
 

 

 

 

 

 

Many paths lead to statistical inference –  

Should teaching it focus on elementary      

approaches or reflect this multiplicity?   

 

MANFRED BOROVCNIK 

 

Abstract. For statistics education, a key question is how to design learning paths to statistical 

inference that are elementary enough that the learners can understand the concepts and that are rich 

enough to develop the full complexity of statistical inference later on. There are two ways to  

approach this problem: One is to restrict the complexity. Informal Inference considers a reduced 

situation and refers to resampling methods, which may be completely outsourced to computing 

power. The other is to find informal ways to explore situations of statistical inference, also     

supported with the graphing and simulating facilities of computers. The latter orientates towards 

the full complexity of statistical inference though it tries to reduce it for the early learning encoun-

ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and 

allows for a full concept of probability in comparison to the Informal Inference, which reduces 

probability to a mere frequentist concept and – based on this – restricts inference to a few special 

cases. We also develop a didactic framework for our analysis, which includes the approach of 

Tamás Varga. 
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 Varga’s approach towards the didactics of mathematics 

In the attempt to investigate Varga’s legacy for today’s didactics of mathematics 

(e.g., Varga, 1970; 1972; 1982; 1983), a long-term project has been established at the 

mathematics didactics centre of ELTE, the Eötvös-Lórand Tudomanyegyetem Budapest, 

together with the Hungarian Academy of Sciences with the title “Recent Complex  

Mathematics Education Research Project”. This title refers to one specific feature of 

Varga’s approach: Rather than to reduce the complexity of curricula, resources, and 

mathematics, Varga intends to allow for a reasonable and necessary level of complexity. 

This complexity also refers to the mathematics taught and the interrelations between 

mathematical concepts: To facilitate an access to this complexity, Varga develops well-

designed systems of tasks that involve the learners into a clear-cut problem situation – 

often embedded in games with analogies to develop by the learners with support of their 

teacher in a guided-discovery experiment.  

Varga (1983) provides a system of tasks typical of his approach to the didactics of 

mathematics; he directs these tasks to 9-year-old children, thus designing an ambitious 

programme that links probability with statistical inference from the outset. In the intro-

duction to this essay, Varga (pp. 71) notes that for small children 

“in their experiences about random phenomena their involvement is greatly increased by first 

predicting the outcome then performing the experiment, finally comparing the results with their 

prediction. In some cases a further step is an attempt to explain the pattern of results by some mini-

theory. During their games they are motivated to devise strategies which increase their chances, 

and then they get some feeling for game theory. The mini-theories demand combinatorial        

considerations. Yet since the order is hypothesis → experience → theory, I feel it appropriate to 

subsume such learning sequences under the term statistics.” 

Varga takes the 9-year olds into the midst of statistical inference going far beyond 

the usual suggestions to introduce descriptive statistics in the primary school though 

Varga admits that he aims only at statistical inference at a heuristic level. He explains 

that it is essential to combine a suitable language for designating situations of uncertain-

ty with qualitative degrees of probability with a body language, with signs given by 

shaping the hands and fingers to certain forms.  

Varga continues with his famous example about “figure[ing] out and record[ing] the 

behaviour of a randomly tossed coin.” It would not be Varga if he did not mention how 

to facilitate the protocol of the results by a square grid of 8 rows with 16 entries for each 

of the 128 “coin tosses” out of the mind of the children. In the ensuing analysis, he in-

troduces also the “expected” number of results. He focuses on the number and length of 

runs, to which – according to well-known psychological investigations there are strongly 
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biased conceptions among children and adults: Too many and too short runs are intro-

duced into the mind protocol of “coin tossing” as compared to real coin tossing. 

The next task in this series deals with criteria when to judge a coin as biased. Varga 

fabricates loaded “coins” by filling one side (or both sides) with coins, wrapping the 

cardboard, and marking one side with 0 and the other with 1 so that it can smoothly be 

thrown like a simple coin. After 30 tosses, the result is “17 zeros and (only) 13 ones”. 

The history of the sequence – as always with randomness everything is possible – shows 

that the 1s had a majority of 4 to 1 in the last five tosses. “Is the coin loaded or fair? Or 

should we go on with the tosses, before taking position?” (Varga, 1983, p. 75). 

Interestingly, Varga not only asks the children to judge the “coin” but also leaves 

open the possibility of continuing to toss if one feels that the data is insufficient for a 

decision. The children in his experiment “voted for going ahead, doing 30 more tosses.” 

Here, Varga interrupts and asks them about their decision rule before they continue to 

toss the coin. In a classroom discussion, it turned out that up to 25 1s, the coin “would be 

maintained by them to be suspicious” while from 26 onwards “they could still accept it 

as being fair.” In particular, from 27, the majority voted that the coin is acceptable. Some 

votes were [still] cast to 28 and 29 [votes as dividing line for a fair coin].” Varga brought 

9-year olds into a lively discussion about when an observation is rare enough that one 

could reject the null hypothesis that the coin is fair. Of course, this conclusion is only 

implicit in Varga’s classroom experiment, but the children’s reactions to it were quite 

encouraging, as they were able to find a very good rule for a decision after the first ex-

periments.  

Varga goes ahead with a variant of rolling dice with an investigation of the waiting 

time for the first six. The task is to bet on the exact waiting time. The children could 

wager whether the first six occurs on the first roll, or on the second, etc. Most of the 

children voted for the fourth roll. Their decision coincides with the median of the     

random waiting time – less or equal to four has a probability of larger equal ½ as has the 

opposite event that the waiting time is larger equal to four. The median coincides with a 

probability of roughly ½ under the assumption that the coin is fair. In their answering 

pattern of using a fifty-fifty criterion, the children decide similarly to the previous task. 

After two experiments related to Benford’s law, Varga concludes his task system 

with an experiment that he calls “from perception testing to hypothesis testing”. In this, 

he varies the Fisher’s Lady-Tasting-Tea experiment (see Batanero & Borovcnik, 2016) 

with five trials only and chewing gums of different brands. Thus, Varga ends up with the 

classical significance test and p values for 9-year olds – of course only at a heuristic 

level (p. 80):  
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“From the point of view of teaching statistics, the reactions of children are more interesting 

than technical details. Batches of five trials were usually administered. Children felt that the    

following qualification is fair: 

No failures in five trials: excellent  One failure in five trials: acceptable” 

In his typical way of a Socratic dialogue, Varga continued with the children: 

“How many in ten trials do you think would be acceptable? […] The answer was again almost 

immediate: [two]. The teacher tried to make clear that ‘acceptable’ means hardly by pure chance, 

and asked them, if they felt that two or less in ten trials could be the result of guesswork just as 

easily as one or none in five. They did. He decided to postpone confronting them with contrary 

experimental evidence at a later date.” 

This was then done by shaking boxes containing five, ten, or twenty two-colour 

counters. Without any calculations, the children recognised that their reasoning through 

proportionality – which they applied intuitively – was misleading them in situations like 

these. There are other task systems of Varga, such as the Three Discs (Varga, 1970). 

