
20/1 (2022), 51–66
DOI: 10.5485/TMCS.2022.0536

A case study of the integration
of Algorithm Visualizations in
Hungarian programming education

Imre Bende

Abstract. In this study, I will introduce how Algorithm Visualizations (AV) can help
programming education or, in this case, the acquisition of basic programming theorems.
I used two different methods to test this: in the first round, I examined in a larger group
how much the students’ ability to solve specific tasks changes after being introduced to
a visualization tool, and then, what was their motivation and experience during this
process. In the second round, I looked for the components that could be important
when choosing a tool with the help of an in-depth interview with a smaller number of
individuals. In both cases, I describe the research, experience, and results of the study,
and then summarize them at the end.

Key words and phrases: algorithm visualization, education, IT.

MSC Subject Classification: 97P10.

Introduction

While many factors can affect the process of understanding and multiple

studies have already measured the effectiveness of Algorithm Visualization (AV)

(as collected in (Hundhausen et al., 2002)), the main purpose of my test was not

the examination of effectiveness, but to find out how popular the method is in the

Hungarian educational system, and how the pupils would react on using a specific

tool during their university studies. Efficiency in programming education could

mean that students can solve more tasks in the same amount of time, they use the
51



52 Imre Bende

learned algorithms for specific problemsolving tasks, altogether they have deeper

understanding of the algorithm.

I created a website1 which contains visualizations of programming theorems.

The purpose was to implement a tool which helps teaching and understanding

these algorithms, specifically in a Programming course at Eötvös Loránd Univer-

sity (ELTE). It contains pseudocode, specification, description, C++ implemen-

tation and a visualization that is step-by-step playable and the input of which is

modifiable.

In the first section of my research, I wanted to test the aforementioned Al-

gorithm Visualization: to check if it can be used as an educational tool at a

university in the first semester (Q1), while getting additional background infor-

mation about the students (Q2).

In the second section, my goal was to find out what are the most important

elements in a visualization for specific students (Q3) and what extra features

they think would be useful for the learning process (Q4). In the past, I already

collected and made a component tree based on that (Bende, 2019b), therefore my

goal was to validate or expand this graph based on the results.

Related works

Naps’ engagement taxonomy (Naps et al., 2003) defines five levels of interac-

tion with Algorithm Visualization: viewing, responding, changing, constructing,

presenting. Myller extended this theory with new levels, in this way, the ex-

tended taxonomy includes the following engagement levels: no viewing, viewing,

controlled viewing, entering input, responding, changing, modifying, construct-

ing, presenting, reviewing (Myller et al., 2009). Many studies tried to prove that

higher engagement level means more effective learning process (Hundhausen et

al., 2002). Karavirta provides a review of these studies in his thesis (Karavirta,

2009), and a more recent article also found positive results related to this topic

(Simonak, 2020). Beside interactive elements, when we use a “good“ visualization

tool, “the use of the visualization system decreases students’ negative emotions,

and students experience more positive than negative emotions“ (Lacave et al.,

2020). This ultimately gives the students positive feedback, emotions, motive-

ness, therefore the usage of the tool becomes an effective learning method. On

the other hand, the design and the use of instructions are as important as the

1Website of AlgTan: https://ermi46.web.elte.hu/dev/algotan/



The integration of AV in programming education 53

tool itself, as the two together really grabs the students’ attention and helps

them learn the ways of algorithmic view and programming (Byrne et al., 1996)

(Landers, 2015). As we see, there are many factors that can affect the process of

learning, therefore, the main focus of my research is not the efficiency in general,

but to observe the rate of learning success with the previously mentioned tool,

AlgTan.

While we mostly think about an application or website on PC when we speak

about visualisations, the mobile platform has now become another important field,

which indicates many questions about implementing, using Algorithm Visualiza-

tion on these devices (Supli et al., 2016).

Algorithm Visualization is not just a tool for learning algorithms, but can be

used as a debugger tool as well, which informs users of the status of the program

and helps them understand its functionality (for example, PVC.js is visualizing

C programs on web browsers (Ishizue et al., 2020)). In programming education,

visualizations also help in understanding data structures and their operations,

which has the same importance as the algorithms on these (as an experiment

showed us by using DS-PITON (Nathasya et al., 2019)).

