical rep-

resentations of subsets of the plane, was proposed to all students attending the

course in the last week of February, after the topic was treated in the course.

15 students chose to participate in the activity. The RT2, concerning the de-

scription of subsets of the plane as normal domains in order to calculate double
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integrals over them, was proposed to all students participating in the lectures in

the last week of May, after the teacher concluded the theory of integration of

two-variable functions. 24 students chose to participate in the activity. After the

RTs were completed by the participant involved in this research, they were made

available to all the students attending the course of Analisi Matematica 2 on the

Moodle platform of the university, as a self-assessment tool. Students were free

to access them without any constraints.

In order to promote both a meaningful learning and the students’ awareness

of it, we organised the cases of study in methodological-educational cycles, alter-

nating activity phases with some argumentation and reflection phases. The design

and the methodological cycle involving RT1 have been described in (Alessio et al.,

2019). The methodological cycle including RT2 envisaged the following phases:

(P1) the first six digital tasks T1–T6 of RT2 were handed out;

(P2) the seventh task of RT2, i.e., the open problem P, was handed out, with the

explicit request of written argumentations about different solution strategies

and the choice of the most convenient one;

(P3) an anonymous questionnaire about the perception of the digital activity

(ease of interaction, role of hints and feedback) was proposed.

The methodological-educational cycle exploited the functionalities of technology

of sending and displaying data and of providing an interactive environment (Cusi

et al., 2017).

Research methodology

In order to evaluate the outcomes of our educational path and give answers to

the research questions, we collected different kinds of data: for students engaged

with the RTs, a) screen-recordings of their interaction with the tasks, b) written

argumentations concerning the solving processes for the problem in (P2), and

c) answers to the questionnaire submitted in (P3). For all students attending

the course, d) written final partial exams. In particular, data b) and d) allowed

us to elicit evidence about students’ approach to setting up a double integral

and their capability of choosing a suitable strategy to solve problems involving

double integrals. All the data have been quantitatively and qualitatively analysed:

the researchers coded them separately, according to the theoretical framework

and the research questions, and then they discussed the emerging themes until

an agreement was reached (Sharma, 2013).
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A quasi-experimental approach (Cohen et al., 2007) was used to compare

the solving processes of all the (38) students who passed the midterm and final

written exams of Analisi Matematica 2 at the first session. We divided them into

two groups, of which we discuss in the following section: the first group, say,

the experimental group (EG), was formed by students who decided to participate

in at least one of the activities with the RTs. The other group, say, the control

group (CG), was formed by students who preferred to not interact with the RTs

(neither with the activity proposed in the computer room, nor independently

via the Moodle platform). Both the EG and the CG consisted of 19 students.

The groups are homogeneous: students in the EG and the CG attended most

of the lectures and practice sessions, and had a comparable average score in the

preliminary exam of Analisi Matematica 1.

Some effects of the educational path on the students’ learning

In this section, we analyse the outcomes of the final written exam of Analisi

Matematica 2 (first session), comparing the productions of students in the EG

and students in the CG. We notice that this exam took place about one month

after the involvement of the EG students in the interaction with the RT2, hence

from their productions we can gather information about the permanence of the

effects of the educational path on their learning.

In the final written exam of Analisi Matematica 2, we proposed the following

problem: “Determine the coordinates of the center of mass of the uniform planar

object D = {(x, y) ∈ R2 | (x − 1)2 + y2 ≥ 4,
√

3|y| + 1 ≤ x ≤ 4}”. As usual,

the problem requires a modeling, since students should translate the problem

of finding the center of mass into suitable double integrals. Moreover, different

strategies and techniques for finding the solution are available.

To correctly solve the problem, students needed to calculate the area of the

domain, A(D), and the coordinates of its center of mass, (xG, yG). A(D) could be

found by using elementary geometry, considerations about the symmetry of the

set and/or double integrals; the coordinate yG could be determined by symmetry

without calculations, while for the x-coordinate of the center of mass, the calcu-

lation of an integral was needed, and it could be performed by exploiting different

properties of integrals and/or the distributive property of the center of mass.

The integration domain D was susceptible to different descriptions as a normal

domain: in the y-direction, as a union of normal domains in the x-direction, or

in polar coordinates (Figure 11). In this way, students were required to apply
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knowledge and technical skills, and they were also involved in decision-making

processes.

Figure 11. The domain D in the problem faced by the students of the
EG and the CG

We analysed in detail and classified all the written solutions of the EG and

the CG students to the above problem, according to the following questions:

1) Did the student draw the domain and in what way?

2) How did the student calculate the area of D?

3) How did the student calculate yG?

4) How did the student calculate xG?

5) Did the student change strategy during the resolution process?

6) How did the student set up the calculation of the integrals?

