
 

 

 

 

 

 

Integrating elements of data science into 

high-school teaching: Naïve Bayes-

classification algorithm and programming in 

Python 

 

ÖDÖN VANCSÓ AND PÉTER PRINCZ 

 

Abstract. Probability theory and mathematical statistics are traditionally one of the most difficult 

chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching 

various topics via computer programming of the problem at hand as a class activity. The proposed 

method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in 

this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the 

machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous 

mushrooms. The students would implement the algorithm in a playful and interactive way. The 

proposed incremental development process aligns well with the spirit of Tamás Varga who 

considered computers as modern tools of experimental problem solving as early as in the 1960s. 
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 Historical and theoretical background  

Probability theory and mathematical statistics are traditionally among the most 

difficult fields of mathematics to teach. In Hungary, at least probability theory is present 

in the secondary education. Elements of inferential statistics have been planned to be 

included in the final exam, but they have been omitted from the final revision because of 

reduction in the hours devoted to the subject of mathematics. This historical progression 

is documented in Vancsó (2015). There are new approaches ever since: there is an 

ongoing work within the MTA-ELTE Recent Complex Mathematics Education Research 

Group that aims to develop new, experimental educational material with the involvement 

of professor M. Borovcnik from Klagenfurt and two PhD students as well as with high-

school teachers. The concept is described in detail in Borovcnik, Fejes-Tóth, Jánvári, and 

Vancsó (2020).  

One of the authors, Péter Princz has experience in teaching various topics via 

computer programming as a class activity. A frequent observation during such 

programming classes is how students digest a new, complex concept, such as gravity or 

trajectory: first, they grasp it intuitively and on the surface only, but shortly after, they 

arrive at a deeper understanding, compared to the frontal-only teaching method. They are 

forced to transfer the concept to practice when using it in a program and then they can 

play with it and its effects interactively, in short feedback loops.  

It is important to emphasise the role of the computer in this approach: students do 

not only run a computer program prepared in advance, or do not only change parameters 

in the simulations. These are all useful activities, but instead, the students are writing the 

working code of the problem as a class or pair or individual activity. The ambition is to 

involve computer programming as a didactic tool in hard-to-teach topics. The method is 

influenced by the seminal work of Tamás Varga, but also by Seymour Papert’s Logo, by 

Guido van Rossum’s Python programming for everybody (van Rossum, 1999), and to 

some extent even by Donald E. Knuth’s literate programming (Knuth, 1992). One such 

example is the author’s own experiment: Programming the projectile motion for ninth 

graders, which is taught with certain regularity (Princz, 2018).  

Why the naïve Bayes classifier? 

As we stated earlier, probability is not easy to understand. The Bayesian approach 

seems to be a good choice to develop the concepts and the toolkit of probability in 
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grades 9 – 12. Its theoretical background (Law of Total Probability, Bayes’ Theorem) is 

not as simple as it may seem, with reasoning pitfalls, resulting in lamentable scores even 

among students at university level (Bordács, 2002). 

The Bayesian way of problem statement is obvious and easy to understand for 

students. For example, “Is this mushroom edible or poisonous?” Both the answer to the 

questions posed and the way the classification is made are natural for this age group. 

This can engage even those students who dislike mathematics and can help the teacher in 

gaining their interest and active participation in the classroom activities. Finally, students 

will acquire practical and useful knowledge, all in a collaborative way, when attempting 

to solve a Bayesian problem via coding. Apart from these, it is an industry algorithm, 

suitable for a first approximation in classification problems. The term “naïve” is an 

indicator of the assumed independence of the attributes in the dataset. With a proper 

training dataset, the classification can be as accurate as 70 – 75%. Of course, this 

precision is not enough for a life-death decision as in this case, but it is good enough for 

a first classification. It has therefore a role in machine learning as well.  

Russell and Norvig’s (2010) seminal book on Artificial Intelligence (AI) pays a 

special tribute to Thomas Bayes. Its cover is a piece of art in itself: a careful selection of 

people and concepts fundamental to modern AI. Thomas Bayes has a special place in the 

top row. The book even explains why (p. ix): 

“...Kasparov is shown at the top. To his left is the Asimo humanoid robot and to his right is 

Thomas Bayes (1702–1761), whose ideas about probability as a measure of belief underlie much 

of modern AI technology.” 

Theoretical background 

As one of the frontal-teaching elements of a Bayesian computer-programming 

curriculum, the teacher has to discuss the theorem, maybe outline its proof or give 

intuitive reasons what the formula does and how the constituents can be interpreted, and 

work through at least one simple textbook example with the students. Vancsó (2004) 

already incorporated the double-tree diagram notation to depict probability problems as a 

lesson learned from Bordács (2002) and other sources.  

