
20/1 (2022), 1–32
DOI: 10.5485/TMCS.2022.0534

Teaching agile operation and
leadership through linked
university courses

Enikő Ilyés

Abstract. Agile software development methods, especially Scrum, are commonly used
in software development companies. For this reason, our goal was that our undergrad-
uate students gain experience as Scrum development team members and our master’s
students as agile leaders. To this end, we had redesigned and linked an undergraduate
and a master’s course, and launched the new course in the spring of 2021. The success
of our approach was confirmed by a questionnaire survey of 86 undergraduate and 27
master’s students. A/B testing was also performed. Our approach is a novelty compared
to solutions where the Scrum Master is a course member, an instructor, or a univer-
sity employee. In addition to being resource-efficient, it also offers master’s students
an unparalleled opportunity to develop agile leadership skills.

Key words and phrases: Scrum, Scrum Master, agile leadership, teaching methodology,
university level.

MSC Subject Classification: 97U50.

1. Introduction

Effective software development methods are part of software engineering sci-

ence. Therefore, faculties with software development profile should teach software

development methodologies.

The author thanks Eötvös Loránd University’s Department of Software Technology and Method-

ology for its contribution to this research.

1



2 Enikő Ilyés

Currently, agile methodologies are the most common, with the Scrum method-

ology being the most widely used. According to the 15th annual State of Agile

Report survey (15th annual State of Agile Report , 2021), 81% of firms applying

agile methodology use the Scrum methodology or a hybrid. Thus, teaching Scrum

at universities is justified.

Scrum Guide (Schwaber & Sutherland, 2011) defines roles, events and arti-

facts of Scrum in only 14 pages. Still, teaching Scrum involves many challenges.

Adoption of Scrum needs soft skills and true understanding of agile values (Kropp,

Meier, Mateescu, & Zahn, 2014), which are hard to develop.

Teaching Scrum is mostly realized by adaptation, in the form of a simula-

tion project. Often, a software development project, or a collaboration project

like LEGO City construction (Paasivaara, Heikkilä, Lassenius, & Toivola, 2014),

paper city construction (Hof, Kropp, & Landolt, 2017), etc., serves as a simulation

project. Another typical approach is to offer Scrum courses focusing on individual

Scrum roles. Famous Scrum teaching institutions, such as Agile Alliance (Agile

Training , 2021) and Scrum.org (Professional Scrum Training , 2021), have Scrum

basics training for development team members, Scrum Master training and Prod-

uct Owner training, at both beginner and advanced levels. Role-based education

is not yet common at universities.

We believe it is important that university students study Scrum at both

undergraduate and graduate levels, with the emphasis on studying different per-

spectives at each level. Our goal is that our undergraduate students gain expe-

rience as Scrum development team members and our master’s students as ag-

ile leaders. Undergraduate programs should provide experience of being part of

a development team, allowing for more seamless engagement in Scrum teams af-

ter graduation. At that time, their professional knowledge is best suited for the

developer role. During a master’s program, they acquire a higher level of techni-

cal knowledge than an average developer. They may even be interested in other

roles, for example, in team leader roles. In order to best support such interests,

a master’s program should convey leadership knowledge and skills.

Based on our believes, our research questions are:

(1) How can we provide undergraduate students with experience in Scrum

methodology?

(2) How can we provide master’s students with experience in agile leadership?

(3) How can we realize both goals in a resource-efficient way?

In our approach, we have redesigned two classical university courses by com-

bining them. Undergraduates gain Scrum development experience, while master’s



Teaching Agile through linked university courses 3

students agile leadership experience, all in a resource-efficient manner. We present

the redesign in details in our Section ‘Case study’.

The rest of the paper is organized as follows. In the next Section, we briefly

summarize the basic concepts of agile methodology and Scrum we build on in this

article. In Section ‘Related work’, we analyze the status quo of how agility and

Scrum education are implemented in the world, with a particular focus on uni-

versity education. Section ‘Case study’ presents our approach, starting from the

framework of university courses, which gives context to our case study, ending in

the exact schedule. Section ‘Experiences’ discusses our experiences with the case

study we conducted. Section ‘Measurements’ summarizes the results of a ques-

tionnaire survey conducted among the participants of the case study. Finally,

Section ‘Lessons learned’ summarizes our conclusions.

2. Basic concepts

A common feature of all agile methodologies is that they implement all four

concepts of Manifesto for Agile Software Development (Agile Training , 2021).

They focus on the people engaging in the development process and their interac-

tions, involve the customer into the process, appreciate working code instead of

plans, and encourage participants to be open to change.

Scrum supports agile principles through the events, roles and artifacts defined

in the Scrum guide (Schwaber & Sutherland, 2011).

Scrum divides the entire length of the project into 2-4 week working periods

called Sprint. Each Sprint contains a single Planning, Review, and Retrospective

meeting, as well as a meeting every day, called Daily Scrum. The Sprint begins

with Planning, where tasks to be performed by the development team during the

Sprint Planning are decided. At the Daily Scrum meetings, team members as-

sess in 15 minutes how well they are performing with the Sprint’s tasks, whether

there is anything hindering them in achieving their Sprint Goal. At the end of

the Sprint, the developers present the results of the Sprint to the customer on

a Review meeting, get feedback on it, and discuss the next steps. The Sprint con-

cludes with a Retrospective, where the team evaluates the progress of the work

and identifies opportunities for optimization for more effective work organiza-

tion. Figure 1 summarizes Scrum events, which support transparency, inspection,

adaption, that is, the three Scrum pillars. Transparency ensures that we base our

decisions on correct and comprehensive data, while inspection and adaptation

guide us in reaching our goals.



4 Enikő Ilyés

Figure 1. Scrum framework

The Scrum Master is responsible for the effective implementation of Scrum

events. He/She is the serving leader of the team, coaching his/her team to func-

tion in the most self-organized and efficient way possible. In order to focus on

creating business value, the Scrum Team also has a Product Owner. He/She orga-

nizes and prioritizes the costumer’s needs, helps the team in understanding them,

and then evaluates the team’s performance at the end of the Sprint. It is very

important to demonstrate a working code at the end of the Sprint contrary to

a slideshow. The working code is called Increment, one of Scrum artifacts.

Scrum artifacts also include the Product Backlog and Sprint Backlog. The

former is a prioritized list of the costumer’s expectations. During Planning, the

team selects high-priority items from the Product Backlog to be part of the Sprint

Backlog. A Sprint Backlog contains the tasks that contribute to reaching the

Sprint’s goal.

Apart from events, roles and artifacts, Scrum also highlights five values such

as openness, courage, respect, focus, commitment. Presence of these values can

make working according to Scrum efficient.

3. Related work

Software developers are prepared for using Scrum most commonly with hands-

on training, as we can see in the case of agility-promoting institutions hold-

ing courses on agile and Scrum. Typically, companies send employees to these



Teaching Agile through linked university courses 5

courses. For example, the Agile Alliance (Agile Training , 2021) organizes the

following courses: Scrum Developer Certified Training, Certified Scrum Master

Course, Certified Scrum Product Owner Course, Coaching Agile, Scaled Profes-

sional Scrum. At Scrum.org (Professional Scrum Training , 2021) we can see

similar courses: Applying Professional Scrum for Software Development, Pro-

fessional Scrum Master I and II, Professional Scrum Product Owner I and II,

Professional Agile Leadership Essentials, Scaled Professional Scrum, etc.