About the first question, we decided to classify the correct drawings into three

categories, according to specific indicators: a drawing is rough if it represents the

domain only qualitatively, without quantitative information; a drawing is almost

accurate if it represents the domain with some quantitative information (coordi-

nates of points or equations of curves), not sufficient to obtain its description as

normal domain; a drawing is accurate if it contains all the quantitative informa-

tion allowing the reconstruction of the analytical representation of the domain.

In Table 1, we summarize the results of our classification of students’ drawing

of D. The EG displayed a clear tendency in drawing the integration domain and

in doing it accurately, which was an explicit aim of our intervention.

The qualitative analysis of the solving processes in relation to the above

questions 2, 3 and 4 showed a general awareness of the usefulness of drawing the
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domain by the EG and the strategic capability of making use of it. Indeed, some

students simulated in their drawings the dynamic variation of a coordinate with

respect to the other one, almost reproducing the dynamic hint of the RT2. Other

students made several correct drawings of the domain D, with different levels of

accuracy corresponding to different goals (initial exploration of the domain, exact

description of D as a normal domain in particular directions); this is an expression

of the reduction of the problem and of the corresponding heuristic (see Section

“Theoretical and analytical background”).

No drawing Rough Almost accurate Accurate

or incorrect drawing drawing drawing drawing

EG 0 4 7 8

CG 3 10 4 2

Table 1. Domain drawing results

In Table 2, we indicate the number of methods used by students of the EG

and the CG for calculating the area of the domain. The methods considered were:

the additivity properties of integrals; elementary geometry; symmetry properties;

iterated integrals on normal domains in the x- or y-direction; change of variables

by using polar coordinates. Similar results were obtained by considering the meth-

ods used by students to calculate the coordinates of the center of mass. Students

in the EG generally used more methods and referred to more theoretical elements

than students in the CG. The qualitative analysis of the solving processes showed

that usually EG students decomposed the problem (reduction), then they strate-

gically chose and combined suitable methods and semiotic registers, considering

and possibly changing aspects of the problem and transferring knowledge. This

kind of behavior reveals flexibility of thinking and capability of taking a favourable

point of view (see Section “Theoretical and analytical background”).

One Two Three More than three

method methods methods methods

EG 4 4 7 4

CG 10 4 4 1

Table 2. Number of methods applied to calculate A(D)

For example, many students of the EG used the symmetry of D, writing

A(D) = 2A(D+), where D+ = {(x, y) ∈ D | y ≥ 0}, then expressed A(D+) by
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addition or subtraction of areas (i.e., A(D+) = A(T )−A(S), where T is a triangle

and S is a circular sector, or A(D+) = A(P ) +A(C), where P is a trapezoid and

C is a curvilinear triangle), then they calculated these areas by using elementary

geometry and possibly by integrals.

In Table 3, we report the number of students who changed strategy during

the problem solving process. The change of strategy is a typical characteristic of

the good solver (Schoenfeld, 1992). Note that we had the possibility of consid-

ering only those students who left traces of their first attempts. Typically, these

students began to set up and calculate an integral by using a certain strategy (e.g.

considering the domain as normal in the x or y-direction), and then changed their

approach (e.g. describing the domain by using polar coordinates). In some cases,

they explicitly wrote that the change of strategy was due to the difficulty of the

calculations or to their developed awareness that the previous one “is not con-

venient”; when the exchange of strategy was not explained, students were asked

directly about the reasons for their change of approach during the oral exam.

Students who changed their approach, mostly belonging to the EG, displayed

a strong metacognitive control on the goal to be reached and the reversibility

of thought, moving back and forth along their problem solving process. Indeed,

they were able to go back when a certain approach turned out to be too difficult.

On the contrary, CG students generally showed a certain rigidity: they tended

to remain anchored to one or few methods, and kept using them even when they

were not the most efficient solutions.

Number of students who changed approach (out of 19)

EG 7 ( 36,84%)

CG 1 ( 5,26%)

Table 3. Change of approach results

Finally, in Table 4, we report the outcomes of the EG and the CG in the

setting up of the integration problem. We divided students in the EG and the

CG into three categories: students who correctly sketched the integration domain

and identified the correct limits of integration (Group A); students who correctly

sketched the domain and wrongly set up the calculations (Group B); and students

who did not sketch or wrongly sketched the domain and wrongly set up the

calculations (Group C). Moreover, we considered the percentage of students in

Group A who did not conclude the calculation (Subgroup A*).

The analysis seems to suggest the effectiveness of the experimental approach

adopted: more students in the EG than in the CG correctly set up the calculation
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of the double integrals and most of them used efficient strategies. Among students

who correctly set up the calculation, the percentage of students who did not

conclude the calculation is higher in the CG than in the EG, which may suggest

that the strategies chosen by the CG were on average less effective than the

strategies chosen by the EG. Furthermore, no students of the EG got the setting

up of the calculation completely wrong, compared to about 16% in the CG.

