

Integrating elements of data science into

high-school teaching: Naïve Bayes-

classification algorithm and programming in

Python

ÖDÖN VANCSÓ AND PÉTER PRINCZ

Abstract. Probability theory and mathematical statistics are traditionally one of the most difficult

chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching

various topics via computer programming of the problem at hand as a class activity. The proposed

method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in

this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the

machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous

mushrooms. The students would implement the algorithm in a playful and interactive way. The

proposed incremental development process aligns well with the spirit of Tamás Varga who

considered computers as modern tools of experimental problem solving as early as in the 1960s.

Key words and phrases: Bayesian classifier, computer programming, guided discovery learning.

MSC Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50.

 18/4 (2020), 307-316

 DOI: 10.5485/TMCS.2020.0494

 tmcs@science.unideb.hu

 http://tmcs.math.unideb.hu

308 Vancsó, Ö. & Princz, P.

 Historical and theoretical background

Probability theory and mathematical statistics are traditionally among the most

difficult fields of mathematics to teach. In Hungary, at least probability theory is present

in the secondary education. Elements of inferential statistics have been planned to be

included in the final exam, but they have been omitted from the final revision because of

reduction in the hours devoted to the subject of mathematics. This historical progression

is documented in Vancsó (2015). There are new approaches ever since: there is an

ongoing work within the MTA-ELTE Recent Complex Mathematics Education Research

Group that aims to develop new, experimental educational material with the involvement

of professor M. Borovcnik from Klagenfurt and two PhD students as well as with high-

school teachers. The concept is described in detail in Borovcnik, Fejes-Tóth, Jánvári, and

Vancsó (2020).

One of the authors, Péter Princz has experience in teaching various topics via

computer programming as a class activity. A frequent observation during such

programming classes is how students digest a new, complex concept, such as gravity or

trajectory: first, they grasp it intuitively and on the surface only, but shortly after, they

arrive at a deeper understanding, compared to the frontal-only teaching method. They are

forced to transfer the concept to practice when using it in a program and then they can

play with it and its effects interactively, in short feedback loops.

It is important to emphasise the role of the computer in this approach: students do

not only run a computer program prepared in advance, or do not only change parameters

in the simulations. These are all useful activities, but instead, the students are writing the

working code of the problem as a class or pair or individual activity. The ambition is to

involve computer programming as a didactic tool in hard-to-teach topics. The method is

influenced by the seminal work of Tamás Varga, but also by Seymour Papert’s Logo, by

Guido van Rossum’s Python programming for everybody (van Rossum, 1999), and to

some extent even by Donald E. Knuth’s literate programming (Knuth, 1992). One such

example is the author’s own experiment: Programming the projectile motion for ninth

graders, which is taught with certain regularity (Princz, 2018).

Why the naïve Bayes classifier?

As we stated earlier, probability is not easy to understand. The Bayesian approach

seems to be a good choice to develop the concepts and the toolkit of probability in

Data science in high-school: Programming Naïve Bayes in Python 309

grades 9 – 12. Its theoretical background (Law of Total Probability, Bayes’ Theorem) is

not as simple as it may seem, with reasoning pitfalls, resulting in lamentable scores even

among students at university level (Bordács, 2002).

The Bayesian way of problem statement is obvious and easy to understand for

students. For example, “Is this mushroom edible or poisonous?” Both the answer to the

questions posed and the way the classification is made are natural for this age group.

This can engage even those students who dislike mathematics and can help the teacher in

gaining their interest and active participation in the classroom activities. Finally, students

will acquire practical and useful knowledge, all in a collaborative way, when attempting

to solve a Bayesian problem via coding. Apart from these, it is an industry algorithm,

suitable for a first approximation in classification problems. The term “naïve” is an

indicator of the assumed independence of the attributes in the dataset. With a proper

training dataset, the classification can be as accurate as 70 – 75%. Of course, this

precision is not enough for a life-death decision as in this case, but it is good enough for

a first classification. It has therefore a role in machine learning as well.

Russell and Norvig’s (2010) seminal book on Artificial Intelligence (AI) pays a

special tribute to Thomas Bayes. Its cover is a piece of art in itself: a careful selection of

people and concepts fundamental to modern AI. Thomas Bayes has a special place in the

top row. The book even explains why (p. ix):

“...Kasparov is shown at the top. To his left is the Asimo humanoid robot and to his right is

Thomas Bayes (1702–1761), whose ideas about probability as a measure of belief underlie much

of modern AI technology.”

Theoretical background

As one of the frontal-teaching elements of a Bayesian computer-programming

curriculum, the teacher has to discuss the theorem, maybe outline its proof or give

intuitive reasons what the formula does and how the constituents can be interpreted, and

work through at least one simple textbook example with the students. Vancsó (2004)

already incorporated the double-tree diagram notation to depict probability problems as a

lesson learned from Bordács (2002) and other sources.