These courses are mostly role based. The training for Scrum developers covers

topics such as: agile mindset, the fundamentals of Scrum and how to apply it

correctly, in which kind of teams to apply it, how to be a great Scrum Team

member, identifying common pitfalls and avoiding them. The knowledge conveyed

by such training is something members need to be aware of in order to be easily

integrated into a Scrum Team. There are separate courses for the other two Scrum

roles, the Scrum Master and Product Owner roles, often available at both beginner

and advanced levels. Scrum Master training typically include the following topics:

theory and principles behind Scrum and empiricism, how each part of the Scrum

framework ties back to the principles and theory, what “Done” means and why it

is crucial to transparency, the importance of self-managing teams, interpersonal

skills needed, the Scrum Master role, behavior shifts required to be a Scrum

Master. Courses usually last 2 days. Participates can gain a certification. Costs

of training typically range from around e1,200 to e1,500.

Another solution in the industry is to provide agile training within a company

with the help of external or internal trainers. Typically, the company as customer

employs the solution as part of an agile transformation. In this case, we do not

have precise information on training topics. It is likely that such training covers

topics similar to the general agile training topics, tailored to the customer.

Unlike the industry, the university does not feature education along different

Scrum roles. Agile methodologies are mostly applied on a practical course, for

example, a project work of undergraduate students, where students work together

as a Scrum Team and develop a software. According to Mahnič (2015), this is

the most common form of educating agile methodologies at universities.

Cases differ the most in role assignment and Sprint length. It is common for

the Product Owner role to be assigned to a teacher or other expert, as in the

case of Damian, Lassenius, Paasivaara, Borici, and Schröter (2012), Kropp and

Meier (2013), Mahnič (2011), Paasivaara, Lassenius, Damian, Räty, and Schröter

(2013), Zorzo, de Ponte, and Lucrédio (2013). But there are examples of Product

Owner students as well: Scharf and Koch (2013), Reichlmayr (2011). In the case



6 Enikő Ilyés

of the Scrum Master, it is more typical that the role is played by a student, as

in the case of Damian et al. (2012), Kropp and Meier (2013), Paasivaara et al.

(2013), Rodŕıguez, Soria, and Campo (2011), Scharf and Koch (2013). But there

are also examples where teachers take the role, such as in the case of Mahnič

(2011), Reichlmayr (2011).

Experience has shown that it is generally advantageous for an instructor to

fill Scrum roles, because they can play their roles with more authenticity thank

to their experiences. The same is not guaranteed if students fill Scrum leader

roles, but in return the student has the opportunity to develop skills. However,

we have to pay attention to the fact that some Scrum Master students wait too

long for their teams to solve problems among themselves, while others intervene

too soon and thus do not support self-management (Scharf & Koch, 2013). That

is why, according to Mahnič (2015), student Scrum Masters should be supported

by a teacher: “one of the instructors should still play the overall Scrum Master

supervising the whole process.” Scharf and Koch (2013) present a method that

introduced several different supporting roles. They admit that their method needs

a large staff, up to 11 supervisors for approximately 60 students. “The professor,

two research assistants supervising the course in general, two research assistants

playing the role of clients, and six student research assistants supervising each

team as their tutor.”

Apart from software development projects, another typical way to teach agile

methodologies is to play educational games, such as in the case of Paasivaara et

al. (2014), Hof et al. (2017), Ramingwong and Ramingwong (2015), Von Wangen-

heim, Savi, and Borgatto (2013). Games include Lego City construction

(Paasivaara et al., 2014), paper city construction (Hof et al., 2017). According

to Mahnič (2015) and Kropp et al. (2014), Scrum games are suitable for demon-

strating the practical operation of Scrum in a short time.

Scrum, as an agile methodology, gives lot of space for cooperation and com-

munication. Applying Scrum creates a wide variety of situations, and we cannot

possibly prepare students for all of them. Thus, students are better served by

teaching values which they can use as compasses in different situations. Teaching

values is difficult because it is a ’deeper layer’ of a person than skills and behavior

(Dilts, 1996). Values drive behavior when we have the right skills.

Martin Kropp and colleagues emphasize the importance of developing com-

munication skills and agile values (see (Kropp et al., 2014), (Kropp & Meier,

2013), (Hof et al., 2017)). In their Agile Competence Pyramid model, they place

the acquisition of Agile Values at the highest level of cultivating agility (Kropp &



Teaching Agile through linked university courses 7

Meier, 2013). Three principles are offered for such a high level education of agile

methods (Kropp et al., 2014):

(a) Make personal experience by working in an agile production environment.

(b) Cooperate in an agile group with a substantial amount of social exchange and

discourse taking place.

(c) Develop and discuss agile values and attitudes.

Regarding Scrum in university education, another typical challenge is evalua-

tion of students. While the basic unit of Scrum is a team, and we evaluate perfor-

mance of our teams, it is the individuals who need to be evaluated in university

education. The tension between the two ways of evaluation has been focused by

several researchers, and is not addressed in our article.

4. Case study

In order to teach Scrum at the Faculty of Informatics of Eötvös Loránd Uni-

versity on a high level, we redesigned two traditional courses. The transformation

took place in the spring of 2021. Our new courses are presented below.

4.1. Course details

4.1.1. Software Technology – practice

• Dedicated to: undergraduate students, fourth semester

• Duration: 90 minutes/week

• Type: mandatory

• Goal of the course: to provide students with an experience of the entire project

lifecycle and collaboration on developing a larger software project.

• Previous knowledge of students: Before this course, students already learned

programming on other courses. They created smaller game applications alone.

• Related courses: This practical course is the pair of the Software Technology

lecture. The lecture includes the following topics in the given order: software

development process, requirement engineering, object oriented design, object-

oriented design patterns, project management tools, version control, build

systems, verification and validation, unit tests, continuous integration and

delivery, test driven development, clean code, multithreading, Agile method-

ologies.



8 Enikő Ilyés

4.1.2. Software Development in Practice – practice

• Dedicated to: master’s students, second semester

• Duration: 90 minutes/week

• Type: optional

• Goal of the course: To enable students to consciously and proactively shape

software development processes.

• Previous knowledge of students: Students already learned the basics of man-

aging a software development process (theory). They most likely already de-

veloped a software as a team member during their BSc studies or at their

workplace.

• Related courses: This practice course is a follow-up course of the Project

Management in IT course. This lecture includes the following topics in the

given order: definition of the project, project diamond, corporate culture,

organizational models, project life cycle, Scrum methodology, personality

models, customer reception at the highest level, effective team, leadership

models, change management, burnout prevention. We considered designating

the Software Technology course as a prerequisite for the Software Develop-

ment in Practice course, but we rejected the idea. Undoubtedly, this relation

would be useful for students. However, we did not want to exclude stu-

dents who had not completed their undergraduate studies at our university.

As most of our master’s students have already gained teamwork experience

at an undergraduate course, internship or workplace, we did not experience

problems stemming from the lack of a prerequisite course.

4.2. Course implementation in 2021 – Our new approach

Software Technology students (undergraduates) are divided into teams of 3.

(In describing the case study, the word ‘team’ always refer to a three-person team

of developers. Our definition of ‘team’ is unlike the Scrum guide, where the team

includes the Scrum Master and the Product Owner as well.) Each team has to

develop a strategic game designated by the instructor in a programming language

of their choice. All teams of a practice develop the same video game, but tech

stack is not fixed, and can be chosen freely. They have to adopt Scrum during their

teamwork. GitLab is used for version control, continuous integration, continuous

delivery. GitLab’s Issue Board is highly recommended for task management, but

other tools, such as Trello, are allowed as well.



Teaching Agile through linked university courses 9

Every team has a Scrum Master, who is one of the master’s students. This

student does not undertake coding tasks, just gives support to the team in oper-

ational issues and is a servant leader. The Product Owner role is played by the

teacher of the Software Technology course.