Group A Subgroup A* Group B Group C

Correct sketch Students in Group A Correct sketch of Wrong sketch of

and setting up who did not the domain and the domain and

of the calculation conclude wrong setting up wrong setting up

the calculation of the calculation of the calculation

EG 14 (73,68%) 4 (30,77%) 5 (26,32%) 0 (0%)

CG 10 (52,63%) 5 (50,00%) 6 (31,58%) 3 (15,79%)

Table 4. The result in the setting up the resolution of the problem for
the CG and the EG

As a further element, we notice that among the 56 students who participated

in the two partial exams, 18 did not pass the exams. Of them, 5/24 were students

who chose to interact with the RTs and 13/32, a much higher ratio, were students

who chose to not interact with the RTs.

Final remarks

This study is about an educational path devoted to promoting a meaningful

approach to the setting up of double integrals by university students through

their interaction with routes of digital tasks. The tasks are designed with the

aim to activate the formative assessment strategies: (A) clarifying and sharing

criteria of success, (B) engineering learning tasks that elicit evidence of students’

understanding, (C) providing feedback that moves learners forward, (D) activating

students as instructional resources for one another, and (E) activating students as

the owners of their own learning. Strategy (C) is activated by means of facilitative

and specific feedback focused on the task, on the process enacted by students to

solve the task and on self-regulation (Hattie & Timperley, 2007). The RTs as

a self-assessment tool exploit the functionalities of technology of sending and

displaying tasks and solutions, and of providing an interactive environment (Cusi

et al., 2017).
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Understanding the limitations of a quasi-experimental approach where the

EG and the CG are not randomized and where external variables could intervene,

the outcomes of the study seem to suggest the effectiveness of the experimental

path to promote a meaningful approach to setting up the solution of a problem

involving double integrals, with the help of technology. Most of the students in the

experimental group (EG) faced the proposed problem in the written exam with

more accuracy and a clearer capability of making suitable decisions with respect

to the students in the control group (CG). Most of them drew the integration

domain, often at different levels of accuracy according to specific aims, which

displays awareness; they were able to recognize the integration domain as a normal

domain, even in different directions; finally, they displayed strategic competence

in choosing the most efficient representation of the integration domain among the

different ones available, also in the light of the function to be integrated.

In many cases, the solving processes of the EG students mirrored the struc-

ture and the peculiar elements of the RTs. Many students displayed frequent

changes of viewpoint and were able to integrate different semiotic registers and

representations. Moreover, they displayed having access to more methods and

theoretical elements with respect to the CG students, according to the specific

needs.

Students in the EG displayed more flexibility of thinking in problem solving

processes: they were able to change approach, reverting the order of thoughts and

abandoning a chosen strategy when it was not appropriate. In other words, they

had well-connected knowledge, were able to plan and develop suitable strategies,

maintained a constant metacognitive control on their own solving process and

expressed good practices (Schoenfeld, 1992).

Further research is needed to understand to what extent these outcomes could

be generalized. The specific feedback and the possibility for each student to choose

the simplest or preferred problem-solving process within the RTs represents a way

to value individual learning needs and habits; hence, finally, individual identity.

The opportunity offered by the integration of technology in the education process

is essential (Descamps et al., 2006; Albano, 2011).

In this respect, the present study gives a contribution on how to carry out FA

purposes through digital tasks with multiple solution strategies, aimed at improv-

ing the learning of double integrals and at valuing individuals at the university

level. It should be useful for practitioners as a model for teaching/learning at

university, within a formative assessment frame. Moreover, it can give insights at

the theoretical level, to develop principles for effective task design.
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In this respect, in a forthcoming paper we will deepen the students’ learning

approaches to the RTs on the basis of the analysis of the choices they made within

the digital environment.

Despite the effectiveness of the design and implementation of the RTs,

a critical issue emerged: not all the students attending the course chose to interact

with the digital activities (neither in the computer room, nor independently via

the Moodle platform). This fact can be interpreted as an expression of the idea,

quite common among engineering freshmen, of mathematics as a service subject:

some students considered the interaction with digital tasks as a time-consuming

activity, not so necessary to better understand the problem.

The results of the present study, as well as other implementations of the

project during the pandemic, suggest the possibility of an enlargement of the

educational experiment, engaging more students in future, making them face

the digital activities in small groups. Indeed, during the lockdown phase due to

the Covid-19 emergency, we proposed the educational path based on the RTs to

groups of engineering freshmen (from 4 to 10 students) at distance, via a confer-

ence platform. About 80 voluntary students participated, almost all the students

who had attended the course, probably also stimulated by the collaboration and

interaction with their classmates. Cooperative learning seemed to make students

more available to be engaged. From the research perspective, it would be inter-

esting to understand how the interaction in small groups modifies the effects of

the routes of digital tasks on the students’ learning at different levels.
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