There are many studies and many more tools (Schaffer in 2010 for his study

already counted and observed 500 (Shaffer et al., 2010)) for Algorithm Visual-

ization, yet, as we will see later from the results of the questionnaire, not many

students have used or met these tools during their education in Hungary.

Test of an Algorithm Visualization

Test subjects

I conducted the survey among the first-year computer science students of

the Faculty of Informatics of Eötvös Loránd University within the course of Pro-

gramming. I determined the date of the examination so that they knew the

basic structures of programming, they could already use them, but at that time,

more serious programming theorems had not yet been introduced for independent

problem solving at the university.

Process of test

As the first step, I created an assessment to measure the prior knowledge

of the students. Prerequisites may vary, as it is possible that they have already



54 Imre Bende

learned programming in high school, or they have not even met with it, but there

is one thing in common: the programming theorems have already been presented

at the university, but they have not yet been used to solve problems. I examined

the background with three tasks that required each programming item. The tasks

were as follows:

(1) In a paper collection campaign, everyone recorded how many pounds of paper

they brought. Write a program that gives you a sum of how much paper the

participants collected!

(2) In a competition, the date of birth of each participant was recorded. Create

a program that will determine if the competition had any minor (younger

than 18) racer!

(3) In a poker tournament, each participant is recorded as a number, which

represents when they were eliminated. Use a program to determine which

player was eliminated first!

I only provided a shorter period of time for solving the tasks (20 minutes)

not only to examine whether the students would be able to do so, but also to see

how quickly and efficiently they would do it. This short timeframe also allows

greater scaling. Of course, I pointed out that the goal is not necessarily to solve

the tasks completely, but to see how much they manage to solve during this time

in the current situation (thus relieving the tension caused by a certain level of

accountability).

Subsequently, the basic programming theorems (series calculation, counting,

maximum selection, decision, selection, linear search) are presented. Here, with

the support of the Algorithm Visualization I developed (Figure 1), I presented the

purpose, description and step-by-step process of the algorithms. For each one,

we also looked at a simpler example application written in C++.

After that, in order to check the improvement, I gave them three more tasks,

similar to the ones they did at the beginning of the lesson, with the same criteria.

The tasks were as follows:

(1) A group of N friends (N is a constant value) recorded how much they spent

each day on a vacation. Create a program that determines the number of

days, when more than e100 was spent per person!

(2) On each day of a festival, it was recorded how many tickets were sold on each

day. Create a program that determines the days with the most visitors!

(3) Given a series of temperatures, determine if it is strictly monotonically in-

creasing!



The integration of AV in programming education 55

Figure 1. Used Algorithm Visualization (AlgTan)

I evaluated the solution of the tasks based on three factors: whether

(1) the program is correct (10 points),

(2) the code has good style (2 points),

(3) the student chose and used the correct programming theorem (2 points).

In the third part, I only checked the output, while during the deeper exami-

nation, I looked at the code purity, the use of variable names, and the appropriate

indents.

At the very end, I asked the students some additional questions in order to

get a better understanding of their impressions on the tools introduced during

the test. The questions can be divided into two groups:

(1) Preliminary fact-finding:

(a) Did you learn to program during your high school years? If so, how

long?

(b) Have you ever encountered an Algorithm Visualization during your high

school years? If so, which one?

(2) Gathering feedback:

(a) If you have ever encountered Algorithm Visualization, how much has it

helped you to master the algorithms?

(b) How much did the visualizations seen in the class helped you to under-

stand the algorithms?



56 Imre Bende

(c) What other components and tools can you name that could help with

programming education?

(d) Other comments

About the tasks

The first set of assignments consisted of three basic tasks, which can be

solved with one or other of the programming theorems within an array (these are

summation, decision, selection). In the second part, however, it was necessary to

make minor modifications on them (as they were somewhat more complex, more

difficult tasks, which did not require simply entering the basic algorithm/program

provided by the programming theorem):

• Task 1: counting item, but the condition contained a constant value.