Gosztonyi (2017, pp. 1735) characterises his approach by the following statements  

(bullets by the present author): 

• “In the situations described by Varga, teacher and students are in permanent dia-

logue: Varga gives several examples how to guide these dialogues in order to help 

the development of mathematical notions, but to give also important autonomy to the 

students in this process. […] 

• In Varga’s conception, ordered series of problems play a crucial role in the construc-

tion of long-term teaching processes. […] 

• A similar process is described for different materials. [Varga’s] handbook indicates 

the analogies between the corresponding phases of these different activities, and ex-

plains their differences which make them problems of different nature in the eyes of 

students […]. Students have to recognize progressively the links and the analogies 

between these different problems: that is what will lead to a progressive generaliza-

tion of    methods and solutions. 

• The series contains activities with different materials: the students build towers with 

coloured cubes; thread beads […]. One organizing principle is the variety of experi-

ences, apparently fare from each other, and stimulating a diversity of senses. But 

there is also certain progressiveness in their order, namely in the level of abstraction: 

starting from the manipulation of physical objects, through drawing and until the 

manipulation of symbols.” 
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We may summarise Varga’s approach in the following way: 

• Reflections on the nature of mathematics. Mathematics is in permanent de-

velopment, a view that connects to Fischer’s (1984) Open Mathematics.      

Mathematics grounds on intuitions and experiences, which brings out the 

role of intuitions and connects Varga’s ideas to Fischbein (1987). Mathe-

matics and its teaching have a genuine dialogic nature embedded in social 

activities, which anticipates Glasersfeld (1991) but bases constructivism on 

a dialogue. 

• Didactical approach. Varga focuses on heuristic methods of teaching and a 

limited use of formal language. He embeds the educational exercises in 

creative, playful activities often originating from games where the learners 

clearly understand the situation and the task. He makes extensive use of 

tools and manipulatives that facilitate a creative approach by the learners so 

that their thinking is not restricted by language and formalism they do not 

understand. As teaching strategy, Varga counts on guided – yet active dis-

covery. This continues to be a balancing act between guiding the learners 

and letting them enough room for their own creativity. Yet, a substantial 

part of subtle guiding is required in Varga’s approach as he aims at under-

standing the present mathematics and not constructing one’s private concep-

tions. 

• Pedagogical and psychological background. Varga connects to Piaget’s  

“abstraction réfléchissante” and the stages of development. Yet, based on re-

lations between scientific and everyday concepts, he introduces the mediat-

ing role of semiotic forms and abstraction and generalisation from Russian 

pedagogy (e.g., Vygotsky, 1967; 1978; Davydov, 1967). The Building  

Towers (Varga, 1982) show the increasing level of abstraction from a build-

ing-blocks task ending up with tree diagrams to represent the combinatorial 

solutions at a very general level. 

• Complexity. Varga focuses on complexity in any way perceivable.       

Complexity of curricula, resources, and practices. Complexity of the math-

ematics that the children have to learn, which comprises the coherence of 

concepts, their interrelations, and the connectedness of various domains of 

mathematics. Last but not least, complexity of pedagogy including task sys-

tems and methodical interventions such as the Socratic dialogue, which is 
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especially “dangerous” for the teachers if they lack the mathematical back-

ground or if they lack the awareness about the pupil’s current status of 

knowledge and strategies. This is a definite rejection of plain simplification; 

the simplification lies in the specially chosen approach, which allows corre-

sponding abstractions and generalisations to higher and wider levels. 

• Key role of task systems. Tasks (or games with tasks) should allow for a 

creative approach by the learners, in which they should ripe in mathematical 

notions by developing their solution strategies and finally by comparing   

different solution strategies. The tasks should be organised to task systems 

(an idea later resumed by Steinbring, 1991) that allow for observing differ-

ences in problems, and recognising analogies between tasks that may stabi-

lise the thinking processes so that flexible interrelations between the con-

cepts emerge, which enable a progressive generalisation of methods and so-

lutions.  

• Demand on teachers. Varga expects that teachers should have high-level 

mathematical knowledge and combine it with pedagogical creativity.     

Specific challenges lie in the design of interventions that allow for autono-

mous yet guided discovery for the children. A paradox per se. However, 

Varga has developed quite many guiding works for teachers, which they 

might transfer also to other areas of teaching mathematics. 

Todays’ efforts in the Complex Mathematics Project focus on the development of 

guidelines for the Socratic Method for various topics of mathematics. 

Didactic approaches described by didactic triangles 

To evaluate the approach of Varga, it may be helpful to give an overview on several 

approaches towards the didactics of mathematics in general before we investigate trends 

towards teaching probability and statistics. A didactic triangle forms the frame for    

describing the constitutive elements of the various approaches. This triangle connects the 

vertices of theory (the mathematics to be learned), reality (to which the mathematical 

concepts are to be applied and from which the tasks originate, which should be solved), 

and the subject (which should be enabled to think in mathematical terms about the real 
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problem). From the discussion of the approaches, it becomes clear that the role of intui-

tions turns out to be even more important than it already is in other parts of mathematics 

and mathematics learning. 

For the sake of analysis, we separate the vertices. Yet, the discussion makes it clear 

how they are interrelated and that they get their full didactic potential only within the 

network of interdependencies. The vertex T of theory relates to the logic foundation and 

development of the theory. The vertex R of reality concerns the real phenomena,      

irrespective of the fact whether a thinking subject locates these phenomena or not, or  

whether this subject investigates these phenomena by any kind of theory. Finally, the 

vertex S of the subject, again for the while isolated, and not determined whether it is 

seen from a cognitive-psychological perspective or in a sociologic embedding. The sub-

ject corner embodies its emotional and rational components. The interplay between these 

vertices is of interest for didactical considerations. For probability and statistics, the 

reader may find several sources that relate to this interplay (see, e.g., Kapadia & Bo-

rovcnik, 1991). 

We investigate the trends of the didactics of mathematics to see how the vertices of 

the triangle and their interrelations shape the various approaches. There are overlaps in 

time and in the approach of several authors who followed or developed the one or the 

other approach. The intention is to get a concise description of the general development 

(see Figure 1).  

The vertices in the triangle and their mutual relationships change in the course of 

development. Within the position of New Mathematics, the assumption was that if only 

the theory corner is self-contained and built up without gaps, this regulates all under-

standing and all applications. In the following wave of applications, one acknowledges 

already a substantial feedback from applications back to an understanding of the      

theoretical concepts, which are no longer isolated from each other, but are only “brought 

to life” by the applications. 

In Freudenthal’s Phenomenology (Freudenthal, 1983), phenomena become the    

starting point for the acquisition of concepts; concepts of the theoretical corner serve and 

are developed to order and structure phenomena of the reality corner. In Fischer’s Open 

Mathematics (Fischer, 1984), the focus is on the model-forming subject who uses    

theoretical concepts and develops them if necessary to create models of reality.      