Expanding on Bayes theorem, the remaining piece of the theoretical background is

the naïve Bayes-classifier algorithm itself. It is used for a first approximation to

classification problems in machine learning: Given is a training dataset of observations

310 Vancsó, Ö. & Princz, P.

of known classes (i.e., it is known to which class the statistical unit related to the data

belongs), and a new test observation. The problem is to identify into which of the classes

a new test observation falls. Some real-world examples where a naïve Bayes classifier

performs surprisingly well are:

• have a training set of known spam e-mails; decide whether a new e-mail in

the inbox is legitimate or spam;

• have a training set of people’s features such as height, weight, shoe size and

gender; decide whether a new (height, weight, shoe size) data relates to a

boy or a girl;

• have a dataset of mushroom features including the expert classification

whether they are edible or poisonous; decide whether a new mushroom is

edible or poisonous (even if it is a never-seen-before mushroom).

A probabilistic classifier in machine learning is a classifier that can predict, given an

observation as input, a probability distribution over a set of classes. That is, for each

class, a probability that the given object belongs to this class. Hence, its output is not

only the most likely class to which the observation belongs to, but also a probability for

every class. In our example of mushrooms, a probabilistic classifier would compute two

probabilities for every test object (mushroom), i.e. a probability for being edible and a

probability for being poisonous for this specific mushroom. The final judgement for a

given test object is the class that attains the maximum of the probabilities.

Naïve Bayes classifiers are a family of probabilistic classifiers applying Bayes’

theorem to their training and test sets. “Naïve” relates to the fact that they assume the

features to be independent from each other. Hence their other names: simple Bayes

classifiers or independence Bayes classifiers. For example, they regard height, weight

and shoe size as independent features of a person. In reality, taller people tend to be

heavier and have a larger shoe size, so that the features in the training set are in fact

dependent. Nevertheless, these classifiers perform surprisingly well even if the

independence assumption fails (see Russell & Norvig, 2010). The teacher must

communicate these details for the students in a proper way.

Data science in high-school: Programming Naïve Bayes in Python 311

The mushroom problem

Key to machine-learning algorithms is to provide a good-quality training dataset. In

practice this is not a trivial problem; in most cases, the raw data must be cleaned,

normalised, the missing data to be filled in with zeros, default or estimated values. The

data practitioners refer to these preparation activities as data wrangling and in some

cases, they can be more complex than the actual model fitting and the visualisation.

When it comes to bringing elements of data science into the classroom, it makes sense to

touch this topic briefly, maybe by showing a before-and-after example but not to waste

too much time and effort on it. As we will see, even the adjusted training set of

mushrooms needs some preparation before the students can work with it. The didactic

goal with the naïve Bayes classifier is to find a problem that is interesting for the

students and to provide a relatively large but simple training set of good quality,

preferably a comma-separated text file that can be loaded into Excel or any other

spreadsheet for quick ad-hoc analyses. After some investigations, we discovered the

mushroom classification challenge.

Data-science practitioners have an online community hosted by Google, named

Kaggle. They are regularly organising competitions incentivised by prize money. The

challenge provides a dataset reviewed by scientists that is to be used by all competitors

as training dataset to train their models; then they must apply their model to make

predictions for new data. In 2016, they organized the mushroom classification

competition (Kaggle, 2016).

We downloaded the adjusted dataset from there. It is a simple csv file and includes a

description of mushrooms of the Agaricus and Lepiota Family (Lincoff, 1981, pp. 500-

525). This field guide identifies each species as definitely edible or poisonous, or of

unknown edibility and not recommended. Kaggle combined the third class with the

poisonous one so that two classes are left. The guide clearly states that there is no simple

rule for determining the edibility of a mushroom. The dataset (see Figure 1) consists of

more than 8000 data rows with twenty-two feature columns. There is an additional

column for the classification (the very first in the text file), stating whether a given

mushroom is edible (“e”) or poisonous (“p”). Approximately half (52%) of the

mushrooms is edible.

312 Vancsó, Ö. & Princz, P.

Figure 1. Excerpt of the mushroom competition dataset

The attributes as well as the categories in the text file contain alphanumerical codes,

known as categorical values. Some examples follow:

1. cap-shape: bell = b, conical = c, convex = x, flat = f, knobbed = k, sunken = s

2. cap-surface: fibrous = f, grooves = g, scaly = y, smooth = s

3. cap-color: brown = n, buff = b, …, grey = g, green = r ,…, yellow = y

...