Expanding on Bayes theorem, the remaining piece of the theoretical background is 

the naïve Bayes-classifier algorithm itself. It is used for a first approximation to 

classification problems in machine learning: Given is a training dataset of observations 
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of known classes (i.e., it is known to which class the statistical unit related to the data 

belongs), and a new test observation. The problem is to identify into which of the classes 

a new test observation falls. Some real-world examples where a naïve Bayes classifier 

performs surprisingly well are: 

• have a training set of known spam e-mails; decide whether a new e-mail in 

the inbox is legitimate or spam; 

• have a training set of people’s features such as height, weight, shoe size and 

gender; decide whether a new (height, weight, shoe size) data relates to a 

boy or a girl; 

• have a dataset of mushroom features including the expert classification 

whether they are edible or poisonous; decide whether a new mushroom is 

edible or poisonous (even if it is a never-seen-before mushroom). 

A probabilistic classifier in machine learning is a classifier that can predict, given an 

observation as input, a probability distribution over a set of classes. That is, for each 

class, a probability that the given object belongs to this class. Hence, its output is not 

only the most likely class to which the observation belongs to, but also a probability for 

every class. In our example of mushrooms, a probabilistic classifier would compute two 

probabilities for every test object (mushroom), i.e. a probability for being edible and a 

probability for being poisonous for this specific mushroom. The final judgement for a 

given test object is the class that attains the maximum of the probabilities. 

Naïve Bayes classifiers are a family of probabilistic classifiers applying Bayes’ 

theorem to their training and test sets. “Naïve” relates to the fact that they assume the 

features to be independent from each other. Hence their other names: simple Bayes 

classifiers or independence Bayes classifiers. For example, they regard height, weight 

and shoe size as independent features of a person. In reality, taller people tend to be 

heavier and have a larger shoe size, so that the features in the training set are in fact 

dependent. Nevertheless, these classifiers perform surprisingly well even if the 

independence assumption fails (see Russell & Norvig, 2010). The teacher must 

communicate these details for the students in a proper way. 
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The mushroom problem 

Key to machine-learning algorithms is to provide a good-quality training dataset. In 

practice this is not a trivial problem; in most cases, the raw data must be cleaned, 

normalised, the missing data to be filled in with zeros, default or estimated values. The 

data practitioners refer to these preparation activities as data wrangling and in some 

cases, they can be more complex than the actual model fitting and the visualisation. 

When it comes to bringing elements of data science into the classroom, it makes sense to 

touch this topic briefly, maybe by showing a before-and-after example but not to waste 

too much time and effort on it. As we will see, even the adjusted training set of 

mushrooms needs some preparation before the students can work with it. The didactic 

goal with the naïve Bayes classifier is to find a problem that is interesting for the 

students and to provide a relatively large but simple training set of good quality, 

preferably a comma-separated text file that can be loaded into Excel or any other 

spreadsheet for quick ad-hoc analyses. After some investigations, we discovered the 

mushroom classification challenge. 

Data-science practitioners have an online community hosted by Google, named 

Kaggle. They are regularly organising competitions incentivised by prize money. The 

challenge provides a dataset reviewed by scientists that is to be used by all competitors 

as training dataset to train their models; then they must apply their model to make 

predictions for new data. In 2016, they organized the mushroom classification 

competition (Kaggle, 2016). 

We downloaded the adjusted dataset from there. It is a simple csv file and includes a 

description of mushrooms of the Agaricus and Lepiota Family (Lincoff, 1981, pp. 500-

525). This field guide identifies each species as definitely edible or poisonous, or of 

unknown edibility and not recommended. Kaggle combined the third class with the 

poisonous one so that two classes are left. The guide clearly states that there is no simple 

rule for determining the edibility of a mushroom. The dataset (see Figure 1) consists of 

more than 8000 data rows with twenty-two feature columns. There is an additional 

column for the classification (the very first in the text file), stating whether a given 

mushroom is edible (“e”) or poisonous (“p”). Approximately half (52%) of the 

mushrooms is edible.  
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Figure 1. Excerpt of the mushroom competition dataset  

The attributes as well as the categories in the text file contain alphanumerical codes, 

known as categorical values. Some examples follow: 

1. cap-shape: bell = b, conical = c, convex = x, flat = f, knobbed = k, sunken = s 

2. cap-surface: fibrous = f, grooves = g, scaly = y, smooth = s 

3. cap-color: brown = n, buff = b, …, grey = g, green = r ,…, yellow = y 

... 

21. population: abundant = a, clustered = c, numerous = n, …, solitary = y 

22. habitat: grasses = g, leaves = l, meadows = m, paths = p, …, woods = d 

The problem with categorical values is that one cannot directly use them in 

algorithms, so that data wrangling is needed. The operation needed here is called one-

hot-encoding; its purpose is to replace the categorical values of one feature by several 

binary features. For example, the first attribute above is the cap shape, which can attain 

six different values (b, c, x, f, k or s). With one-hot-encoding, one replaces this column of 

cap shape by six distinct columns (the number of possible categorical values). For every 

data row, a value of 1 in the new column means the given mushroom’s cap shape 

coincides with that category. The other five added columns attain the value 0, which 

means that the cap shape is different from that category. Consistently, one replaces all 

categorical values by a bit vector with the length of the possible categories for each. In 

Figure 1, the first two columns of the first row contain the data “class = p, cap shape = x”, 
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which means that this is a poisonous mushroom with a convex cap shape. In the 

wrangled file, the cap shape is represented by:  

cap-shape_b = 0, cap-shape_c = 0, cap-shape_x = 1, cap-shape_f = 0, cap-shape_k = 0, cap-shape_s = 0.  