The semester is divided into four Sprint periods. This means that on ap-

proximately every fourth class the teams make a presentation of their Sprint

achievements in front of other teams and the teacher. Teams also hold a Weekly

Scrum on intermediate practices with their Scrum Master. After Sprint Reviews,

teams are advised to hold an extra meeting where the Sprint Retrospective and

the Planning of the next Sprint can take place.

The schedule of the semester is presented in Table 1.

SWT – Software
Technology practice

Weekly activity of
the Scrum Master
student between
the classes

SDP – Software
Development in
Practice

1 Description of the project Getting to know the
Product Owner and
the Team

Preparation training
for Scrum Master role

2 Weekly Scrum Team
building

Weekly Scrum Preparation training
for Scrum Master role

3 Weekly Scrum Weekly Scrum,
Preparation of the
Sprint Review

Scrum Master exam
Consultation
(Subgroup A)

4 Sprint Review
(use cases, use-case
diagrams, class-diagrams)

Sprint Review,
Retrospective,
Planning

Consultation
(Subgroup B)

5 Weekly Scrum Weekly Scrum Consultation
(Subgroup A)

6 Weekly Scrum Weekly Scrum,
Preparation of the
Sprint Review

Consultation
(Subgroup B)

7 Sprint Review
(Prototype 1 – 30% of
use cases, use of Git tool)

Sprint Review,
Retrospective,
Planning

Consultation
(Subgroup A)

8 Weekly Scrum Weekly Scrum Consultation
(Subgroup B)

9 Weekly Scrum Weekly Scrum,
Preparation of the
Sprint Review

Consultation
(Subgroup A)



10 Enikő Ilyés

10 Sprint Review
(Prototype 2 – 90% of use
cases, use of CI and CD,
unit tests)

Sprint Review,
Retrospective,
Planning

Consultation
(Subgroup B)

11 Weekly Scrum Weekly Scrum Consultation
(Subgroup A)

12 Weekly Scrum Weekly Scrum,
Preparation of the
Sprint Planning Review

Consultation
(Subgroup B)

13 Sprint Review
(Final version Clean
Code, all unit tests)

Sprint Review,
Retrospective

Closing

Table 1. Schedule of the semester

4.2.1. Preparational phase

On the first practice, Software Technology students have the possibility to

form teams of three on their own or to be assigned to a team by the teacher.

The assignment is based on the students’ self-declared knowledge on different

aspects of software development such as: known programming languages (Java,

C ++, C#, .NET), experience with version control systems, experience with

continuous integration systems, experience in developing software as part of a

team. In compiling the teams, the following principles are considered in the

given order: each team should include a member who has experience with version

control systems; each team member should have at least good knowledge level

in the same programming language; each team should include a member who

has experience with continuous integration systems; each team should include a

member who has experience with software development in a team. On the first

practice, all the teams are formed and then introduced to their Scrum Master.

Software Development in Practice students are prepared to fulfill the Scrum

Master role not only in general but in this specific adoption of Scrum. For this

reason, the first two practices are dedicated to a preparation training. The train-

ing presents models, elements of the following topics: Agile leadership, Scrum

theory, Scrum overview, Scrum roles, powerful questions, situational leadership,

Scrum values, Scrum Guide, Scrum events, Retrospective games and techniques,

Timebox, Scrum products, giving feedback, icebreaker games. During the train-

ing, the focus is on understanding the main idea of agile leadership and on giving

an insight into how this can be realized in this case. As part of the training, sit-

uations are outlined which are likely to occur. Students have to argue about the



Teaching Agile through linked university courses 11

correct attitude of the Scrum Master in the given situation. In the case of every

situation, an example behavior of the Scrum Master that seems to be helpful is

given. But in reality, these do not improve the self-organization of the team, so

in fact, they are contraindicated behaviors. During the exercises, it is clarified

that there are many good solutions in the given situations. However, all good

solutions represent agile principles and values.

The discussed situations are:

Case 1. The team tells you they don’t know exactly how the Product Owner

envisioned the app.

Counterexample: You ask the Product Owner what he/she exactly wants

and then you tell the team.

Case 2. The team signals that they don’t understand version controlling, they

don’t even know how to get started.

Counterexample: You configure the version control system as best as you

can, and then you present the team a simple guide on how to use it.

Case 3. The team signals that one of the members does not contribute to the

project.

Counterexample: You assign tasks to every team member and even more

tasks to the problematic person. You micromanage the team.

Case 4. One of the team members is not present at the Weekly Scrum meeting.

Counterexample: You don’t worry, he/she will definitely come next time.

You only worry if he/she’s been gone for 3 weeks.

At the end of the preparatory phase, on the third practice, students must pass

a Scrum Master test, similar to Scrum.org (Professional Scrum Training , 2021)

PSM 1 test. The test contains 25 questions. Each question offers 4 answers,

of which exactly 1 is correct. Students have 20 minutes to complete the online

(Canvas) test.

4.2.2. Main phase

All undergraduate students progress according to the same schedule. Scrum

Master students are divided into two subgroups, and each subgroup is required

to meet with the teachers every 2 weeks. The division into two subgroups is

necessary, because the observations of 27 Scrum Masters cannot be meaningfully

discussed during the 90-minute session per week. If a Scrum Master student needs

help in a short time, he/she can join the consultation any week or ask for help in

the form of a group or personal message.



12 Enikő Ilyés

The consultations usually begin with the instructor asking some guiding ques-

tions about the teams, preferably one that evokes analysis of teamwork from

a different perspective. Each Scrum Master is given the floor to answer the ques-

tions or to report phenomena that he/she considers more important in his/her

team at the moment. Scrum Master students are asked to discuss arising prob-

lems, exchange experiences, to form a professional community. The instructors,

however, give feedback to all Scrum Master students on every meeting. The Scrum

Master subgroups of 12-13 people are able to discuss what was observed in their

teams over the last 2 weeks in the given 90 minutes.

In addition to discussions on meetings, Scrum Master students have to report

about their team in written form every week. The written report has to be visible

to all team members, thereby promoting transparency. The recommended con-

tent of the report is shown in Table 2. It contains 4 sections: basic information

about the team and its weekly events; team impediments and their solutions;

measurements of teamwork aspects and their explanation; and other important

observations by the Scrum Master. The report has two aims: to draw attention

to Scrum perspectives from week to week, and to monitor the well-being of the

teams.

4.2.3. Closing phase

Software Technology practice closes with a last review where teams present

the final product. Teachers and colleagues from the same practice are present.

In the last week, all Software Development in Practice Scrum Master students

meet for a last time and share in a few sentences what they have learned from

the course and how the course could be further developed.

4.2.4. Evaluation of the students

Undergraduate students are evaluated based on their developed game soft-

ware. At the end of each Sprint (Week 4, 7, 10, 13) every team gets a sub-score.

The sum of the sub-scores gives the final rate. All sub-scores are given equal

weight in the final evaluation and must reach a certain minimum number. Each

student receives an assessment based on their contribution to the product, which

is tracked by GitLab.