Fischbein’s Interplay of Intuitions and Mathematics (Fischbein, 1987) sees the individu-

al acquisition of concepts as characterised by a peculiar, alternating influence of primary 

ideas of the subject and theoretical inputs from the theory corner, intensified or even 
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initiated by events, images or situations from the real corner, resulting in secondary 

intuitions that dynamically influence (boost or hinder) the further process. 

• 1960s New Mathematics   

All one needs is logic and investigation of T. 
 

 

• 1970s Applications.   

The subject S just has to learn how to apply T to R.  
 

 

• 1975s Freudenthal’s Didactical Phenomenology.  

Learn from phenomena from R by developing T. 
 

 

• 1980 Fischer’s Open Mathematics.   

Develop T in order to solve problems in R. 
 

  

• 1985s Varga’ Rich Task Systems.   

Rediscover T by problems from R embedded in games. 
 

  

• 1985s Fischbein’s Intuitions and Theory. Develop an 

interplay between concepts from T and intuitions from 

S. 

 
  

• 1995s Constructivism.   

S constructs concepts from T to explore R.  
 

 

• 2000s Simulation.   

Simulate T to find patterns in “R” to solve problems in 

R. 

 

 

• 2010s Machine Learning.   

Establish patterns from experience in R to replace T. 
 

 

Figure 1. Trends in the didactics of mathematics and the didactic triangle 

Varga’s approach (see Gosztonyi, 2015a; b; 2019) focuses on the input of real      

situations – often embedded in games – and the learner tries to solve a posed problem to 

develop a partial view on a mathematical concept. In order to reach at such a view in a 

way in line with a traditional mathematical concept, the learner has to be creative on his 

own side but is sensibly dependent on the support by the teacher. Varga follows a form 
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of Socratic dialogue to guide the discovery of the mathematical terms by the learners. 

Insofar, the triangle opens to the teacher and teaching intervention as the dialogue    

between teacher and learner gets a dynamic role in concept acquisition. 

Constructivism (Glasersfeld, 1991), on the other hand, places the process of        

confronting an individual (or a group of people) with real-life situations at the starting 

point of active concept construction; subjective areas of experience play a decisive role 

in how the concepts are actually constructed and understood (see Bauersfeld, 1988). 

Newer approaches to the didactics of mathematics only varied the existing ones       

especially refining the position of constructivism: define the role of the teacher better, 

optimise the design of tasks, and include new media. We see less reference to investigate 

how such task systems are interwoven and how one should design task systems in order 

to develop the mathematical concepts from a variety of perspectives, as Varga intended 

with his task systems. 

We discuss two developments that play a revolutionary role in the didactics of     

stochastics. The first is the simulation approach, which examines a stochastic situation 

by simulating the assumptions behind it. The mathematical references play a subordinate 

role; after all, one may solve the problems by simulation alone so that it becomes     

obsolete to learn the theory. However, critical voices assume that teaching must build up 

a profound understanding of the stochastic assumptions behind the simulation algo-

rithms. This means that one can no longer consider the vertex of theory in isolation and 

that the subject must actively participate in the exploration of the vertex of theory. 

Even more difficult is the position of the subject in the machine-learning approach. 

Learning through experience certainly shapes human learning. If one neglects any other 

types of learning, it becomes superfluous to include the theory corner to build up      

sensible concepts and analyse their connections. It becomes also obsolete to acquire 

theoretical concepts for an overview of the problem, which should provide a structural 

insight. Theory in fact becomes void when algorithms that simply reflect experience 

remain the only source of new knowledge in the machine-learning paradigm: Everything 

needed is to expose a self-learning system to multiple situations and to observe the    

consequences of the system’s reactions and adapt the algorithm accordingly by an    

evaluation of the responses. A typical example relates to chess computers, which     

outperform the best chess players due to knowledge of previous chess games. This 

makes chess uninteresting. Yet, mathematics will still be important to understand and 

evaluate the structure of the system’s responses. 
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Trends in the didactics of stochastics 

The development of a discipline is not linear, but with hindsight, it is still possible to 

classify the achievements and to identify certain trends and desiderata. The didactics of 

stochastics can be summarised concisely as follows: One should incorporate stochastic 

concepts into the curriculum earlier, and as suggested in the proposals at the beginning 

of the 1970s, one should get by with stochastics with less effort and scope. We describe 

these trends in detail. 

Trend towards philosophical clarification of the concepts  

Central to this trend is the nature of the concepts: What is probability? What do sta-

tistical statements mean? In this context, the references to epistemology, to the theory of 

science or to the historical emergence of the concepts become significant. Key topics and 

works in this tradition are: 

• Meta knowledge about the meaning of statistical statements (Heitele, 1975; 

Steinbring, 1991). 

• Bayesian controversy and its impact on the meaning of probability (Barnett, 

1982; Wickmann, 1990; Vancsó, 2006). 

• Learning from history (Kapadia & Borovcnik, 1991; MacKenzie, 1981). 

Advantages and disadvantages of this trend are very close together. While the        

relationship between probability and the evolution of relative frequencies is central to an 

adequate understanding of stochastic terms, for didactical purpose, there are always two 

urgent questions: How can we perceive the concepts? How can we use the concepts? We 

may see the full complexity of probability from profound analyses such as Batanero, 

Chernoff, Engel, Lee, & Sánchez (2016). The concepts are not only sophisticated but 

remain virtual as Spiegelhalter (2014) states. Clarification will remain superficial and 

may face emotions and intuitions so that it can lead to never-ending discussions and 

confuse the learners more than it would clarify the concepts for them. At least, it is not 

convincing for learners to invest too much effort on learning it if it is not already clear 

for them that the concepts are useful to solve problems. This means that the didactic 

priority may be to let the learners experience first that the concepts are useful. Especially 

for stochastic instruction, there seem to be strong emotional barriers against the form in 

which one formulates the concepts within a theory, so that showing their utility becomes 

even more important than in other sub-disciplines of mathematics. Varga (1970; 1982; 
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1983) embeds playful activities in his task sequences, which engages the learners     

towards solving a goal; he postpones the clarification issue to a time when the students 

have already acquired their own experience with the concepts. 

Trend towards applications  

Following the general trend towards applications and modelling in the didactics of 

mathematics as a reaction against the New Math, applications shifted into the focus of 

stochastic teaching from the early 1990s. Even in epistemologically and scientific-

theoretically oriented analyses, the role of applications has been widely discussed, for 

example, the application problem (primarily in physics) from a historical perspective by 

Steinbring (1991). In detail, the focus on applications resulted in a reorientation of the 

priorities in the (proposed and actual) curricula. The applications also connected      

probability and statistical inference more tightly and the potential for statistical inference 

changed the view on probability from an objectivist-frequentist concept to something 

more general including Bayesian aspects. Later, Vancsó (2006) attempted to reunite the 

classical and the Bayesian theory of probability for didactical purpose. 

