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Abstract. The role of logic in mathematics education has been widely discussed from the seventies 

and eighties during the “modern maths period” till now, and remains still a rather controversial issue 

in the international community. Nevertheless, the relevance of discrete mathematics and algorithmic 

thinking for the development of heuristic and logical competences is both one of the main points of 

the program of Tamás Varga, and of some didactic teams in France. In this paper, we first present 

the semantic perspective in mathematics education and the role of logic in the Hungarian tradition. 

Then, we present insights on the role of research problems in the French tradition. Finely, we raise 

some didactical issues in algorithmic thinking at the interface of mathematics and computer science.  
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Introduction 

The role of logic in mathematics education has been widely discussed from the 

seventies and eighties during “modern maths period” till now, and remains still a rather 
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controversial issue in the international community (Durand-Guerrier, Boero, Douek, Epp, 

Tanguay, 2012).  

Nevertheless, the relevance of discrete mathematics and algorithmic thinking for the 

development of heuristic and logical competences is one of the main points of the program 

of Tamás Varga. This relevance has been also underlined for long by didactic teams in 

France, in particular in Lyon and Grenoble. Nowadays, the reintroduction of computer 

science in curricula in France raises new questions and new didactic research perspectives 

at the interface between mathematics and computer science.  

In a first section, we present the main features of a semantic perspective in 

mathematics and computer science education. In the second section, we give some insights 

on the place and role of logic in Hungary in the modern maths period. Then, we exemplify 

the role and place of research problems in the teaching and learning of mathematics in 

didactic research in France. Finally, we raise some issues of algorithmic thinking at the 

interface mathematics – computer science.  

Semantic perspectives in mathematics and computer science  

In our didactic research, semantics, syntax and pragmatics are considered in a logical 

perspective consistent with the definitions given by Morris (1938). Semantics concerns 

"the relation of signs to the objects which they may or do denote" (op. cit. p.21). Syntax 

concerns the "relations of signs to one another in abstraction from the relations of signs to 

objects and interpreters” (op. cit. p.13). Pragmatics refers to "the relation of signs to their 

users” (op. cit. p.29). Morris (1938) argues "Syntactic, semantics and pragmatics are 

components of the single science of semiotic but mutually irreducible components" (op. 

cit. p.54). 

The semantic perspective in logic appears in Aristotle’s theory of formal syllogism, 

and has been developed in the late nineteenth and early twentieth centuries, mainly by 

Frege, Wittgenstein, Tarski and Quine. In particular, Tarski (1933, 1943) provides a 

semantic definition of truth, which he describes as formally correct and materially 

adequate through the crucial notion of “satisfaction of an open sentence by an object”. 

Relying on this definition, he has developed a model-theoretic point of view, of which 

semantics is at the very core. Tarski argues that his only intent is to grasp the intuitions 

formulated by the so-called “classical” theory of truth, i.e. the conception that "truly" has 
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the same meaning as “in agreement with reality” (contrary to a conception that “true” 

means "useful in such or such regard" (Tarski, 1933). He developed a “Methodology of 

deductive sciences” (Tarski, 1936) providing a clarification of the relationships between 

truth in an interpretation and logical validity (Durand-Guerrier 2008). This distinction has 

been later popularised by Quine (1950). The model-theoretic point of view emerged in 

Tarski (1954, 1955), but the main ideas were already present in his previous papers. It 

relies on a simple and very fruitful idea. At first, Tarski considers the notion of model of 

a formula. Given a formalized language L, a syntax providing recursively well-formed 

statements (formulae): F, G, H..., an interpretative structure (a domain of reality, a piece 

of discourse, a mathematical theory, a computation model) is a model of a formula F of 

the formalized language L if and only if the interpretation of F in this structure is a true 

statement. Some formulae are true for every interpretation of their letters in every non-

empty domain. They are said to be universally valid (Quine 1950). This is a generalisation 

of the notion of tautology in propositional calculus. A classical example is the logical 

equivalence between a universal implication and its contrapositive that provides a logical 

basis to proofs by contraposition. From the concept of model of a formula, Tarski defines 

the key concept of logical consequence in a semantic perspective: "The sentence X follows 

logically from the sentences of the class K if and only if every model of the class K is also 

a model of the sentence X" (Tarski, 1983, p. 417). This provides an extension of the Modus 

Ponens.  