Scrum Master students are evaluated according to three components. First

their theoretical knowledge, which is measured by the Scrum Master test on the

third practice. This counts as a quarter of the final evaluation. Another quarter

of the final evaluation is based on the developer team’s feedback on the Scrum



Teaching Agile through linked university courses 13

Team name: XYZ

Week: Week 3

Type of event: Planning / Weekly Scrum / Review /
Retrospective

Absent persons: X

Sprint goal completeness percentage (%): 80%

Duration of the event: 25 minutes

Impediment 1:

Originator of the solution:

Solution:

Impediment 2:

Originator of the solution:

Solution:

Cooperation in the team: (1=none – 5=completely satisfactory)

Explanation:

Communication in the team: (1=none – 5=completely satisfactory)

Explanation:

Motivation of the team: (1=none – 5=completely satisfactory)

Explanation:

Procrastination of the team: (1=very typical – 5=not typical at all)

Explanation:

Workload sharing of the team: (1=none – 5=completely satisfactory)

Explanation:

Table 2. Scrum Master weekly report template

Master student. This is assessed by a questionnaire which has to be filled out

by each team member anonymously at the end of the semester. The remain-

ing half of the final evaluation is the instructor’s rate on the Scrum Master’s

semester long activity. This covers his/her contribution to Sprint Planning, Re-

view, and Retrospective events, detection and management of impediments in the

team, continuous development of the team, and weekly brief status reports about

the team.

5. Experiences

5.1. Experiences of the course implementation in 2021

We showed above how we had designed two courses to achieve our goal. 86

undergraduate and 27 master’s students were affected by its implementation. Our

experiences are discussed in detail below.



14 Enikő Ilyés

5.1.1. Preparational phase

Starting the semester was more of a challenge than in previous years. It had

to be assured that each Scrum Master was available at the time of his/her team’s

practice. If this was not possible, then he/she should have been present at least on

the Scrum Review practices. It was allowed to hold the Weekly Scrum meetings

regularly at a different time, as long as it was convenient for the team members.

At first, the presence of the Scrum Master was strange for the undergraduates.

At the beginning of the semester, we did not communicate uniformly to the

undergraduates how Scrum works and what the role of the Scrum Master is.

We assumed that it would be enough to assign the Scrum Masters to them,

and as a first step the Scrum Masters would then explain how Scrum works. The

uncertainty with which the teams welcomed the Scrum Masters was an unpleasant

experience for them. We received the feedback that it would be more beneficial

to prepare the undergraduates more on how Scrum works.

In contrast, master’s students were satisfied with their preparation. The

Scrum Master preparatory training was brief and focused, and they liked this.

They also appreciated that the Scrum Master test was written on the third prac-

tice. At this stage of the academic semester, they were not overloaded, so they

could focus on this test. According to their feedback, they felt they had become,

by the training and the test, adequately prepared to fill their role.

5.1.2. Main phase

At the weekly Scrum Master consultations, students raised very exciting top-

ics. They addressed the depths of teamwork and Scrum operation. We highlight

some of the common issues and some unique issues:

• Mostly, at the beginning of the semester, several Scrum Masters indicated

that their teams are quiet, no conversation is developing during the meetings.

We presented them some icebreaker games. We drew their attention to the

fact that communication can be strengthened by setting an example, and by

acknowledging and praising brave communication. However, it is also a fact

that each team is different depending on the personalities of the members.

Not all teams are expected to reach the same vibrant communication style.

• Procrastination was the most common problem in teams. Scrum Masters were

given tips to avoid procrastination, e.g., the introduction of sub-deadlines,

awareness of the many harmful effects of procrastination, etc. At the same



Teaching Agile through linked university courses 15

time, we found that procrastination may be strongly related to the unbalanced

workload of students caused by various other courses.

• The case of the amused, defocused team has also been raised several times.

The phenomenon is that Weekly Scrums are significantly longer than they

need to be because time goes by with jokes. One of the Scrum Masters chose

the strategy of introducing a “Just for fun 5 minutes”, where team members

could experience their desire to joke. Framing jokes and social connection

time seemed to us to be a good solution. There was a Scrum Master who

could fit in to spend more time on his team and chatted with them longer.

From the point of view of university life, we considered it useful to build

relationships and share experiences between the undergraduate and master’s

students.

• There was a case when the Scrum Master reported poor communication of the

team. When we started discussing the case, it turned out the actual problem

was that a team member was not responding to any messages sent between

meetings. In the end, we came to realize that poor communication is actually

just a consequence – the real problem is poor engagement.

• For another team, the Scrum Master reported commitment issues. One of

the team members disappeared and did not respond to messages for more

than a week. The Scrum Master was clueless about how to communicate in

a non-humiliating but effective way with the missing person. We introduced

him to the Non-Violent Communication method. The Scrum Master tried

out the method in a written message and got back a clarifying, transparent

message.

• One of the Scrum Masters recognized that he had a team member, who made

a very pleasant impression at the Weekly Scrums, but unfortunately did not

actually work much. We advised him to talk with the member in person,

confront him with the facts about his progress, but also remain open to his

explanation.

• A frustrated Scrum Master reported that one of the team members had not

appeared for the second time in a row at the team’s meeting and claimed he

had forgotten. We suggested trying to develop an individual method together

with the person with the goal to avoid this issue in the future, e.g., by setting

up an automatic calendar alert.

• A Scrum Master mentioned incidentally that his team works in such a way

that there is an experienced and determined member who always decides



16 Enikő Ilyés

when-what to implement and the others adapt to him in everything. We drew

his attention to the fact that this may not be a healthy operation, and he

should assess how the other team members experience this situation. Even if

the situation is comfortable for them, it puts the team in a very vulnerable

position. Nor is it certain that this way the team members develop their

level of self-organization. Another similar case appeared in a two-person team

where one of the team members led, the other just adapted. Here again,

we made the Scrum Master aware that this is not a suggested teamwork and

the adaptable team member needs to be activated.

• It has been reported that some teams were afraid to ask questions from

the Product Owner. We initiated their Scrum Masters to invite the Product

Owner to a weekly meeting, helping to build trust between the Product Owner

and the team.

• One of the Scrum Masters reported that his team was progressing well, the

product has evolved, but somehow the team was quite dependent on the

Scrum Master. This team seemed to be a fan of the Scrum Master, his per-

sonality, and the Scrum Master was in the center of the team. Once we became

aware of this phenomena, we suggested trying out delegation. For example,

asking a member to run a Weekly Scrum and only comment on it when abso-

lutely necessary, or even handing over the coordinating role on Retrospectives

and helping the coordinator like an agile coach.

• One of the Scrum Masters noticed that the documentation prepared by his

team often contained misspellings. He wondered if he could improve the

spellings. He was advised to report this issue to the team and work together

to find a way to avoid this, e.g., pair review, introducing a responsible role

for this, etc. If it fits him/her, the Scrum Master can help his/her team with

correcting the documentation, but only if it has been clarified and discussed

in advance together with the team. The Scrum Master’s primary job is to

help the team to find a way of increasing quality.

These problems might not have come up if we hadn’t asked questions at the

beginning of the consultations. We highlighted certain team aspects in the con-

tent of the questions, such as strengths and weaknesses of the team, level of soft

skills owned, quality of Scrum events, etc. However, the goal that Scrum Master

students should discuss the given topics as a community of professionals, advising

each other, coaching each other, was hardly achieved. In most cases, only the

teachers commented on the experiences shared by the Scrum Master. However,



Teaching Agile through linked university courses 17

students were inspired by listening to each other’s challenges, experiences, suc-

cesses, and the comments from the teachers. For example, delegation was tried

out towards the end of the semester by more Scrum Masters. Scrum Master stu-

dents also inspired each-other in creating unique Retrospective techniques as well.

They learned from each other that it is worth holding a test Review, or at least

discussing the details of the previous Review. Someone came up with the idea to

make a member of the team responsible for ensuring the smooth operation of the

version control system, which strategy worked well and was instructive for others.

In addition to training all students, the consultations were also useful to

us in terms of getting an idea of how the teams are evolving. We learned, for

example, that communication in teams became better as the semester progressed.