• Task 2: maximum selection.

• Task 3: decision, but compared to the original algorithm, it was worth negat-

ing the condition of the logical variable, that is starting from the assumption

that the statement is true (strictly monotonically increasing), until we find

an adjacent element pair that refutes the property.

Results

The first significant information is how many students have already studied

programming before their university studies (Figure 2). More than three-quarters

of the students had prior programming education, and all of them indicated that

they had studied it at least weekly for more than a year.

Figure 2. Proportion of students who studied programming prior to the test



The integration of AV in programming education 57

Surprisingly, even though many students had already learned programming,

none of them had yet encountered Algorithm Visualization or a similar type of

tool. There are two possible explanations for this result: either they were not

aware that they had used or seen it before (even as a game), or the learning of

algorithms did not appear as a separate step in programming education, but only

as a tool (which can easily happen due to the low number of tutorial classes for

programming in schools).

After evaluating the solutions, I examined how much the average total score

of the students changed (Figure 3).

Figure 3. Average total student score for each test (the maximum was
3 tasks * (10 + 2 + 2) = 42 points)

The proportion of students who scored less, equal, or more points in the sec-

ond round is shown in Figure 4. A significant achievement was that nine students

had a rate of development of at least ten points. This actually means that these

students managed to complete an extra task in the same amount of time.

After completing the survey, I also asked the students how useful and helpful

the Algorithm Visualization was in the learning process (Figure 5). This could be

indicated on a scale of 1 to 6 (1 - not at all, 6 - completely). The answers to this

question show that with a few exceptions, everyone considered the understanding

or learning of the algorithm by visualization to be more positive.



58 Imre Bende

Figure 4. Changes in the results based on the evaluation of the second
test (number of students with less/equal/more points)

Figure 5. Students’ evaluation of the tool/method

Search for major components in AVs

Methodology

While the first analysis showed that an interactive AV with oral explanation

can result in a positive outcome, my purpose was to get additional information on

which elements of these tools could be more important for students in this type

of teaching method. In order to get detailed information about this, I needed to

collect qualitative data. I could get more answers for the future usage of AV with



The integration of AV in programming education 59

this mixed-method research, which is a “dynamic option for expanding the scope

and improving the analytic power of studies“ (Sandelowski, 2000). For the quali-

tative research, I conducted in-depth interviews with multiple subjects of different

backgrounds. This method is useful for “getting people to talk about their per-

sonal feelings, opinions, and experiences. It is also an opportunity to gain insight

into how people interpret and order the world“ (Milena et al., 2008). Thanks to

the open-ended questions and the semi-structured format, the interviewees could

speak freely and highlight key points in specific Algorithm Visualizations without

strict predefined rules.

Process of an in-depth interview

The interview consisted of four major parts:

(1) Short conversation, acquaintance, discussion of previous programming skills.

(2) Showcasing Algorithm Visualizations; the interviewees list the components

they have seen before and classify them. The following devices, applications

were examined:

(a) Sorting out Sorting: video about the sorting algorithms with commen-

tary.

(b) VisuAlgo: it introduces basic algorithms and data structures with visu-

alization.

(c) AlgTan: I made this website to support the teaching of algorithms at

the university. The basics are similar to VisuAlgo, but it contains visu-

alizations for the programming theorems too.

(d) CodeCombat: simple online game (website) with many small tasks,

which requires basic command-based solutions.

(e) CodinGame: website with more complex tasks.

(f) CS Unplugged: collection of different offline tasks, which require algo-

rithmic solutions.

(3) A description of the components of the Algorithm Visualizations I have col-

lected previously (Bende, 2019b), and a review of the results of the previous

section and the components found in them.

(4) Summary based on what has been seen, discussion of additional compo-

nents/possibilities.