These notions are the basis for the Methodology of deductive sciences with two 

important results. Given a theory, it is possible to associate a formal axiomatic system 

(without objects). The initial theory is a model of this system, but also other theories. Two 

important consequences are established in this frame. 1/ The deduction theorem: all 

theorems proved on the basis of a given axiomatic system remain valid for any 

interpretation of the system. 2/ Proof by interpretation: one way to prove that a given 

statement is not a logical consequence of the axioms of a certain theory is to provide a 

model of the formal axiomatic system of the initial theory that is not a model of the formula 

associated with the statement in question. We give an example of such a proof by 

interpretation given in Durand-Guerrier, Meyer & Modeste (2019) in the Table 1. 

Following Sinaceur (1991, 2001), we consider that the model-theoretic point of view 

offers powerful tools enabling to take into account both form and content and to 

distinguish between truth and validity, both crucial issues of the teaching and learning of 

mathematics. In a didactic perspective, this point of view offers fruitful paths to enrich a 

priori analyses and to analyse students’ activity in mathematics. (e.g. Durand-Guerrier 
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2008, Barrier, Durand-Guerrier & Mesnil 2019). Regarding computer science, Durand-

Guerrier & al. (2019) argue that although one may consider that syntax is at the very core 

of the discipline, there is evidence that semantic and pragmatic aspects play also an 

important role. 

Table 1. An example of proof by interpretation (Durand-Guerrier & al, 2019) 

Logic in Hungary in the math reform period1 

According to Máté, Andréka, Németi (2012), logicians have plaid a great role in the 

modernization of mathematical education in Hungary in the sixties and seventies. The 

authors remind that Tamás Varga was the leading figure in the new mathematics in 

Hungary, and that he was a student of Rózsa Péter, a world-renowned logician. Rózsa 

Péter, beyond his famous book Playing with infinity addressed to a wide audience, had 

 

1 In this section, we rely on Andras Máté, Hajnal Andréka, István Németi (2012) The 

Development of Symbolic Logic in Hungary. 

 https://old.renyi.hu/pub/algebraic-logic/MateAN12.doc 

A research problem: Given a rectangular grid (with integral dimensions), is it possible 

to tile it with dominoes (1x2 rectangles)? 

Theorem. A rectangular grid can be tiled by dominoes if and only if its area is even. 

A frequent (incorrect) proof of the above theorem given by students is the following: a 

grid can be tiled by dominos if and only if its area is 2k where k is the number of 

dominoes, which means that the area of the grid is even. The stated theorem is correct 

but the proof is not.  

It is sometimes difficult to invalidate an incorrect proof of a true statement. In order to 

do so, one can notice that the fact that the grid is rectangular was not used in the proof.  

So, if this proof was correct, it could be used for any shape consisting of an even number 

of squares.  It is easy to see that a symmetrical quadrimino with three squares on the 

first line and one square on the second line cannot be tiled by dominoes although is area 

is even. In other words, the set of grids of arbitrary shapes is a model of the theory used 

in the proof above. But in this model, the argument becomes false. Hence, the initial 

proof is invalid (because otherwise it could be transported into the new model). 

https://old.renyi.hu/pub/algebraic-logic/MateAN12.doc
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important contributions in mathematical logic. In particular she founded the field of 

Recursive function theory, publishing two important books: Recursive Functions (Péter 

1951), and Recursive Functions in Computer Theory (Péter 1976). She shared with Kalmár 

and Lakatos, the idea that mathematical studies and mathematical research are 

substantially the same. Katalin Gosztonyi (2013a) points out that for Rózsa Péter the 

formal language of mathematics appears as a result of solving problems, not an a priori 

tool. In his paper in Educational Studies in Mathematics in 1972, Tamás Varga argued that 

logic and probability should be part of the lower grades curriculum, not as an early 

construction of the discipline, but rather as “a construction of certain lines and habit of 

thoughts which can be characterized as logical and probabilistic. This also develops as a 

by-product, the outfit of ideas and techniques, skills and knowledge which prepares the 

way to enriching these disciplines. But the logical and probabilistic impregnation of 

thinking is most important.” (Varga 1972, p. 346) 

Varga provides examples of activities concerning the relationships between 

quantification and negation that he points out as a challenge even for educated people, that 

we have also evidenced in France, Tunisia and Cameroun. We present below some 

examples of activities (Third grade, 8-9 year olds) (op. cit. p. 350). 