Psychological safety has developed in the teams, they dared to ask more and more

questions, they also improved each other’s code, they came up with proactive

ideas, they discussed the plans before they started working. Some teams also

got to practice positive criticism on each other’s work. Towards the end of the

semester, the teams had a better understanding of Scrum roles. The final stage

of the Sprints remained quite stressful throughout the entire semester, and the

teams reached the most progress at this time.

We found that there were different types of Scrum Masters. There were those

who reacted slowly, and those who reacted fast to the difficulties of their team.

In our opinion, the appropriate reaction time is not trivial, as if the leader re-

acts immediately, it may give less room to the team to develop self-organization.

If the leader reacts late, the initial problems may swell by then. There were

Scrum Master students who took great advantage of the opportunity offered by

their role, e.g., introduced new Retrospective techniques, tried out delegation,

continuously improved the independence of their team. There were Scrum Mas-

ters who reported that they do not have much to do because their teams are

very independent. In such cases, we asked them to at least try to decipher what

the secret of the well-working team is, so that others could get ideas on how to

develop good teamwork.

There were three cases where the operation of the team or the Scrum Master

encountered serious problems:

• On a Review, two members of the same team presented two different branches.

The product’s features did not work in unison, as if we had seen two different

products. Both the Product Owner and the Scrum Master were shocked by

these phenomena. For the third Sprint, we managed to merge the two product

parts and to get the two team members to work together.



18 Enikő Ilyés

• One team member hardly worked on the project. This behavior could not

be corrected by several attempts. Although the team members of the Scrum

Master and the Product Owner discussed the problem together in a special

meeting, they were unable to find a good strategy to change this behavior.

The team member still did not contribute adequately to the project. The

other team members were very frustrated and dissatisfied by this. Unfortu-

nately, this problem has not been addressed according to its weight through-

out the entire semester.

• Referring to her other activities, one of the Scrum Master students did not

do her job properly, she missed the Weekly Scrums and Scrum Master con-

sultations. Luckily, her team was self-organizing and progressed without her,

but we were quite disappointed.

Another unsuccessful element of our approach were the weekly reports. These

were filled regularly by a negligible part of the students, mainly the explanatory

parts were missing. Some of the students reported that they did not fully un-

derstand the difference of some aspects highlighted in the report schema or they

found it difficult to draw the line between them. We suspect that it could have

been motivating for the Scrum Masters if they received more feedback on reports

during the semester. Sadly, they received meaningful feedback only at the end of

the semester.

We were surprised to find that no one used the Review app. We do not know

the exact reason for this. Maybe the facts that it was passed only during the

semester, it did not have a nice user interface and the substantive part (i.e., the

advices) was also available in pdf format may have contributed to its underuti-

lization. Unfortunately, we neither have data on whether the tips from the pdf

were used by the Scrum Masters.

We also observed that Product Owners, who were otherwise teachers, found

it difficult to position themselves. They did not communicate clearly enough the

acceptance criteria and were less cooperative than task allocators. We suspect

this happened because they are accustomed to the role of the teacher. The trans-

formation from another similar function may be more difficult than the case when

this type of role is completely new to someone. (We observed a similar situation

with a Scrum Master. He had previously worked as a lecturer at the university.

He, too, was more revelatory than collaborative.) Training the instructors, which

strengthens the correct behavior of the Product Owner and allows for discussion,

may be a good idea. Case studies from industry could illustrate importance of

a few particular behaviors. As part of the training, instructors could be asked



Teaching Agile through linked university courses 19

to create a basic Product Backlog. This could be a good exercise for learning

attitudes in representing costumer’s business needs, instead of valuing technical

solutions only.

The Scrum Planning and Retrospectives were missing from the course sched-

ule. There were historical reasons for this. When we first started the agile trans-

formation of the Software Technology course, master’s students were not involved

as Scrum Masters. Instead, both the Product Owner and the Scrum Master role

for a team were filled by the same instructor. Each instructor was responsible

for 5 teams, and so the instructor could spent about 15 minutes with each team

on a practice. Therefore, retrospective and planning meetings were not feasible.

Instead, on occasions other than Sprint Reviews, instructors held a Weekly Scrum

with each of their teams to support development processes. When master’s stu-

dents took over the role of the Scrum Master, we overlooked the fact that there

was sufficient time on practices for Scrum Retrospectives and Scrum Plannings.

These were not included in the practice schedule, we only suggested that retro-

spectives and plannings should be held the next week after the Scrum Reviews.

As a result, we were not sure that retrospectives and plannings had actually been

held every suggested week and in an effective way. In the future, we definitely

make Scrum Retrospectives and Scrum Plannings a part of the course schedule,

as these are two essential Scrum events.

5.1.3. Closing phase

At the final review and consultation of the semester, the undergraduate and

graduate students, as well as the lecturers expressed their high satisfaction with

the two combined courses. The realized software products were good, and the

undergraduates were proud of their performance. The Scrum Master students

reported that they enjoyed being able to try themselves in a leadership role. They

wondered if there would be more courses addressing leadership roles because they

would be happy to join.

5.1.4. Evaluation of the students

In Hungary, assessments of the students are realized on a scale of 1 to 5, where

5 corresponds to excellent knowledge level. The average assessment value on our

undergraduate course was 4.81. The average assessment value on our master’s

course was 4.78. 98% of undergraduates received a value of 4 or 5. This was true

for 96% of our master’s course participants.



20 Enikő Ilyés

We do not have detailed data on the partial results of the Scrum Team mem-

bers.

In the case of Scrum Master students, the number of points obtained was

the most varied in the case of the Scrum Master test scores. The minimum was

11 points, and the maximum was 23 points out of the 25 points. Values were

evenly distributed on this scale. The Scrum Master’s ratings from undergraduate

students were very high, with a minimum of 20 points out of a possible 25. In the

case of the mid-term teacher evaluation, the minimum was 28 points, but except

this one, each score was at least 41 points out of the 50 points achievable.

6. Measurements

At the end of the semester, we performed measurements on the result of

our experiment using questionnaires. Students were provided with a Google

Forms link and they answered the questionnaire anonymously. Intermediate data

capture was dismissed to not burden students with many questionnaires during

the semester. Furthermore, the majority of our questions were meaningful over

a longer period of time: for example, measuring the perceptible extent of de-

veloping skills and attitudes. There are known limitations of our study. First,

our results are based on self-assessment data. Second, the questionnaire may

have shed less light on possible phenomena for which there were no specific ques-

tions. Third, the number of participants of the study is less than 150, so the result

should be interpreted accordingly.

Below we present our most important measurements. 86 undergraduate stu-

dents and 27 Scrum Master students who participated in the experiment com-

pleted the questionnaires anonymously. As an answer to almost every question,

students had to select a value on a scale of 1 to 5, with 1 corresponding to “at

least” and 5 corresponding to “at most”.

As a control, we also completed the questionnaires with students who have not

participated in the experiment. These are undergraduate students who studied

within the same Software Technology (SWT) course (same goal, schedule, evalu-

ation), except that their teams were not led by a Scrum Master student. In their

case, the role of the Scrum Master was performed by the same instructor who was

also their Product Owner. This group of students is hereinafter referred to as the

control group. 83 people from the control group completed the questionnaire.



Teaching Agile through linked university courses 21

First, we asked students how useful did they find the Software Technology

course (Table 3). There was very little difference between the evaluation of the

experimental and control groups, only 0,03. However, a 4.63 average value is con-

sidered high within the 5-point scale. We think students like this course because

they can work in teams, develop a larger game software and learn industry-related

elements of software development, such as agile methodologies, version control

systems, continuous integration and continuous delivery.