As an alternative to statistical inference, the 1990s witnessed a didactic revival of 

Exploratory Data Analysis (EDA, Borovcnik & Ossimitz, 1987; Biehler, 2007). There 

are interesting parallels between the interactive style of EDA and a project-like approach 

in teaching. In the Anglo-American culture, projects have always had a different status 

and play an important role in statistics education, see Hawkins (1991) or the multiplicity 

of presentations at ICOTS 4 on project-based teaching organised by Bentley (NOC, 

1994, pp. 17-31). 

The driving force behind was to apply mathematics with the purpose of making    

decisions under uncertainty. The advantages are obvious as applications can lead to a 

deeper understanding of the underlying mathematics. The disadvantages lie in the rolling 

out of frequently used (but trivial) methods of descriptive statistics so that too little time 

was left for teaching methods of inferential statistics (also important for applications, but 

complicated). Further disadvantages of applications in general are the strong dichotomi-

sation of “too easy – too difficult” and the (still) lacking didactic approaches to teach 

difficult techniques and terms (for non-mathematicians) in a way that makes their    

significance and limitations for a situation clear and thus guides the interpretation of 

results. 
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Missing trend towards intuitions 

The discussion of stochastics didactics is still characterised by the keyword        

“stochastic thinking” (see Borovcnik, 2018), which goes back to Heitele (1975). Yet, no 

one has really explained what stochastic thinking actually is, but one argues that it is 

different from other ways of thinking, such as logical thinking or the tracing of causal 

chains. Fischbein (1987) regards intuitions or intuitive concepts as essential for an un-

derstanding of probability. The experiments of Varga (1983) are suitable for making this 

peculiar way of thinking tangible within the framework of stochastics. 

It is not surprising that in other areas of mathematics didactics, schemata, or concept 

images, etc. are use to describe the process of acquiring concepts (Piaget & Inhelder, 

1951; Tall & Vinner, 1981; or Bender & Schreiber, 1985, for geometry); intuitions, on 

the other hand, play a marginal role and are rather seen as something to be eliminated. 

There is a broad consensus in mathematics didactics about the operative acquisition of 

concepts, which, on the basis of concrete materials and a mental reflection – “abstraction 

réfléchissante” – on operations, should lead to an adequate conception of the concepts, 

independent of (existing) intuitive ideas of individual persons; important references here 

are Piaget and Inhelder (1951), Wittmann (1973), and Dörfler (1984). 

In stochastics, on the other hand, the concept of operative term acquisition has not 

gotten very far. In contrast, Fischbein (1987) wrote an entire book on his interplay   

between primary and secondary intuitions. Especially the emotional content of intuitions 

seems to be decisive for the acceptance of stochastic terms, an acceptance that lies   

before the actual acquisition of the term and the efforts involved. A world of primary 

intuitions that are transformed into secondary intuitions by theoretical progress and real 

results: secondary intuitions that are all too often in conflict with “official” ideas, as the 

usage of the terms misconceptions and fundamental errors indicate. The following points 

highlight the great importance of intuitions:  

• The discussion on stochastic thinking: Fundamental ideas are still confused 

with mathematical relations. Borovcnik, Bentz, and Kapadia (1991) trace   

ideas in the historic development.  

• The abundance of puzzles and paradoxes: For an intuitive explanation of 

such paradoxes, see Winter (1992); examples are in Székelyi (1986). 

The role of intuitions in teaching can be summarised as follows: empirical studies 

(e.g., Kahneman, Slovic, & Tversky, 1982) can show the weak points in the primary 

network of intuitions, i.e., where one must work on in teaching. The consequence of 
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neglecting learners’ intuitions is, that what has been learned is stored unconnectedly next 

to these emotionally laden ideas and in the frequent cases of conflict will always be 

inferior; if teaching is to be effective, these primary ideas must be actively taken up. This 

is what Fischbein (1987) does with his programme. 

Trend towards elementarisation  

Didactic efforts focussed only for a short time on the axiomatic setting of probability 

(Heitele, 1975), as it failed to contribute to a deeper understanding neither of probability 

nor of statistics. The wish to cover statistical inference made it necessary to find ways 

for making the concepts elementary: 

• Simulation: Simulation serves to avoid probability calculations. Further-

more, this method may throw light on the relationship between probability 

and relative frequencies and illustrate central theorems of probability (such 

as Laws of Large Numbers, Central Limit Theorem) and essential character-

istics of methods of inferential statistics.  

• Non-parametric statistics and resampling methods: Originally, these meth-

ods should solve special cases for simplifying the pre-requisites (Noether, 

1967). Until about the early 2000s, computing capacity restricted these 

methods to statisticians and they have not been accessible for didactical con-

siderations. Yet, already in the 1990s, a didactical analysis clarified that 

resampling can serve also as a transient stage towards a fuller statistical in-

ference. 

• Exploratory data analysis (EDA): EDA has been much in use not only in the 

applications but also in the didactics of stochastics (Borovcnik & Ossimitz, 

1987; Biehler, 2007). Yet, it follows a different paradigm in the applica-

tions. While in classical applications, after the modelling phase, there is a 

strict separation between reality R and model (theory) T, a tight interconnec-

tion between R and T forms the motor of the interactive analysis in EDA. 

Using simulation for illustrating properties of statistical methods shifts the focus to 

frequentist properties of confidence intervals or of errors of type I or II, which distorts 

their actual meaning and neglects their virtual character (Spiegelhalter, 2014). 

Resampling solves only special cases within a restricted framework of statistical infer-
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ence while EDA requires a non-scientific paradigm of modelling, which makes it less 

useful if one wants to transfer solutions to others. 

Trend towards computerisation  

A decisive question for teaching applications is the tools for calculations. Computers 

do not only serve for complicated calculations, but also as a conceptual support, both for 

direct, visual illustration of terms and for illustrating the consequences of a particular 

version of terms and methods: 

• To visualise data appropriately and thus to make descriptive statistics mean-

ingful. 

• To use the method of simulation rather than complicated probability distri-

butions so that more realistic problems could be set. 

• To introduce methods of statistical inference, either for the calculation of the 

procedures or for illustrating long-run properties of the methods. 

• To make the statements of central theorems of probability comprehensible 

without a mathematical proof. This helps to close the educational gaps in the 

learning of the theory. 

Computers facilitated didactical innovations in probability and statistical inference 

that otherwise would never have been implemented. In applications, computers have led 

to computer-intensive methods around resampling, Big Data, and dynamic visualisa-

tions; it boosted also Bayesian methods based on a qualitative probability conception but 

the latter seems restricted to experts though there are a few endeavours to foster statisti-

cal inference around a parallel approach to classical inference and Bayesian methods 

(Vancsó, 2009; 2018). Yet, in didactics, computers materialised the concepts in a biased 

way, as they provoked to reduce probability and inference to mere frequentist concepts. 

The reduction of probability to frequencies is still ongoing. This author is sure that   

Varga in his intention of a complex-mathematics approach would regret such a biased 

view on probability. 