21. population: abundant = a, clustered = c, numerous = n, …, solitary = y

22. habitat: grasses = g, leaves = l, meadows = m, paths = p, …, woods = d

The problem with categorical values is that one cannot directly use them in

algorithms, so that data wrangling is needed. The operation needed here is called one-

hot-encoding; its purpose is to replace the categorical values of one feature by several

binary features. For example, the first attribute above is the cap shape, which can attain

six different values (b, c, x, f, k or s). With one-hot-encoding, one replaces this column of

cap shape by six distinct columns (the number of possible categorical values). For every

data row, a value of 1 in the new column means the given mushroom’s cap shape

coincides with that category. The other five added columns attain the value 0, which

means that the cap shape is different from that category. Consistently, one replaces all

categorical values by a bit vector with the length of the possible categories for each. In

Figure 1, the first two columns of the first row contain the data “class = p, cap shape = x”,

Data science in high-school: Programming Naïve Bayes in Python 313

which means that this is a poisonous mushroom with a convex cap shape. In the

wrangled file, the cap shape is represented by:

cap-shape_b = 0, cap-shape_c = 0, cap-shape_x = 1, cap-shape_f = 0, cap-shape_k = 0, cap-shape_s = 0.

One must apply the one-hot-encoding to all categorical features with more than two

values. The resulting wrangled file is ready for processing by the students. Special

library functions support this tedious preparation; yet, we do this step in advance to spare

time and keep students’ interest. In our case, the clean file is part of the educational

material, ready to download. The teacher only has to highlight the concept of categorical

values, the data wrangling, and the one-hot-encoding for the students so that they can

pre-process any data file they would meet in the future.

Connection to the legacy of Tamás Varga

The way, the programming of the algorithm is conducted as a classroom activity

recalls the perception of Varga on teaching mathematics. We collected two quotes on his

methods, translated from Pálfalvi (2019, pp. 32-23):

“The biggest intrinsic motivator shall be the joy of discovery; it should be welcomed to make

mistakes while working and one should not be blamed for it.”

“For a number of seemingly trivial methodological aspects, it was difficult to accept and to

get them accepted. Such principles are: getting motivated, differentiation, the fact that the teacher

is not the only source of knowledge, independent discovery is worth more than a drill commanded

from above, to be happy when a student surprises the teacher with an unplanned but good

solution, etc. It was also a novelty that Varga advocated a diversity of teaching methods and

various forms of work, including group activities, efficient application of games and gamification,

free debate, and making mistakes by trial and error, over the then-prevalent frontal class work.”

The similarity to programming a mathematical problem with students is striking.

“Making mistakes during work is OK” is in Varga’s spirit as programming is all about

making small mistakes all the time and refining towards the solution of the problem. The

emphasis in the second quote reflects how we conduct these programming workshops:

the teacher is not the only source of knowledge, students experience independent

discovery every minute by trial and error, they are surprising the teacher all the time, and

this is a group activity signified by fun.

314 Vancsó, Ö. & Princz, P.

Tamás Varga has always been embracing novel approaches to education as well as

even the latest gadgets of his time (see Fried, Fekete, & Princz, 2020). We believe both

the mathematical content, i.e., the Bayesian approach to probability theory as well as the

novel approach to teach this content in secondary school via computer programming is

worthy of Varga’s legacy in teaching mathematics. Varga brought in brand-new

concepts, methods, and tools even from outside mathematics, such as flow charts, punch

cards, etc., into elementary school. A notable example is his two-volume book for 8-14-

year-old students: (Varga, 1972; 1976). He embraced algorithmic thinking and

flowcharts well before the personal-computer era, probability at early ages in a playful

manner with dice and coins, etc. Maybe, Varga would bring in elements of data science,

machine-learning algorithms, and programming into today’s classroom.

Conclusion

Which chapters of probability theory and mathematical statistics to cover and how to

teach them, is still an ongoing discussion in the didactics of mathematics and among

mathematics teachers. Frequentist vs. Bayesian interpretations of probability theory are

debated. On this issue, see Carranza and Kuzniak (2008) or Vancsó (2009). In Hungary,

Tamás Varga had a seminal role in bringing in probability theory into the national

curriculum. However, the Bayesian approach and methods are still a novelty in a typical

Hungarian high school, even as an extra-curricular activity. There are books approaching

the problem from the educators’ perspective, see Borovcnik (1992) and Batanero and

Borovcnik (2016). Yet, teaching rarely covers Bayesian aspects adequately, and this

applies worldwide.