SWT
experi-
mental
group
average

SWT
control
group
average

Difference

How useful did you find the Software
Technology course?

4.63 4.60 0.03

Table 3. Usefulness of the Software Technology course – A/B testing

We were also interested in how well the students understood and experienced

the different elements of the Scrum methodology (Table 4). There were no major

differences between the experimental and control groups in terms of measurement

values, with the largest difference being 0.40. The 0.40 average difference was

regarding the understanding of the Scrum roles, which was more successful in the

case of the teams with the Scrum Master students. We find it logical that Scrum

roles have been better understood by teams that had a Scrum Master student

than by those where both the Scrum Master and the Product Owner were played

by the instructor. In this case, it may have been more difficult to shed light on

the different responsibilities and significance of the different roles.

The second-highest difference was in understanding Scrum events (0.33) and

the third in experiencing Scrum values (0.30). Based on these, the constant pres-

ence of Scrum Master students in the team was able to clarify the course of

Scrum events and the importance of Scrum values. Although the difference is

even smaller in the other averages, it is worth noting that teams with a Scrum

Master student in them always showed higher values. In addition, the lowest

average value was 4.33, which in itself is a large value on a scale of 5. This value

refers to the understanding of Scrum artifacts, which is understandable, because

this element was not emphasized in our experiment. The teams did not have

a Product Backlog or Sprint Backlog, they mostly used only a Kanban board as

a task manager, but this was also optional.



22 Enikő Ilyés

SWT
experi-
mental
group
average

SWT
control
group
average

Difference

How much have you understood the the-
ory of agile methodologies?

4.34 4.30 0.04

How much have you experienced the
practical operation of agile methodolo-
gies?

4.36 4.11 0.25

How much have you realized your own
agile role: being an active team member
supporting self-organization?

4.63 4.42 0.21

How much have you understood Scrum
roles (who is responsible for what in
Scrum)?

4.58 4.18 0.40

How much have you understood the
Scrum events (goals, correct realization)?

4.66 4.34 0.33

How much have you understood the
Scrum artifacts (which one is what, how
to handle it)?

4.33 4.11 0.22

How aware have you become of the
importance of Scrum values (courage,
openness, respect, focus, commitment)
in teamwork?

4.67 4.37 0.30

Table 4. Learning Scrum on Software Technology course – A/B testing

We found it interesting to examine how the application of the Scrum method-

ology affected the development of students’ soft skills (Table 5). We believe that

the in-depth teaching of Scrum also includes the development of these skills. The

average of the measured values does not differ much in the case of the experiment

group and the control group. The biggest difference is 0.49 for the development

of task division skills. Students who had a former Scrum Master developed better

in terms of task-sharing skills. This may be due to the fact that the Scrum Mas-

ter students were able to pay more attention to the operational efficiency of the

team assigned to them, including the division of tasks. The smallest difference

in average (0.08) and the smallest average value (3.70) came in the case of time

management skills. This is consistent with the fact that we have heard many

times procrastinations during consultations with the Scrum Masters. Another

recurring theme was the lack of focus within the team, which may have similarly

resulted in time management problems. We conclude that students felt that there



Teaching Agile through linked university courses 23

SWT
experi-
mental
group
average

SWT
control
group
average

Difference

How did your communication skills de-
velop during your teamwork?

4.21 4.02 0.19

How did your cooperation skills develop
during teamwork?

4.44 4.30 0.14

How did your organizational skills de-
velop during teamwork?

4.34 4.06 0.28

How did your time management skills de-
velop during your teamwork?

3.70 3.61 0.08

How did your task division skills develop
during teamwork?

4.36 3.87 0.49

Table 5. Developing soft skills on Software Technology course – A/B testing

was still room for improvement in terms of time management. In our study, col-

laboration showed the greatest improvement, which is a promising result as this

skill is very important in terms of Scrum. The improvement of both communi-

cation skills (4.21) and organizational skills (4.34), which is an important area of

the application of Scrum, was generally observed by students.

We can also compare the development of undergraduate and graduate stu-

dents who participated in the experiment. We can analyze the level of understand-

ing and the level of soft skill development in the Software Technology (SWT) and

Software Development in Practice (SDP) courses.

The averages were generated based on 27 Scrum Masters’ completion of the

questionnaire. These are compared with the results of the undergraduate students

participating in the experiments (86 students). Regarding the usefulness of the

courses, the results are surprisingly similar and high (4.63, 4.60). Our conclusion

is that on both study levels (BSc, MSc) we managed to create useful courses

(Table 6).

Based on the measurements presented in Table 7, the theoretical parts of

Scrum were better understood by the Scrum Masters, and the practical parts by

the members of the development teams. The theoretical aspects of agile method-

ologies, Scrum events, working materials were better understood by the Scrum

Masters, since we talked about them a lot during the preparatory training and

consultations. Interestingly, Scrum roles were understood at a similar level by un-

dergraduate and graduate students. We, on the other hand, consider it probable

that the Scrum Master students first understood it, and they succeeded in passing



24 Enikő Ilyés

SWT –
Software
Technol-
ogy
course

SDP –
Software
Develop-
ment in
Practice
course

Difference

How useful did you find the Software
Technology course / Software Develop-
ment in Practice course?

4.63 4.60 0.03

Table 6. Usefulness of the two redesigned courses

SWT
experi-
mental
group

SDP
experi-
mental
group

Difference

How much have you understood the the-
ory of agile methodologies?

4.34 4.64 - 0.30

How much have you experienced the
practical operation of agile methodolo-
gies?

4.36 4.08 0.28

How much have you realized your own
agile role: being an active team member
supporting self-organization?

4.63 4.28 0.35

How much have you understood Scrum
roles (who is responsible for what in
Scrum)?

4.58 4.60 -0.02

How much have you understood the
Scrum events (goals, correct realization)?

4.66 4.84 -0.18

How much have you understood the
Scrum artifacts (which one is what, how
to handle it)?

4.33 4.52 -0.19

How aware have you become of the
importance of Scrum values (courage,
openness, respect, focus, commitment)
in teamwork?

4.67 4.56 0.11

Table 7. Learning Scrum on the two redesigned courses

this knowledge on to the undergraduate students with their presence. In terms of

practical aspects, the Scrum Masters were more restrained in the appraisal of ex-

perience. The biggest difference in rating was at the level of implementing Scrum

roles. In this case, the Scrum Masters rated their implementation of their Scrum

role at an average of 4.28, and the team members at an average of 4.63. We think



Teaching Agile through linked university courses 25

it is clear that the role of the Scrum Master is more difficult to implement, its

responsibilities and tasks are much more diverse, requiring advanced soft skills

levels. This may have resulted in the Scrum Masters feeling less successful in ac-

complishing their Scrum role. The practical operation of agile methodologies and

the importance of Scrum values were also more felt by undergraduate students.

This can even be explained by the fact that they worked together more. The fact

that Scrum was mostly a novelty for undergraduates could also contribute to the

evaluation of experiences. Master’s degree students are likely to be more rigorous

and nuanced about their evaluations due to their experience.

Differences in rating soft skills development may also be related to students’

previous experiences. The soft skills of master’s students are probably more ad-

vanced from the start and can be developed less by one course. Nevertheless,

the self-reported level of development shown in Table 8 was at least 3.52, which

can be considered a significant improvement. Students’ time-managing skills de-

veloped the least on both courses. On both courses, students’ time-managing

skills developed the least. Undergraduates reported much more progress in task

division than master’s students (0.80). This, in turn, may mean that master’s

students have transferred task-managing skills to undergraduates.