Trend towards statistical inference 

In line with the endeavour to seek for interesting applications of probability in the 

trend towards applications, there was a joint effort in the German didactic community to 
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find a suitable approach towards teaching statistical inference. Probability without the 

potential to serve as justification for statistical inference is blind and inference without 

the probabilistic part is incomplete. One of the main purposes of probability (apart from 

decision-making, modelling risk, and reliability) is to describe the data-generating   

process by probability. Without random samples, it is not possible to apply the methods 

of statistical inference properly. In practice, vague claims that the sample is representa-

tive often substitute the random sample argument. While quota sampling requires sophis-

ticated knowledge about the population (and then it works surprisingly well), in many 

areas, the random sample is just “manoeuvred” into the analysis. In the era of empirical 

evidence, inferential statistics got a key role for justifying conclusions from data (no 

matter whether it was appropriately applied or not). The random sampling argument was 

a wild card for getting one’s analysis “approved”. 

All this in mind, researchers in the didactics of stochastics sought for viable learning 

paths through the acknowledged complexity of statistical inference. Early approaches 

such as Strick (1980) were heavily criticised that they distort statistical inference by the 

simplifications introduced for the sake of being able to teach it at the secondary level 

(see Diepgen, 1985a, for the critique, and Strick, 1985, for the answer to it). Diepgen 

(1985b) provides tasks where it is better to model the situation within a Bayesian   

framework to find a suitable decision. 

Müller (1989) already introduced non-parametric considerations of statistical infer-

ence into the didactics. Internationally, as may be seen from the conferences on     

Teaching Statistics (ICOTS), researchers regarded the topic of inference as too difficult 

to teach and there is no visible development until computing capacity became easily 

accessible so that one could implement the non-parametric approach and resampling 

methods into teaching. After that, the trend broke and Cobb (2007) asked to replace 

traditional statistical inference by resampling methods completely (see the section on the 

Trend towards Bootstrap and resampling below). The German discussion still sought for 

viable ways to teach classical statistical inference (Gigerenzer & Krauss, 2001) and even 

investigated the Bayesian way to make inference understandable for the learners. Several 

meetings of the Arbeitskreis Stochastik in der Schule were devoted to statistical       

inference and Vancsó (2001) is one of the first approaches towards a parallel way of 

classical and Bayesian methods in teaching at high school (for the discussion, see     

Borovcnik, Engel, & Wickmann, 2001). Vancsó continued his work on learning paths 

for statistical inference by exploring the didactic value of his parallel teaching of both 

approaches (2009; 2018). 
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Yet, for statistical inference, the international discussion seems to have unanimously 

decided for the so-called Informal Inference with the sole orientation of statistical infer-

ence towards resampling techniques. As this approach represents a distortion of statisti-

cal inference, there remains an urgent task for the didactic community, namely to find 

informal ways to teach statistical inference. Attempts may be seen in Batanero and   

Borovcnik (2016) or Borovcnik, Fejes-Tóth, Jánvári, and Vancsó (2020). Borovcnik 

(2019) illustrates the potential of genuinely informal ways to teach statistical inference 

and discusses shortcomings of the elementarisations within Informal Inference. 

 

Trend towards risk evaluation 

Risk has been advocated by Gigerenzer (2002) or Martignon and Krauss (2009).  

Borovcnik (2015) provides a comprehensive analysis of risk from a didactic perspective. 

Risk has been historically the motor of the development of probability. Games and   

insurance are structurally equivalent. An exchange of the position between two stake-

holders signifies both situations: The one leaves the position of security, the other leaves 

the position of risk: For the insurance contract, the client pays the company in advance 

so that the company takes his risk (with a potential negative impact) over. For the game, 

the client pays the casino to get into the risky position (which is now a potential win) and 

the casino leaves the situation of no risk. The exchange of the uneven situations has to 

find a price for which both partners are willing to swap roles. Risk shifts the connotation 

of probability towards a qualitative notion and focuses on the purpose of probability for 

transparent decision making.  

One may regard the situation in statistical inference as decision making, which 

twists the focus towards Bayesian methods rather than classical inference. Didactically 

interesting is that statistical inference is much easier to understand under the perspective 

of risk and a decision-theoretic point of view (Borovcnik, 2015), especially as it shifts 

the focus away from a biased frequentist probability concept and thus avoids many  

misunderstandings in probability (Carranza & Kuzniak, 2008). 

Trend towards Bayes methods 

It might be of advantage to illustrate the approach by an example. In Germany, the 

lottery machine draws 6 out of 49 balls without replacement. The context assumes that a 
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person comes to a distant country and sees the latest drawing: 4, 6, 15, 19, 40, and 37. As 

we do not know the number N of balls in the lottery machine, we model the initial    

ignorance by a uniform distribution on the interval [30, 80] for the number N of balls or 

express our subjective judgement as equiprobability. Then, this distribution changes 

week by week by the numbers drawn and one quickly receives very precise information, 

because the revised distribution for N contracts to one or two values after only a few 

weeks. Thus, the initially subjective uniform distribution for N gradually leads to a more 

objective assessment. 

 

Figure 2. Prior knowledge about the number of balls revised after 1, 5, and 10 drawings 

We only show the initial distribution (first line in Figure 2) and three intermediate 

stages, which correspond to the level of information when the lottery numbers from 1, 5 

and 10 weeks are known (further lines in Figure 2). The example is from Borovcnik, 

Fejes-Tóth, Jánvári, and Vancsó (2020). From Figure 2, it becomes clear that the country 

could not be Germany. 

There have been many didactic analyses about the potential of Bayes methods    

starting from the early times (Wickmann, 1990). In 1997, The American Statistician 

published a fierce dispute between Bayes and classical inference. David Moore, a    

statistician with high reputation in the didactics of statistics, ended the discussion by 

“Bayes is too difficult to teach”. Despite such comments that influenced the further  

development, Vancsó (2009) investigated a parallel approach of classical and Bayesian 
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inference in order to understand both approaches better. In the statistical discipline, 

Bayesian inference is very popular for modelling. Yet, in the didactics of stochastics, 

Bayes methods have not reached wider access to the curricula.  

 

Trend towards Bootstrap and resampling 

In the section on the Trend towards statistical inference, we referred to the difficulty 

to find learning paths to this complex topic. Apart from primitive rules to mimic confi-

dence intervals (the two-sigma rules of Strick, 1985), there was a hope that the methods 

of re-randomisation and Bootstrap, beginning from non-parametric methods (Noether, 

1967), would provide an introductory chapter to statistical inference also for high school. 

While the discussion in the German community still was on the possibility to continue 

from this restricted form of inference towards a full methodology of inference, Cobb 

(2007) advocated for a radical change: replace the classical statistical inference by the 

methods of resampling (Efron & Tibshirani, 1993; Lunneborg, 2000). Rossman (2008) 

followed this advice and Stohl Lee, Angotti, and Tarr (2010) provide suggestions for 

teaching alongside the new paradigm. For a didactical discussion of these methods, see 

Borovcnik (2019). 

Meanwhile, the label Informal Inference designates this approach. Within this para-

digm, inference grounds exclusively on the data and apart from reshuffling the data, 

there is no reference to any probability distribution in the background. Clearly, the   

approach is computer-intensive and only the growing computing facility enabled the 

method. The approach is intuitive but leads to a restricted form of statistical inference. 