60 Imre Bende

Figure 6. Possible components of Algorithm Visualization (Bende, 2019b)

Test subjects

In my research, I gathered students with different depths of knowledge and

experience. I chose one person to represent each of the following four categories

(hereafter referred to as this number):

(1) has not yet studied programming at university, has a basic knowledge of basic

concepts;

(2) a first-year student who has already started to get acquainted with the uni-

versity material, but only knows how to use the basic algorithms;

(3) a final year student who already has sufficient experience, has been studying

for several years, knows and can use the taught algorithms;

(4) has completed his university studies (minimum BSc level), understands the

process of algorithmizing, programming, and already has minimal work ex-

perience.

Goals

My goal is to examine the following:

• in the first step, what elements are recognized on the categorized Algorithm

Visualizations already mentioned above (Bende, 2019a) and based on Myller’s

extended taxonomy (Myller et al., 2009);

• in the second step, which concepts mentioned in Figure 6 can be mapped to

the devices shown;

• conclusions can be drawn from these results, for example, which components

are considered important, and which could be used in self-directed learning;

• it can be an extra result to omit elements that are considered “redundant“

when creating future visualizations and to “discover“ new ones.



The integration of AV in programming education 61

Interviews

Below, I will present the most important remarks of the interviewees on each

tool and give a brief summary of the personal interviews.

First subject:

Sorting out Sorting: a more outdated look that uses different colours, mark-

ings, and an oral explanation associated with the video.

VisuAlgo: pseudocode is displayed, interactive elements (speed, adjustability

of steps), the interface is transparent, colourful.

AlgTan: displays the pseudocode indicating the current state, using different

colours, but a diagram is missing to visualize the data (for example, a column

display for each element in an array).

CodeCombat: a design for children, elements of gamification that can reduce

learning efficiency (too many games will lead to less new material being learned).

CodinGame: more complex application, visualizations are nicely executed,

it is possible to use different programming languages.

CS Unplugged: close-to-experience structure, interactions with other people,

no deeper knowledge required to try the tasks.

The subject found detailed colour visualizations to be an important compo-

nent, as well as interaction elements (such as the potential to watch the process

step-by-step) to aid in the use of the tool, and hence in the learning process. In ad-

dition, the display of tasks and algorithms of various difficulty was mentioned,

which can thus cover programming education more widely.

Second subject:

Sorting out Sorting: easy to understand. So far, the subject has encountered

only one type of visualization, which was a video like this, showing different

sorting algorithms with a spectacular visual and audio association.

Visualgo: new features include modifiability, pseudo-code display, and the

ability to interact.

AlgTan: the visibility of the time of the process has been revealed, the pseu-

docode clearly shows at which step we are, the display of the array is similar to the

data storage. In addition, it was suggested that the values should be displayed in

columns here as well, and that the specification could be included in the interface

(this is a key concept in programming teaching at ELTE).

CodeCombat: uses player elements that indirectly help to learn algorithmiz-

ing, programming; interactive elements appear: the code is written by the user.



62 Imre Bende

CodinGame: the application allows you to compete, which is accompanied

by a reward system (gamification), you can view other people’s solutions or even

communicate with other users.

CS Unplugged: it turned out as a positive method, that you can learn and

master algorithms a little further away from the computer.

The subject has identified the following items that they would consider im-

portant in a toolkit: detailed visualization, source code that appears, data display,

performance testing (“worst case” examples), and the ability to test. The usabil-

ity of the social elements also appeared as a novelty: the subject found it very

useful that in case of specific tasks, the users can access the solutions of others and

highlighted the possibility of communication with other users. Also, it has been

suggested that sometimes less interaction could be better, because it is considered

less effective if the user is spending too much time on side activities.

Third subject:

Sorting Out Sorting: in the case of the video material, the quantitative and

colourful representation of the data and the presentation of each step with ani-

mation were mentioned.

VisuAlgo: colour data representation, pseudocode is displayed next to the

visualization, the speed of the process can be adjusted, the input can be modified

(also randomized).

AlgTan: compared to the previous one, there is no column appearance here,

the algorithm also appears in the form of pseudocode, structure program and C

++ code, the algorithm can be scaled, but it can also be played automatically.

CodeCombat: possibility for playful learning, detailed visual display, easy-

to-understand description associated with tasks, playable step-by-step .