“Connect the sentences that mean the same and add the numbers of pictures for 

which they come true. 

The pictures are: a) 3 houses with windows; b) 3 houses without windows; c) 3 

houses among them 2 have windows, the third one has not.  

Examples of sentences  

In no houses there are windows - All houses are without windows- Not all houses 

are without windows - No house is without windows - In every houses there are windows 

Not all houses have windows.  

Table 2. Example of activity on negation in Varga (1972, p. 350) 

To prove and disprove the association is done by stating the conformity of the pictures 

with the meaning of the sentence. Deciding for equivalence or non -equivalence relies also 

to the pictures. This kind of activity is clearly focused on the relation between syntax (the 

grammatical form of the sentences) and semantics (the interpretation given by the 

pictures). Varga concluded this section as follow: 
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 “While hoping and wishing that mankind becomes more familiar with the Muses than 

becomes estranged from them, we have to admit that in the computer age we also need 

other, more exact, more efficient means of expression, which, to be sure, lack certain 

human nuances.” (op. cit. p. 352).  

In our view, this paper of Tamás Varga could be an illustration of the following:  

 “The specific character of this modernization program against similar efforts in the 

world was that above the incorporation of new branches of mathematics (logic, set theory, 

etc.) into the material of public education and the aim that real, demonstrative mathematics 

should be taught in schools, it laid great stress to the intuitive clarity of mathematics and 

was not „formalist” in the sense as to teach mathematics as pure manipulation of 

formulas.” (Máté & al., 2012, p.5) 

 It is worthwhile noticing that, as stressed by the example above out of Varga (1972), 

in logic, the syntactic form of the sentence plays a crucial role in interpretation. In this 

respect, we would like distinguishing between “formal logic” which is back to Aristotle 

(Lukasiewicz 1972) and “symbolic logic” which develops in the late XIX and early XX 

centuries, with formalized languages. The logic of Aristotle is formal in the precise sense 

that the validity or the invalidity of a syllogism is depending on the grammatical form of 

the syllogism. In this respect, as pointed out by Largeaut (1972), Aristotle's brilliant 

intuitions enabled him to build a formal system based on the fundamental concepts of 

modern logical semantics: classification and modelling of everyday language utterances 

by formal statements (singular, universal or specific general statements); definition of 

propositions; introduction of letters of terms to characterize the form of the statements and 

construct the figures of the syllogism; notion of interpretation of formal statements; notion 

of logical validity of syllogism; distinction between de facto truth and necessary truth; 

setting joint work of syntactic and semantic methods to establish what forms or not a 

concluding syllogism among those that can be constructed in the four possible figures of 

his system2.  

 

2 This is presented with more details in English in Durand-Guerrier (2008) and in French 

together with a teaching proposal in Durand-Guerrier (2016). 
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Research problems in mathematics education 

In her PhD dissertation, Katalin Gosztonyi (2015) points out a main epistemological 

difference on the nature of mathematics underlying the Newmaths reform in France and 

in Hungary.  In France, the movement relies mainly on the reorganisation of mathematics 

and the development of unifying theories such as abstract algebra or topology while in 

Hungary, the focus is on logic, computer science, probabilities or discrete mathematics 

(op. cit. p. 104). She hypothesized that this had an impact also on the development of 

didactic research, in particular for what concerns theories. This is of course a reasonable 

hypothesis. Nevertheless, in both countries, the importance of addressing problem solving 

issues is attested for long. Gosztonyi (2016) emphasizes the crucial role played by the 

ordering of problems developed in Hungary during the math reform and consequently the 

relevance of their study as a contribution to characterizing the Hungarian tradition. We 

will not develop this here but will concentrate on the situation in France where, along with 

an effort to develop theories by prominent researchers such as Brousseau, Chevallard and 

Vergnaud, more pragmatic didactic research have been developed in France from the 

eighties, in relation with the development of the IREM (Research Institute in Mathematics 

Education). It is in particular the case for what concerns research problems and proof and 

proving.  