As DelMas (2017) argues, the randomisation methods should replace classical inference 

(and thus bypass Bayesian inference). For a substantial critique of resampling methods 

from a statistical point of view (not a didactical one), see Howell (n.d.). Informal     

Inference comprises two techniques of data shuffling – Bootstrap and resampling. 

Estimation. Informal inference reduces it to Bootstrap intervals. While in classical 

inference, mathematical properties of the process of random sampling determine the 

sampling error, informal inference investigates it empirically by sampling from the given 

data with replacement: Instead of sampling from the population (the true distribution 

function F), one samples from the initial sample (an estimate of F). Bootstrap yields 

approximate confidence intervals; one has to apply very sophisticated techniques to 

improve their quality so that their intuitive simplicity gets lost. 
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Hypothesis testing. Informal inference replaces it by randomisation tests. A typical 

case is the comparison of two groups, a treatment and a control group where an act of 

randomness establishes the original attribution of “patients” to the groups. Introducing 

randomness should guarantee an even attribution of all non-random influential factors to 

the two groups so that the difference between them becomes purely random apart from 

treatment effects. This allows judging the differences by a statistical test. In the classical 

framework, one has to formulate a null hypothesis and an alternative hypothesis. This is 

not necessary within the re-randomisation framework.  

We give a short example for the Bootstrap interval and refer the reader to Borovcnik 

(2019) or DelMas (2017) for the details of the randomisation test. Note that Bootstrap 

does not use any hypothesis; the “no difference” hypothesis in re-randomisation setting 

is “natural”. Given: a sample of size n with mean and SD for a specific variable. How 

precise is the mean of the sample as a measurement for the population? Time relates to 

workload (in hours) for a seminar. Rather than sampling again from the population, 

which is impossible, we sample from the first sample (with replacement). The first  

Bootstrap yields a new measurement of the mean of the population (see Figure 3). This 

is analogue to how physicists would measure an unknown quantity. We then investigate 

the precision of our measuring device by repeating the measurement, which provides the 

Bootstrap distribution of (the “repeated” measurements of) the mean. 

 

 

Figure 3. Left: Original sample on Time and first resampling of this sample  

Right: Bootstrap distribution for the mean with quintile markers for the 95% Bootstrap interval 

Nr Times Nr Times
1 12 10 4
2 2 1 12
3 6 8 4
4 2 9 1
5 19 2 2
6 5 9 1
7 34 7 34
8 4 5 19
9 1 1 12

10 4 8 4

n Mean Mean
10 8,90 9,30
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Trend to Big Data and machine learning 

Big Data are massive data that originate as a by-product of other processes.           

Instagram has information about who likes what types of contributions or whom. Big 

Data are required for adapting algorithms for autonomous cars. Big Data are at the core 

of self-learning algorithms for diagnosing diseases from images such as CTs. We may 

investigate Big Data by machine-learning algorithms, which are mainly an exploratory 

use of regression trees or factor analysis. The problem is that Big Data often lack a clear 

structure and are so big that computational problems are huge. There are projects that 

make it accessible, which problems occur with Big Data (e.g., Hassad, 2020). 

We illustrate potential and problems of Big Data by the famous flop of Google’s   

data-aggregating tool, Google Flu Trends. Researchers designed this tool to estimate the 

spread of influenza-like illnesses from online search activity. Yet in 2012, the algorithm 

consistently and significantly resulted in overestimation. It predicted more than double 

the actual prevalence of flu as reported by the Centers for Disease Control and          

Prevention. Experts attributed this failure to the purely mechanical nature of Google’s        

algorithm, which was free of theory and neglected temporally relevant factors (Butler, 

2013). One neglected confounding factor was the fear-mongering news about the Flu, 

which resulted in an unduly high level of related search activity by those with and with-

out flu symptoms. This has implications for the way we think about and reason with Big 

Data. We can be curious what the upcoming research will bring with it and how it will 

develop that kind of new thinking that leads off the traditional lines of statistical       

inference. The reader might learn about the new epistemologies and paradigm shifts with 

Big Data in Kitchin (2014) or in Prodromou (2017).  

Trend towards civic statistics 

More recently, a big European project on teaching political education uses statistics 

on society in order to develop the skills that are required for an active participation in 

societal decisions (Engel, 2019). The crux with such an approach is that it makes use of 

Big Data, dynamical visualisation of multivariate data, and methods of machine learning 

in order to structure the data, without explicit building the knowledge about the used 

methods and their restrictions. The approach makes the impression as if it were possible 

to decide societal issues objectively by statistical analyses without further input of values 

– as if the used statistics were free of any model with a restricted validity and as if it 
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were possible to implement the results without value judgement. For example, if one 

arrives at a statistical gender wage gap, the question is what to advice to young women. 

The answer depends on values and a decision depends on the priorities between vocation 

(which does imply career only for a minority of persons) and family. 

Trend towards dynamic visualisation 

Visualisation embodies concepts in material and visible form while the concepts are 

theoretical (Steinbring), or metaphorical (Spiegelhalter, 2014). Schematic diagrams may 

enhance concepts. Visualisation is also supporting data analysis; descriptive statistics 

and EDA make extensive use of it. Dynamic visualisations have an authentic power and 

insinuate real “developments” while one can only represent the results of models (see 

Prodromou, 2017). The convincing power of such visualisations binds the audience 

emotionally while one would seek rational arguments and interpretations. For example, 

Rosling (2009) explains the development between income and life expectancy over five 

centuries by a dynamic visualisation. No word about the concepts (income, life expec-

tancy), no mention about the logarithmic scale used for the representation, and no    

discussion about the interpretation of the concept of income over such a long period. The 

vivid and convincing conclusion: the richer, the longer humans live. Who can question 

that after seeing the video with nicely coloured balls of different shape bouncing up and 

down like little soap bubbles? 

Elementarisation 

In the didactics of mathematics, there has always been a need for elementarisation. 

Historically famous is Klein’s (1908) Elementary mathematics from a higher standpoint. 

Also in the more recent history of stochastic didactics, one may observe a trend towards 

elementarisation; see also the section Trend towards statistical inference. We see various 

efforts to elementarise stochastics: 

• To disclose sources of insight that go beyond mathematics or to ground       

insight by means other than mathematics. To build up meta-knowledge of 

the terms that enable to grasp mathematics intuitively or even anticipate it 
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with non-mathematical tools. To make the terms used understandable within 

more complex contexts. 

• Probability is also connected to hopes and expectations for the future and 

competes with many – archetypically anchored – strategies (Batanero &      

Borovcnik, 2016), which also explain or predict coincidence or possibilities 

for the future; these strategies stubbornly resist change through instruction. 

A simple control of success is missing with chance due to a lack of con-

sistent experience, because we tend to consider the situations as individual 

cases. 