CodinGame: the possibility of playful learning, more difficult tasks are avail-

able, more detailed, task-specific visualizations are displayed, several program-

ming languages can be used, not only does the website allow individual practice,

but we can also compare our knowledge to that of others’.

CS Unplugged: it is possible to think (about algorithmic solutions) without

a computer, it is also a useful tool for young people, teacher communication helps

the learning process.

According to the interviewee, the most important elements were the possi-

bility of interaction, the introduction of playful elements and the detailed visual

representation, and also that the description of the algorithm could be displayed

in as many programming languages as possible. While the subject never met a

tool like these, found that it could be very useful in the programming education.



The integration of AV in programming education 63

Forth subject:

Sorting out Sorting: graphic view, verbal commentary.

VisuAlgo: pseudocode, description, interactive elements (playable step-by-

step, changeable input), similar graphic view as the previous video.

AlgTan: pseudocode, C++ implementation, interactive elements (playable

step-by-step, changeable input), does not have a detailed graphic view as we saw

before, but the values are coloured for highlighting key points/values.

CodeCombat: interactive application with gamification, unique graphic view,

the user has the full control over the visualization, easier tasks with basic descrip-

tions.

CodinGame: similar concept as CodeCombat (interactive application with

gamification), but with more difficult tasks, many test cases, unique visualization

for many exercises, community support (but does not have real teacher–student

interaction).

CS Unplugged: offline thinking developer, great way for young kids to use

algorithmic solutions, it requires a mentor, who helps in the process.

The subject highlighted that interactive elements can help in the process of

understanding the algorithms of the tasks, and the components of gamification

could be good for younger students. On the other hand, the assistance of a teacher

is necessary for new educational materials, because understanding the used tool

could takes too much time, which reduces the efficiency of the learning process.

Summary

Limitations

Based on the results of the test, it is not possible to clearly link the im-

provement to the use of the Algorithm Visualization, as students have already

encountered these algorithms before, and during the presentation C ++ sample

program appeared in addition to the Algorithm Visualization, and the teacher’s

explanation can also help in some cases or for certain individuals.



64 Imre Bende

Conclusions

The mostly positive results of the feedbacks showed that the introduced AVs

were useful, helpful for university students in the learning process (Q1). A sur-

prising result of the test was that while most of the students have already learnt

programming in the past, almost none of them met with Algorithm Visualizations

(it applies to the subjects of the interviews as well) (Q2). AV could make the

process of mastering algorithm more colourful, more interesting, sometimes easier

too, but I understand that the teachers do not have enough time to search for

usable tools and then actually introduce them to the students (Naps et al., 2003).

The in-depth interviews gave two results. The first one is that interactivity

(step-by-step playability, input changing) and gamification (tasks based on games

with detailed visualizations, reward system) components are important parts of

an ideal Algorithm Visualization, but the level of these should be adjusted based

on the age of the target audience (Q3). The second one is that we discovered

a few new elements that could expand the categorisation shown in Figure 6: first,

the gamification components should be a part of it, because their role has an

important impact on the motivation and efficiency in the learning process. The

second component is the “community support“: in addition to solving tasks with

visualizations, speaking with other users or students can deepen the knowledge

or even helps to get the correct solution (Q4). But we have to use gamification

elements carefully, because a competitive environment could make the students

nervous, and the lack of success could result in negative influences.

The composition of the students may vary from group to group, which de-

termines which trends and methods are favourable for them. It is worth to try

as many tools as possible and decide, based on the feedback and results, which

one we will continue to use during programming teaching in the future. In the

presented case, the two groups showed positive improvement and gave positive

feedback, but I did not use the tool alone to demonstrate the algorithms, but also

provided an oral explanation and sample programs were available too. With these

in mind, we can say that the Algorithm Visualization could improve and help in

the Hungarian programming education but needs further work to promote and

introduce them among teachers. The most important/difficult question is how

to do it. For that we have to make a small, but more widely usable collection

and then show it to the teachers as many ways as possible (conferences, seminars,

teacher certification programs). In order to do so, we need further research on in-

tegration of AV in programming education among teachers and expanded testing



References 65

of these tools in order to ensure that the usage of the collected tools will indicate

improvements and positive feedback.