Research problems, proof and proving in France from the eighties 

In 1984, Nicolas Balacheff and Jean-Marie Laborde translated in French Proofs and 

Refutations (Lakatos 1976, 1984), popularizing this important essay of Imre Lakatos in 

the francophone research community. Nicolas Balacheff defended in 1988 his PhD 

entitled Une étude des processus de preuve en mathématique chez des élèves de Collège 

(A study of proving process in mathematics by middle school students), which is still a 

reference in the international community. The theoretical framework relies on the theory 

of didactical situations by Brousseau (1997) and the model of Lakatos of the dialectic 

between proofs and refutations (Lakatos 1974) (Balacheff 1988a, 1988b). In his 

dissertation Balacheff explains that the experimental part of his research was made 

possible thanks to his relations with the team in the IREM of Lyon who was developing 

the Innovation probleme ouvert (Open problem innovation) (Arsac, Germain, Mante, 

Pichod & Tisseront, 1985). This innovation was mainly a practice (Mante & Arsac 2007) 

that aimed to engage students in a position analogous to the position of a researcher in 
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mathematics, which is consonant with Rózsa Péter’s view (Péter, 1961). A hypothesis was 

that such situations were likely to foster proof and proving skills. The same authors 

developed later situations for initiation to deductive reasoning for grades 6 and 7 (Arsac 

& Mante 1997).  

The “open problem innovation” is still alive and nourishes many teachers’ training 

programs in France. It has also known new developments by considering not only the 

proof and proving skills, but also the mathematical objects, properties and relations that 

are involved during the research process, leading in Lyon to the development of the 

research group DREAM (Démarches de Recherche pour l’Enseignement et 

l’Apprentissage des Mathématiques, Research Approach for the Learning and Teaching 

of Mathematics) publishing on line research problems with their a priori analysis, and 

description and a posteriori analysis of experimental settings3. The project relies on three 

main issues. 1/The observation that many teachers did not see the mathematical value of 

research problems, considering that they were time consuming while they had a lot of 

mathematical concepts to teach. 2/ There were research-based evidence that logical and 

mathematical issues were closely intertwined in proof and proving (Durand-Guerrier & 

Arsac 2005). 3/ Research problems are likely to develop the experimental dimension of 

mathematics in the teaching and learning of mathematics (e.g. Dias et Durand-Guerrier, 

2005). The first stage of the project lead to the production of the resource EXPRIME 

(Aldon & al. 2010) presenting and analysing didactical situations (in the sense of 

Brousseau, 1997) elaborated around research problem in mathematics such as: Egyptian 

Fractions - Trapezoidal numbers – The number of zeroes of n! – The greatest product of 

5 numbers – Pólya urns. The research group DREAM has been developing for a few years 

a more ambitious program consisting in the proposal of an annual organisation of the 

teaching and learning based on problems, either research problems, open problems, 

problems for the introduction of a concept, or problem for the deepening of the learning 

of concepts (Front & Gardes 2015). A first experimentation was conducted in two classes 

of grade 9 in 2016-2017 by a member of the group. It is described in French on the website 

with a detailed analysis of the problems.  

 

 

3 https://dreamaths.univ-lyon1.fr/ 

https://dreamaths.univ-lyon1.fr/


Some logical issues in discrete mathematics and algorithmic thinking 251 

Research situations for classroom based on discrete mathematics  

In a paper of 1998, Denise Grenier and Charles Payan argue the relevance of discrete 

mathematics as scholar knowledge for the development of proof, proving and modelling 

skills in mathematics education. The context of the research is the French educational 

system in which the approach of proof is mainly developed in geometry, with emphasise 

on syntactic aspects, and modelling is absent. As a matter of fact, although the official 

instructions insist on the importance of a progressive development and recommend to 

avoid any premature requirement of formalization, their analyse of textbooks from 1979 

to 1993 shows the lack of activity around issues of truth, formulation and study of 

conjecture and modelling (Grenier & Payan, 1998, pp. 76-81). In the fourth section of the 

paper, the authors give several examples highlighting the potential of discrete mathematics 

as an alternative approach to proof. They consider that the issue of truth is enhanced by 1) 

the nature of objects; 2) the proximity with lived knowledge and the possibility to propose 

students rich problems that are still open in the research field. They illustrate on examples 

the role of modelling in proof and proving using tools such as pigeonhole principle or 

graphs. They point out some mode of reasoning such as: decomposition/re-composition; 

induction; structuration of objects. Finally they propose the tiling situation evocated in the 

first section of this paper as a fundamental situation for developing the targeted skills. In 

the abstract in English of the 1998 paper they wrote:  

“The paper presents bases of a research aimed to the long run toward an ambient 

environment for discrete mathematics, a construction which would not only facilitate the 

first acquaintance to this mathematical field, but would also provide an alternative 

approach to some transversal concepts, such as proof and modelling. The study which has 

been achieved here only involves an a priori analysis, prior to any attempt of elaboration 

of didactical engineering.” (Grenier & Payan 1998, p.59). The research program has been 

developed since this period with many experimental settings and several PhD, leading to 

a model for research situations for class (SiRC) (Grenier 2013) and to the Federation of 

Research “Maths à Modeler”4.   