• Probability and methods of statistical inference based on it have to do with 

modelling, whereby the interpretation patterns between reality and model 

are complicated. Spiegelhalter (2014) speaks of probability as a virtual 

quantity and of a metaphorical use of probability. This virtual character   

applies even more for risks and indices for statistical inference such as the 

probability of coverage of confidence intervals or errors of statistical tests. 

• In addition, we do not ground the interpretation of probability as relative 

frequencies on limit considerations. Limiting values always correspond to a 

genuinely theoretical view of things; they will never be visible in reality, 

neither in a confirmation of convergence nor in the recording of the       

proximity to the limiting value, and certainly, we cannot see where the    

limiting value will lie. For such considerations, the sequences of relative 

frequencies are unsuitable due to the independence assumption, that is, due 

to the lack of laws as they occur in calculus. 

• Rather, we need specific thought experiments (as in Batanero & Borovcnik, 

2016) to identify stable patterns, by systematically increasing the sample 

size. From this, we may recognise a “trend” and extrapolate it by a thought 

exper-iment. We can use this technique also for disclosing the meaning of 

terms of statistical inference. 

Several approaches towards inference for teaching may serve the necessary elemen-

tarisation: 

• “Informal inference” (Cobb, 2007; DelMas, 2017). Resampling and Boot-

strap – a simplified version of inference.  
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• Decision-theoretic framework for statistical inference (Borovcnik, 2019). To 

identify the key concepts for statistical inference. 

• Bayesian decision-making (rather than inference) (Borovcnik, 2015; 2019). 

The role of prior probabilities and prior distributions. 

• Bayesian inference (Vancsó, 2009; 2018). Including prior knowledge about 

a phenomenon and combining it with data to establish the new status of 

knowledge. 

• Informal approach to classical statistical inference (Batanero & Borovcnik, 

2016). Playful activities to demonstrate key concepts of statistical inference. 

“Informal inference” goes beyond informally exploring probabilistic models by  

simulation; it aims to replace traditional statistical inference. Borovcnik (2019) has pro-

vided a detailed critique about the narrowness of the approach though it may well serve 

as a transient stage to statistical inference in its full complexity. We should mention the  

following circumstances as decisive disadvantages of Informal Inference: The fact that it 

replaces the concept of probability completely by relative frequencies misses the genuine 

diversity of probability; in particular, it conceptually misses out the degree of confi-

dence, subjective probability, and Laplace’s equiprobability. This approach distorts 

Bayesian problems. There is actually no connection to methods of Bayesian inference in 

the continuation of the curriculum; but even the more elementary probability tasks that 

we solve with the Bayesian formula receive a completely one-sided interpretation if one 

no longer has a qualitative concept of probability, because relative frequencies replace 

probability completely. 

Besides Informal Inference as a novel approach towards a restricted version of     

statistical inference, there is also the didactical possibility of designing informal ways 

towards inference. For exploratory investigations of the implications of hypotheses in the 

form of probability distributions, see Batanero & Borovcnik (2016). We advocate an 

engineering approach: Within such a setting, we avoid to develop mathematical details 

minutely. The goal is to ground an overall, synthetic understanding by relating to analo-

gies that are more familiar to the learners, or by meta-knowledge, or by contexts that 

allow for a direct interpretation of the concepts. To specify the purpose of concepts 

might also help to understand them. A list of topics in Batanero and Borovcnik (2016) 

may give an idea how far this approach reaches. Within the following contexts, the 

learners gain a natural understanding of various concepts of inference by playing with 

parameters. 
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• Single-choice exam – Playing with binomial distributions to find the prob-

ability to pass an exam or to fix a suitable threshold for passing the exam.  

• Lady tasting tea – Can we perform better than a random player can? Infor-

mal inference. 

• Separating good and bad quality – Impact of a rejection number. The two  

error types are antagonistic.  

• Statistical process control as exploration of scenarios – Judge the impact of 

introducing rules for deciding to interrupt the production process. Informal 

Tests. 

Conclusions 

The perspectives presented here should focus further didactic research. In response 

to the low degree of operationalisation of stochastic concepts, the explicit elaboration of 

the “what purpose can the notion serve for?” is essential. This question can take the form 

of guiding ideas, which we can link to the concept of fundamental ideas. The strong 

attachment to intuitions that we successfully use in other areas of life, but which often 

conflict with the actual stochastic concepts, makes the guided-discovery approach an 

attractive form of teaching. Analogies, the design of similar but more familiar contexts, 

could help to embed the necessary ideas. An intuitive exploration of mathematics lies at 

the basis of the perspectives formulated in the following as teaching strategies. We finish 

by final considerations about elementarisation to balance between the approaches of 

“Informal Inference” and informal ways to explore statistical inference. 

Guiding ideas – How the “what for?” question clarifies                       

“how” to understand the notions 

As an answer to the difficult definitions of terms from the trend towards philosophi-

cal clarification and the resulting problems of understanding, the author sees the       

approach of an early treatment of the question “what can the terms serve for?” An analy-

sis of this question provides the urgently needed basis for action for the learners and thus 

the basis for further theoretical considerations. In order to prevent a possible misunder-

standing here: the clarification of the characteristics of the terms should be done but 
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postponed until later, in favour of an increased focus on a utilitarian core of the notions. 

These properties are complex, confusing and difficult; it is advantageous if, at this stage, 

the learner is already convinced that these notions are useful and worthwhile to study. 

Such guiding ideas could contribute to the construction of task systems (according to 

Steinbring, 1991), which highlight the theoretical character of probability. This is in line 

with Varga’s focus on systems of tasks. These tasks might touch issues of risk and prefer 

decisions to statistical inference; or they might use classical and Bayes methods in the 

form of twins (Vancsó, 2009). Guiding ideas as strategies show how to make use of the 

terms. This is something similar to fundamental ideas; the different terminology should 

avoid that one refers to the central mathematical terms, a way in which previous research 

has misunderstood the role of fundamental ideas. Guiding ideas should draw attention to 

the question “What is the term good for?” and the question “What is the real meaning of 

the term?” To locate and elaborate such guiding ideas and to develop images of a lesson 

based on them is an urgent task of a didactics of stochastics (for an attempt, see        

Borovcnik, 2018). 

Teaching interview or Socratic dialogue  

We have seen the role of intuitions for the understanding of stochastic terms due to 

the lack of an operational basis. Fischbein (1987) has written about the long-lasting 

effect of intuitions; empirical studies show that the world of ideas is oriented towards 

other (often more direct and important) questions than stochastics can answer. No won-

der that the intuitive ideas for the official terms often fail, if one misses to explicitly 

clarify what one can actually solve with the used notions. On the one hand, one has to 

shed light on the application of stochastic methods for the students, for example by 

means of guiding ideas; on the other hand, one has to be prepared for possible misunder-

standings and reinterpretations as a teacher. Furthermore, a direct confrontation of the 

intuitive world with the official representations is promising for a better motivation and a 

deeper understanding. 