SWT
experi-
mental
group

SDP
experi-
mental
group

Difference

How did your communication skills de-
velop during your teamwork?

4.21 4.04 0.17

How did your cooperation skills develop
during teamwork?

4.44 4.24 0.20

How did your organizational skills de-
velop during teamwork?

4.34 4.04 0.30

How did your time management skills de-
velop during your teamwork?

3.70 3.52 0.18

How did your task division skills develop
during teamwork?

4.36 3.56 0.80

Table 8. Developing soft skills on the two redesigned courses

We also asked undergraduate students how much they were helped by the

presence of the Scrum Master. In parallel, we also assessed how much the Scrum

Master students felt they could help the undergraduates. Averages are shown

in Table 9. Overall, the results showed that undergraduates most often rated

the help of Scrum Masters much higher than Scrum Masters themselves. The



26 Enikő Ilyés

biggest discrepancy was in the assessment of the preparation to the Reviews,

where the average of the contribution was 1.07 higher from the perspective of

undergraduate students. By the way, undergraduates were the most satisfied

with the quality of the Retrospectives, the handling of obstacles, and the Weekly

Scrums. Based on the measurements, the Scrum Masters helped the Planning in

the slightest. Based on measurements, Planning showed the least improvement

by Scrum Masters’ help. This may be due to the fact that Planning was not

mentioned in the course schedule of the Software Technology course. In addition,

Scrum artifacts did not receive extensive focus in our experiment. For example,

Product Owners were not obligated to create a Product Backlog that could have

been used for Planning. Estimation methods were not taught to students either.

This was due to a lack of resources (a Product Owner had at least 5 teams).

Overall, the lowest average for undergraduates was 4.67, which is still very high,

so it turned out that it was a positive experience for undergraduates that they

had a Scrum Master student to work with. Scrum Masters scored their help to

the other students at 3.64. This average might simply suggest a more realistic

estimate based on prior experience.

SWT
experi-
mental
group

SDP
experi-
mental
group

Difference

Overall, how much did the Scrum Master
help the team’s work?

4.74 3.92 0.82

How much did the Scrum Master help
with the Planning?

4.67 3.64 1.03

How much did the Scrum Master help
with the Review?

4.79 3.72 1.07

How satisfied were you with the Retro-
spectives led by the Scrum Master?

4.91 4.20 0.71

How satisfied were you with the way
the Scrum Master attended the Weekly
Scrums?

4.86 4.64 0.22

How satisfied were you with the way the
Scrum Master handled if there was any
obstacle in the team?

4.87 4.48 0.39

How much did you feel that the Scrum
Master constantly improved the team?

4.83 4.08 0.75

Table 9. Effect of having / being a Scrum Master



Teaching Agile through linked university courses 27

We asked the students about the benefits of combining the two courses.

We cite some student responses.

What was the best thing about having a Scrum Master?

• “It gave us a good start.”

• “The meetings were conducted professionally. We had someone to turn to if

we got stuck in something, whatever problem we had.”

• “Problems within the team have been solved very effectively, improving the

atmosphere and productivity.”

• “Helped stay motivated and meet deadlines.”

• “He has always supported and encouraged us.”

• “I could almost feel like we were on a workplace meeting.”

What was the best thing about being a Scrum Master?

• “That I could lead people without command.”

• “To see how the daily Scrum has improved from a must / awkward meeting

to a useful and informative meeting.”

• “To witness the development of the team. They managed to advance them

in self-organization, planning, etc.”

• “To see how the team builds itself.”

• “It was great to experience working with such a motivated and enthusiastic

team. Self-organization really worked. It was good to see them developing

during the semester.”

• “I could see the Scrum from a slightly different perspective.”

• “Gaining Scrum Master experiences, overcoming challenges, leaving my com-

fort zone.”

• “I learned that the Scrum Master does play an important role.”

7. Lessons learned

From our case study, we concluded that teaching different aspects and lev-

els of Scrum in a resource-efficient way is possible by successfully combining an

undergraduate course with a master’s course.

In our case, members of both courses found the linked courses useful. Aver-

ages of usefulness were rated 4.63 and 4.60 on a scale of 1 to 5. Students have

understood the theory of Scrum (average level of understanding 4.34, 4.64), but



28 Enikő Ilyés

more importantly they could experience Scrum in practice (average level of under-

standing 4.36, 4.08), and realized a Scrum role (average level of realization 4.63,

4.28). Students also reported improvements in soft skills, such as an average 4.44

improvement level in collaboration skills, 4.21 in communication skills.

Both course’s participants benefited from being associated with the other

course. Undergraduate students were helped by the presence of the Scrum Mas-

ters, who gave them a good start, always supported and encouraged them. The

master’s students could try out the role of the Scrum Master through leading the

undergraduate student teams and experienced team development, leading without

command.

We have learned lessons from our implementation that have confirmed some

elements of our approach and suggested changes for others. We discuss this below.

One of the challenges in linking the two courses is that the preparatory phase

is more difficult than usual, as the schedules of master’s and undergraduate stu-

dents need to be aligned. We believe that undergraduates should be briefly and

uniformly prepared for the Scrum methodology at the start (e.g., during a first

lecture) in order to have a smoother and more pleasant start of working together

with the master’s students. In fact, this preparation could support all roles and

stakeholders. Short, concise, application-focused training to prepare students for

the Scrum Master role is a popular solution among master’s students. Accord-

ing to them, it is also advantageous to write a test regarding the role already at

the beginning of the semester, as they take the time to thoroughly master the

theory, on which they can build later in practice. This early semester period is

favorable for test writing, as at this stage of the semester students are typically

not burdened with other examinations.

We consider a very good method to support the Scrum Masters in the form

of a group consultation during the semester. These consultations bring up prob-

lems that are common, and thus it is important for several people to deal with

them. For example: initiating communication in the team, avoiding procras-

tination, managing a defocused team, developing communication in the team,

etc. However, individual cases also come up. These are instructive, because by

discussing how they are treated, we can understand the Scrum principles and val-

ues. For example, in the case when the Scrum Master reported that his team was

working successfully but still depending on the Scrum Master, or when another

Scrum Master noticed spelling mistakes in the documentation and didn’t know if

he should correct it, we discussed the importance of the team’s self-organization

and independence, and the way of supporting it. The successes that the Scrum



Teaching Agile through linked university courses 29

Masters report to each other during the consultations provide encouragement and

ideas. For example, our students inspired each other to invent new Retrospective

techniques or delegate tasks, developing their team’s self-organization.

Consultations are also beneficial from an instructor’s perspective, because

they allow tracking what’s going on with the teams, what problems they have.

Because of some difficult cases, we have learned that it would be wise to prepare

in advance dealing with some critical cases, so that if they arise during a consul-

tation, we could respond quickly. For example: a team member not working, or

how to give work to a Scrum Master whose team has almost no challenge.

Our way of logging that run in parallel with consultations worked less effi-

ciently. Maybe another template that is easier and more useful to fill out would

be more efficient. Efforts could be made to improve the relationship between

consecutive weekly diaries, for example, by loading the values into a column of

a table and automatically generating a development curve from the values. This

curve could even be reexamined at every consultation, motivating completion of

the values. At the end of the semester, we could ask for an analysis of all the

values collected during the semester. This could be a useful task for students as it

would cause them to look at the whole team dynamic and process. This analysis

could also play a role in grading the students, which would further support taking

mid-term data collection seriously.