One must apply the one-hot-encoding to all categorical features with more than two 

values. The resulting wrangled file is ready for processing by the students. Special 

library functions support this tedious preparation; yet, we do this step in advance to spare 

time and keep students’ interest. In our case, the clean file is part of the educational 

material, ready to download. The teacher only has to highlight the concept of categorical 

values, the data wrangling, and the one-hot-encoding for the students so that they can 

pre-process any data file they would meet in the future. 

Connection to the legacy of Tamás Varga 

The way, the programming of the algorithm is conducted as a classroom activity 

recalls the perception of Varga on teaching mathematics. We collected two quotes on his 

methods, translated from Pálfalvi (2019, pp. 32-23): 

“The biggest intrinsic motivator shall be the joy of discovery; it should be welcomed to make 

mistakes while working and one should not be blamed for it.”  

“For a number of seemingly trivial methodological aspects, it was difficult to accept and to 

get them accepted. Such principles are: getting motivated, differentiation, the fact that the teacher 

is not the only source of knowledge, independent discovery is worth more than a drill commanded 

from above, to be happy when a student surprises the teacher with an unplanned but good 

solution, etc. It was also a novelty that Varga advocated a diversity of teaching methods and 

various forms of work, including group activities, efficient application of games and gamification, 

free debate, and making mistakes by trial and error, over the then-prevalent frontal class work.” 

The similarity to programming a mathematical problem with students is striking. 

“Making mistakes during work is OK” is in Varga’s spirit as programming is all about 

making small mistakes all the time and refining towards the solution of the problem. The 

emphasis in the second quote reflects how we conduct these programming workshops: 

the teacher is not the only source of knowledge, students experience independent 

discovery every minute by trial and error, they are surprising the teacher all the time, and 

this is a group activity signified by fun. 
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Tamás Varga has always been embracing novel approaches to education as well as 

even the latest gadgets of his time (see Fried, Fekete, & Princz, 2020). We believe both 

the mathematical content, i.e., the Bayesian approach to probability theory as well as the 

novel approach to teach this content in secondary school via computer programming is 

worthy of Varga’s legacy in teaching mathematics. Varga brought in brand-new 

concepts, methods, and tools even from outside mathematics, such as flow charts, punch 

cards, etc., into elementary school. A notable example is his two-volume book for 8-14-

year-old students: (Varga, 1972; 1976). He embraced algorithmic thinking and 

flowcharts well before the personal-computer era, probability at early ages in a playful 

manner with dice and coins, etc. Maybe, Varga would bring in elements of data science, 

machine-learning algorithms, and programming into today’s classroom. 

Conclusion 

Which chapters of probability theory and mathematical statistics to cover and how to 

teach them, is still an ongoing discussion in the didactics of mathematics and among 

mathematics teachers. Frequentist vs. Bayesian interpretations of probability theory are 

debated. On this issue, see Carranza and Kuzniak (2008) or Vancsó (2009). In Hungary, 

Tamás Varga had a seminal role in bringing in probability theory into the national 

curriculum. However, the Bayesian approach and methods are still a novelty in a typical 

Hungarian high school, even as an extra-curricular activity. There are books approaching 

the problem from the educators’ perspective, see Borovcnik (1992) and Batanero and 

Borovcnik (2016). Yet, teaching rarely covers Bayesian aspects adequately, and this 

applies worldwide. 

The method presented in this paper is an attempt to bring in the Bayesian 

interpretation of probability into teaching mathematics. One of the novelties of the 

method presented here is to involve computer programming as a didactic tool in hard-to-

teach fields of mathematics. During their professional development, the authors have 

tried several languages and tools, such as Logo, Scratch, and Processing as well. So far, 

the most valuable approach from a pedagogical point of view is the work of Seymour 

Papert and his Logo for simple visualisations as well as for pixel-by-pixel plotting of 

functions, i.e., trajectories. The work of Guido van Rossum (1999) and his Python 

programming language is also worth to mention here. Luckily, the Turtle module of 

Python combines the two: it is embedding Logo into Python. It is also important that 
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coding in Python is not much more verbose than the mathematical formula from which it 

translates. It is a prose-like code that is easy to read and thus very suitable for teaching 

purposes and it can even replace pseudocode when discussing algorithms.  

Following the spirit of Tamás Varga, we believe that – embedded in technology – 

the modern pedagogical tool of discovery learning and guided experimentation in 

mathematics is computer programming. 
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