The well-known Falk phenomenon may show the potential of a teaching interview 

(see Batanero & Borovcnik, 2016). These interviews highlight that we cannot simply 

fade out intuitive notions from the outset by an exact representation of the theory and its 

images; therefore, we should aim at a direct intuitive challenge to the learners. The 

teaching interview, modelled on the interview of empirical research, seems to be a useful 

tool here. The author himself began several introductory lectures at the university with 
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an interview phase and gained new evidence about individual ideas and found points of 

intervention. In empirical research, an interviewer should remain neutral, which seems 

impossible for principle reasons because every input, every image, every comment, even 

a non-verbal cue is already an intervention and obscures the original idea and changes 

the existing primary intuitions into secondary ones – the terms primary and secondary 

are here used in the sense of Fischbein’ approach. In contrast to the interview in empiri-

cal research, in a teaching interview, the teacher should consciously challenge intuitions; 

such a procedure should resolve the attitudes of the learners and partly change them 

permanently. For example, if a causal thought pattern becomes apparent from the course 

of the interview in a stochastic situation, we can manoeuvre the learner into a situation 

where he can recognise this thought pattern as absurd. 

There is little evidence for a good design of teaching interviews; transfer from     

empirical interviews is only possible to a limited extent because of the different objec-

tive (deliberate provocation) and the immediate need for intervention. There is an urgent 

need to give an overview on persistent discrepancies in the behaviour of individuals and 

the official terms, the background to these discrepancies, and a planning of conscious 

interventions. There seems also a lack of knowledge to interpret such interview lessons 

profoundly. We formulate measurements to foster interview teaching as a desideratum 

for teaching if long-term changes in behaviour are to be achieved (an integration of  

stochastic assessments in personal decisions, a sensible handling of risks in the political 

discussion, etc.). In a certain sense, one may compare a teaching interview to a Socratic 

dialogue, which forms a key element in Varga’s philosophy of guided discovery (see 

Gosztonyi, 2015a; 2019). 

Analogies 

Nothing is more common in methodological proposals on key stochastic concepts 

than analogies. The author uses a naive view of analogy here, by establishing a clear 

relationship between mathematical terms on the one hand and a factual context on the 

other. Since the context has a more general connotation, this relation is generally not 

isomorphic. An analogy is useful to start from a known context and to make a mathemat-

ical concept accessible from a factual point of view. However, one can also use an    

analogy the other way round and start from already known mathematical terms to struc-

ture an initially vague context. Subsequently, the mapping extends to the connection 

between formal relations on the mathematical level and content-related relations in   
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reality. The advantage of using analogies is that one would directly be able to understand 

the factual relations and transfer this understanding to the analogous formal relations on 

the mathematical level. 

The diagnostic context (2019), for example, allows a helpful insight into the charac-

ter of conditional probabilities. Analogies may provide a deeper understanding, but also 

anticipating the mathematical precision that is to come. This anticipation of mathemati-

cal terms by means of non-mathematical repertoire allows understanding the mathemat-

ics or even “replace” it (this is an important aspect for the teaching of non-

mathematicians). The idea is to make teaching more effective through the targeted use of 

analogies especially when it comes to increasing the acceptance of stochastic terms on 

the side of the learners. 

“Informal Inference” versus informal ways towards statistical inference 

Coming back to the issues of statistical inference and the ways to elementarise it, we 

compare the informal ways of teaching statistical inference in its full complexity and the 

approach of “Informal Inference” that absorbs statistical inference in resampling tech-

niques. Key issues to re-consider for an “Informal Inference” approach are: 

• Conceptual understanding differs from easier access to tasks and higher 

solving rates. Empirical evidence that is offered to show that the approach 

leads to higher achievement with simple tasks for students (DelMas, 2017), 

this has to be balanced with the conceptual drawback as probability is       

reduced to frequencies and probabilistic hypotheses have disappeared from 

the curricula as everything can be solved by reshuffling the data. 

• How to adapt the probability part of the curriculum? Should we leave the 

nor-mal distribution behind? Probabilistic modelling uses many other distri-

butions (e.g., for the analysis of risks). How to deal with other approaches 

and inter-pretations (e.g., Bayes). 

• Simulation absorbs modelling. This may result in data as facts while proba-

bility models represent a hypothetical way of thinking. 

• Re-randomisation fails to permit discussing errors of type II. Bootstrap is  

intuitive; yet, correction for bias is complex and it fails with (small!) tail 

probabilities (see Borovcnik, 2019).  

• How to continue the curriculum within such a setting?  



286                                                                                            Manfred Borovcnik 

The “Informal Inference” approach narrows the views on probabilistic modelling. 

Biehler (2014) refers to the delicate relation between informal and formal inference, as 

we have to make sure for which school of statistical inference we design informal proce-

dures as a substitute or companion. There are two negative consequences of “Informal 

Inference”: first, one blocks the continuation of the curriculum towards Bayesian infer-

ence, and second, one reduces the concept of probability to its frequentist part, which we 

noted as a negative implication of current approaches towards the didactics of stochas-

tics. Thus, the elementarisation embedded in “Informal Inference” – as attractive as it 

may appear on the first sight – goes beyond the aim of teaching the next generation a 

clear picture of the methods of statistical inference including their complexity and their 

potential. 

We prefer informal ways to explore situations and concepts of statistical inference to 

the “Informal Inference” approach. The latter reduces the complexity of statistical infer-

ence permanently and obstructs continuing learning paths towards the full approach of 

statistical inference. We doubt that the new developments of resampling, Bootstrap, and 

machine learning make statistical inference obsolete. Quite to the contrary, it will     

become even more important in the upcoming era as there will be an urgent need to 

check for bias and incompleteness of data; for that purpose, we will need traditional 

methods of inference. Informal ways may ground suitable learning paths to disclose the 

nature of statistical inference, see the paradigmatic examples of Batanero and Borovcnik 

(2016), Borovcnik (2019), and Borovcnik, Fejes-Tóth, Jánvári, and Vancsó (2020). 

These provide playful activities in line with Varga’s intention to give a challenging  

situation over to the learners and let them explore it. We still can enrich it by gamifica-

tion elements (Papp, 2017) to boost their effects on motivation and learning. To connect 

to the didactical ideas of Varga, it might also be advisable to learn about the ideas of the 

empire of random from people who were influenced by Varga directly (see Nemetz & 

Kusolitsch, 1999), which certainly is true for Tibor Nemetz. 

Elementarisation in the sense of Felix Klein (1908) as “Higher mathematics from an 

elementary standpoint” may enrich teaching. Yet, elementarisations always are on the 

edge of a glissement didactique. Remarkably, Varga (1983) introduces statistical infer-

ence in his task series for 9-year olds by a non-parametric argument but he does not 

insist to continue on that line or reduce inference to non-parametrics. The restricted play-

ful situation only serves to explore the situation, the criteria, and the purpose of tools that 

one has to develop to find a satisfactory answer to the initial problem, which deals with a 

typical question and a paradigmatic context for statistical inference. After such learning 



Many paths lead to statistical inference                                                                                                   287 

experiences, the learners are ready for delving deeper into the issues of statistical infer-

ence; they are ready for learning more about the complexity of the notions and the meth-

ods. 
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