Scrum Planning was not taken seriously either. Logs completely missed to

report them. Both the log template and the course schedule should highlight

Scrum Planning and Review, with a precise breakdown into the appropriate weeks

to ensure that they are not missed. Thus, teaching of the Scrum events would be

more effective and the progress of the teams could also receive more support.

Similarly, we did not hear much about cooperation with the Product Owners.

This role should be better supported. Their Scrum responsibility and attitude

should be better clarified. This is not necessarily an easy task, as mostly instruc-

tors fill this role. They are accustomed to their authority in the courses taught.

They have a specific and habitual style of work that is difficult to overwrite for

the sake of our courses. This is actually an agile transformation issue and trans-

formations are known to be challenging. Regarding the evaluation method of the

students, we found that it resulted in too high grades. We need to find a method

that would produce more nuanced grades. This could be supported by a more

objective assessment of the mid-term activity in the case of the Scrum Masters.

It is common at universities that Scrum is presented to students from the per-

spective of the development team on a practice course. In these cases, mostly one



30 Enikő Ilyés

student can try out the role of the Scrum Master. We assured that our undergrad-

uate students experience Scrum in practice with a similar solution, meanwhile all

master’s students can try out the role of the Scrum Master. We used role-based

Scrum teaching, previously typical only in industrial Scrum education, now in

university education. Our master’s students could take a Scrum Master course

free of charge, which otherwise costs approximately e1,500. Our Scrum Master

course was highly practice-oriented. We believe we met all the three principles

(Kropp et al., 2014) of high-level agile education: we assured personal experience

by working in a Scrum Team; cooperating, social exchange and discourses on

Scrum events; and discussing agile values and attitudes on weekly consultations.

Scrum Master students reported that it was interesting to experience them-

selves as a leader, and would be happy to take several such courses. Undergrad-

uate students reported that Scrum Master students helped them a lot, and our

measurements show that they have understood (especially) Scrum roles better

than the teams without assigned Scrum Master students.

The fact that we assigned master’s students to the course of the undergradu-

ate students was also a resource optimizer for us. In this way, the instructors only

had to pay attention to the role of the Product Owner, and we did not have to

hire research assistants as in the case of Scharf and Koch (2013) to support teams.

5 teachers were involved in our implementation, 4 as Product Owners, 1 as Agile

Coach. This means 5 teachers supported approximately 110 students, while in

the case of Scharf and Koch (2013) 11 staff members supported approximately 60

students.

As a side effect, our experiment had a relationship-building effect, as all

undergraduates participating in the experiment were able to get to know at least

one master’s student. This relationship, together with the inspiration it provides,

is likely to attract more undergraduate students to enroll in master programs and

strive for a higher professional qualification. This is profitable for the university

as well.

At the beginning of our research project, we raised the following research

questions: How can we provide undergraduate students with experience in Scrum

methodology? How can we provide master’s students with experience in agile

leadership? How can we realize both of our previous goals in a resource-efficient

way? As an approach, we redesigned and linked an undergraduate and a master’s

course. Implementing these courses proved to us that our approach is an answer

to the previously raised questions. Our case study highlighted some weak points



References 31

of our approach as well. We examined these weak points and identified opportu-

nities for improvement. While we consider the approach presented in this article

satisfying, we believe that implementing our improvement ideas could produce

even better results.

References

15th annual State of Agile Report. (2021). https://digital.ai/resource

-center/analyst-reports/state-of-agile-report.

Agile Training. (2021). https://www.agilealliance.org/training/.

Damian, D., Lassenius, C., Paasivaara, M., Borici, A., & Schröter, A. (2012).

Teaching a globally distributed project course using Scrum practices. In

2012 Second International Workshop on Collaborative Teaching of Globally

Distributed Software Development (CTGDSD) (pp. 30–34). IEEE. doi:

10.1109/CTGDSD.2012.6226947

Dilts, R. B. (1996). Visionary leadership skills: Creating a world to which people

want to belong. Meta Publications.

Hof, S., Kropp, M., & Landolt, M. (2017). Use of gamification to teach agile

values and collaboration: A multi-week scrum simulation project in an un-

dergraduate software engineering course. In ITiCSE’17: Proceedings of the

2017 ACM Conference on Innovation and Technology in Computer Science

Education (pp. 323–328).

Kropp, M., & Meier, A. (2013). Teaching agile software development at university

level: Values, management, and craftsmanship. In 2013 26th International

Conference on Software Engineering Education and Training (CSEE&T)

(pp. 179–188). IEEE. doi: 10.1109/CSEET.2013.6595249

Kropp, M., Meier, A., Mateescu, M., & Zahn, C. (2014). Teaching and learning

agile collaboration. In 2014 IEEE 27th Conference on Software Engineering

Education and Training (CSEE&T) (pp. 139–148). IEEE.

Mahnič, V. (2011). A capstone course on agile software development using Scrum.

IEEE Transactions on Education, 55 (1), 99–106.

Mahnič, V. (2015). Scrum in software engineering courses: An outline of the

literature. Global Journal of Engineering Education, 17 (2), 77–83.

Paasivaara, M., Heikkilä, V., Lassenius, C., & Toivola, T. (2014). Teaching

students Scrum using LEGO blocks. In ICSE’14: Companion Proceedings

of the 36th International Conference on Software Engineering.



32 E. Ilyés : Teaching agile operation and leadership. . .

Paasivaara, M., Lassenius, C., Damian, D., Räty, P., & Schröter, A. (2013).

Teaching students global software engineering skills using distributed

Scrum. In 2013 35th International Conference on Software Engineering

(ICSE) (pp. 1128–1137). IEEE. doi: 10.1109/ICSE.2013.6606664

Professional Scrum Training. (2021). https://www.scrum.org/courses.

Ramingwong, S., & Ramingwong, L. (2015). Plasticine Scrum: An alternative

solution for simulating Scrum software development. In Information science

and applications (pp. 851–858). Springer.

Reichlmayr, T. (2011). Working towards the student Scrum: Developing Agile

Android applications. In 2011 ASEE Annual Conference and Exposition

(pp. 22.1712.1–22.1712.12). ASEE.

Rodŕıguez, G., Soria, A., & Campo, M. (2011). Teaching Scrum to software

engineering students with virtual reality support. In F. Cipolla-Ficarra,

K. Veltman, D. Verber, M. Cipolla-Ficarra, & F. Kammüller (Eds.), AD-

NTIIC 2011: Advances in New Technologies, Interactive Interfaces, and

Communicability (pp. 140–150).

Scharf, A., & Koch, A. (2013). Scrum in a software engineering course: An

in-depth praxis report. In 2013 26th International Conference on Software

Engineering Education and Training (CSEE&T) (pp. 159–168). IEEE. doi:

10.1109/CSEET.2013.6595247

Schwaber, K., & Sutherland, J. (2011). The Scrum guide. Scrum Alliance,

21 (19), 1–12.

Von Wangenheim, C. G., Savi, R., & Borgatto, A. F. (2013). SCRUMIA – An

educational game for teaching SCRUM in computing courses. Journal of

Systems and Software, 86 (10), 2675–2687.

Zorzo, S. D., de Ponte, L., & Lucrédio, D. (2013). Using Scrum to teach software

engineering: A case study. In 2013 IEEE Frontiers in Education Conference

(FIE) (pp. 455–461). IEEE. doi: 10.1109/FIE.2013.6684866

ENIKŐ ILYÉS

FACULTY OF INFORMATICS, EÖTVÖS LORÁND UNIVERSITY,

H-1117 BUDAPEST, PAZMÁNY PÉTER SÉTÁNY 1/C, HUNGARY

E-mail: ilyese@inf.elte.hu

(Received December, 2021)