References

Bende, I. (2019a). Algoritmusok oktatása algoritmus vizualizációval. In Proceed-

ings of InfoDidact’2018. Webdidaktika Alaṕıtvány.

Bende, I. (2019b). The structure of algorithm visualization tools. In Proceedings

of XXXII. Dismattech 2019. Trnava University in Trnava.

Byrne, M. D., Catrambone, R., & Statsko, J. T. (1996). Do algorithm animations

aid learning? Technical Report GIT-GVU-96-18 .

Hundhausen, C., Douglas, S. A., & Stasko, J. (2002). A meta-study of algo-

rithm visualization effectiveness. Journal of Visual Languages & Comput-

ing , 13 (3), 259–290. doi: 10.1006/jvlc.2002.0237

Ishizue, R., Sakamoto, K., Washizaki, H., & Fukazawa, Y. (2020). PVC.js:

Visualizing C programs on web browsers for novices. Heliyon, 6 (4). doi:

10.1016/j.heliyon.2020.e03806

Karavirta, V. (2009). Facilitating algorithm visualization creation and adoption

in education. [Unpublished doctoral dissertation]. University of Turku.

Lacave, C., Velázquez-Iturbide, J. A., Paredes, M., & Dı́az, A. I. M. (2020).

Analyzing the influence of a visualization system on students’ emotions:

An empirical case study. Computers & Education, 149 (3). doi: 10.1016/

j.compedu.2020.103817

Landers, R. N. (2015). Developing a theory of gamified learning: Linking serious

games ad gamification of learning. Simulation & Gaming , 45 (6), 752–768.

doi: 10.1177/1046878114563660

Milena, Z. R., Dainora, G., & Stancu, A. (2008). Qualitative research meth-

ods: A comparison between focus-group and in-depth interview. Annals of

Faculty of Economics, 4 (1), 1279–1283.

Myller, N., Bednarik, R., Sutinen, E., & Ben-Ari, M. (2009). Extending the

engagement taxonomy: Software visualization and collaborative learning.

ACM Transactions on Computing Education, 9 (1), 1–27. doi: 10.1145/

1513593.1513600

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,

C., . . . Velázquez-Iturbide, J. A. (2003). Exploring the role of visualization

and engagement in computer science education. ACM SIGCSE Bulletin,

35 , 131–152. doi: 10.1145/782941.782998



66 I. Bende : A case study of the integration of Algorithm Visualizations. . .

Nathasya, R. A., Karnalim, O., & Ayub, M. (2019). Integrating program and al-

gorithm visualisation for learning data structure implementation. Egyptian

Informatics Journal , 20 (3), 193–204. doi: 10.1016/j.eij.2019.05.001

Sandelowski, M. (2000). Combining qualitative and quantitative sampling, data

collection, and analysis techniques in mixed-method studies. Research in

Nursing and Health, 23 (3), 246–255. doi: 10.1002/1098-240X(200006)23:

3〈246::AID-NUR9〉3.0.CO;2-H

Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M., Ponce, S.,

& Edwards, S. H. (2010). Algorithm visualization: The state of the field.

ACM Transactions on Computing Education, 10 (3), 1–22. doi: 10.1145/

1821996.1821997

Simonak, S. (2020). Increasing the engagement level in algorithms and data

structures course by driving algorithm visualizations. Informatica, 44 (3),

327–334. doi: 10.31449/inf.v44i3.2864

Supli, A., Shiratuddin, N., & Syamsul, B. Z. (2016). Critical analysis on algo-

rithm visualization study. International Journal of Computer Applications,

150 (11), 18–22. doi: 10.5120/ijca2016911633

IMRE BENDE

FACULTY OF INFORMATICS, EÖTVÖS LORÁND UNIVERSITY,

H-1117 PÁZMÁNY PÉTER SÉTÁNY 1/C, BUDAPEST, HUNGARY

E-mail: beiraai@inf.elte.hu

(Received January, 2022)