The method presented in this paper is an attempt to bring in the Bayesian

interpretation of probability into teaching mathematics. One of the novelties of the

method presented here is to involve computer programming as a didactic tool in hard-to-

teach fields of mathematics. During their professional development, the authors have

tried several languages and tools, such as Logo, Scratch, and Processing as well. So far,

the most valuable approach from a pedagogical point of view is the work of Seymour

Papert and his Logo for simple visualisations as well as for pixel-by-pixel plotting of

functions, i.e., trajectories. The work of Guido van Rossum (1999) and his Python

programming language is also worth to mention here. Luckily, the Turtle module of

Python combines the two: it is embedding Logo into Python. It is also important that

Data science in high-school: Programming Naïve Bayes in Python 315

coding in Python is not much more verbose than the mathematical formula from which it

translates. It is a prose-like code that is easy to read and thus very suitable for teaching

purposes and it can even replace pseudocode when discussing algorithms.

Following the spirit of Tamás Varga, we believe that – embedded in technology –

the modern pedagogical tool of discovery learning and guided experimentation in

mathematics is computer programming.

References

Batanero, C., & Borovcnik, M. (2016). Statistics and probability in high school.

Rotterdam: Sense Publishers.

Bordács, N. (2002). Bayesian-type problems in everyday life. An experiment conducted

among university students. Thesis work guided by Ö. Vancsó. Eötvös Loránd

University, Faculty of Sciences, Budapest.

Borovcnik, M. (1992). Stochastik im Wechselspiel von Intuitionen und Mathematik.

Mannheim: Wissenschaftsverlag.

Borovcnik, M., Fejes-Tóth, P., Jánvári, Z., & Vancsó, Ö. (2020). Experimente zur

Einführung von Ideen und Denkweisen statistischer Inferenz im Gymnasium.

Stochastik in der Schule, 40(1), 18-27.

Carranza, P., & Kuzniak, A. (2008). Duality of probability and statistics teaching in

French education. Joint ICMI/IASE Study: Teaching Statistics in School

Mathematics. In: C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.),

Challenges for teaching and teacher education., Monterrey: ICMI & IASE. Obtenido

de iase-web.org/Conference_Proceedings.php?p=Joint_ICMI-IASE_Study_2008

Fried, K., Fekete, I., & Princz, P. (2020). Better understanding mathematics by

algorithmic thinking and computer programming. Teaching Mathematics and

Computer Science, 18(4), 295-305. doi:10.5485/TMCS.2020.0486

Kaggle. (2016). Mushroom Classification Safe to eat or deadly poison? (UCI Machine

Learning) Obtenido de https://www.kaggle.com/uciml/mushroom-classification

Knuth, D. E. (1992). Literate programming. Stanford, CA: Centre for the Study of

Language & Information.

Lincoff, G. (1981). National Audubon Society field guide to North American

mushrooms.

316 Vancsó, Ö. & Princz, P.

Pálfalvi, J. (2019). Varga Tamás élete. A komplex matematikatanítási kísérlet. (The life

of Tamás Varga. The experiment of complex mathematics education). Budapest:

Typotex.

Princz, P. (2018). Lunar lander: a 4 hour Python workshop to teach programming and

projectile motion. Obtenido de Collection of public curricula:

https://gitlab.com/princzp/4hr_python_workshop

Russell, S., & Norvig, P. (2010). Artificial Intelligence. A modern approach. In: Prentice

Hall Series in Artificial Intelligence. (3rd ed.). New Jersey: Pearson Education, Inc.

Obtenido de http://aima.cs.berkeley.edu

van Rossum, G. (1999). Computer Programming for Everybody (Revised Proposal). A

Scouting Expedition for the Programmers of Tomorrow. Corporation for National

Research Initiatives. doi:CNRI Proposal # 90120-1a.

Vancsó, Ö. (Ed.). (2004). Matematika 11. Mathematics school book for grade 11 (in

Hungarian only). Budapest: Műszaki Könyvkiadó.

Vancsó, Ö. (2009). Parallel discussion of classical and Bayesian ways as an introduction

to statistical inference. International Journal of Science and Mathematics Education

(IEJME), Vol. 4.(Issue 3., pp. 291-322.).

Vancsó, Ö. (2015). Mathematics final exam in Hungary. (Die Mathematik Matura in

Ungarn) Habiltationsschrift Alpen-Adria Universität Klagenfurt.

Varga, T. (1972). Játsszunk matematikát! Let’s play mathematics! Flowcharts – punch

cards – probability (Vol. I). Budapest: Móra Könyvkiadó.

Varga, T. (1976). Játsszunk matematikát! Let’s play mathematics! Space and plane –

Probability – Logic and combinatorics (Vol. II). Budapest: Móra Könyvkiadó.

ÖDÖN VANCSÓ

ELTE, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS

1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C.

E-mail: vancso.odon@gmail.com

PÉTER PRINCZ

ELTE, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS

1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C

E-mail: princzp@caesar.elte.hu

mailto:vancso.odon@gmail.com