 

 

4 http://mathsamodeler.ujf-grenoble.fr/ 

http://mathsamodeler.ujf-grenoble.fr/
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1.  A SiRC is similar to an actual question in mathematical research or in a non « 

didactified » one. This condition, very restrictive a priori, aims to avoid that the question 

or the answer may seem obvious or familiar. The objective is to give relevance to the 

research activity. This condition can be artificially recreated by the « staging » of the 

problem. 

2. The initial question is easy to understand at various levels of knowledge. Our 

intention is to break with the usual didactic practice that tends to attribute any problem 

to a specific grade level. To fulfil this requirement, the statements must in general be 

not as heavily mathematized. However, we try to avoid random real life « noises », 

which complicate the task of students in non-mathematical « concrete » problems, and 

sometimes prevent them from entering into actual mathematics. 

3. Strategies to start with are available, but they won't solve the problem completely – 

usual techniques or properties are not sufficient. In other words, one must ensure the 

devolution of the problem, by leaving space to some uncertainty that cannot be reduced 

just by applying known techniques or usual properties (i.e., what Brousseau described 

in his theory as a « good » situation). The theoretical framework of resolution is neither 

given nor obvious. 

4. One can use several strategies, such as «trials and errors », study particular cases, 

etc; relevant conjectures are not obviously true, counter-examples are attainable. These 

points are meant to encourage the construction of conjectures by students, based on an 

exploration of the question investigated. These conjectures can be examined by the 

students, through accessible examples and counterexamples. 

5. Hypotheses, or the initial question, can be changed. One can change the assumptions 

of the original question, and grab a new problem. The initial question can lead to related 

questions: closing a problem through the choice of certain parameter values, or starting 

a new research activity. 

Table 3. Characterization of the model “SIRC” (Grenier, 2013. pp. 177-178) 

Beyond the development of heuristic skills, this model has been proved to offer the 

possibility of enhancing logical competencies linked with implication, quantification, and 

various mode of reasoning, including generalisation.  It provides large autonomy to 

students and offer the opportunity of creation of new problems by changing some variables 

during the exploration phase, or for generalisation. For example, in the tiling situation : 

the form of the grid to tiled and its area (number of elementary squares)–the form of the 
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piece to tile with (domino, trimino, pentamino, other  polymino) – the position of holes if 

any etc. 

Algorithmic thinking at the interface Mathematics – Informatics 

Algorithmic thinking has a long story, but it is quite clear that the development of 

computer science has renewed the methods and challenges of its study in a didactic 

perspective.  In this respect, Modeste (2012) proposed a model of advanced algorithmic 

thinking from an epistemological point of view, based in particular on Knuth (1996) and 

Chabert (1999). This model enables study how algorithms are transposed in different 

institutions (curricula of mathematics, curricula of computer science, textbooks...). One 

fundamental element of this model is the notion of problem. It links many other aspects 

of algorithms such as proof, effectivity, or complexity. It is also very important in the 

theoretical models of algorithms (to study decidability questions, for example). The 

definition of problem is adapted from the theory of algorithmic complexity. 

 “A problem (e.g. finding the gcd) is: I a set of instances (e.g. N², all the pairs of two 

integers); Q a question about these instances (e.g. what is the gcd of the 2 integers?). This 

definition is perfectly suitable for algorithms: an algorithm is a systematic method that 

must give an answer to a question, for all instances of the problem, and after a finite 

number of steps (e.g. Euclid's algorithm solves the problem of gcd for any couple of 

integers). (…). This model is also useful to characterise problems with potential for the 

learning of algorithmic thinking, in order to design and study teaching situations. (Modeste 

2013, pp. 266-267) 

We will illustrate this by the example of “Exponentiation by squaring”5  

A classic algorithmic problem is that of computing for any natural n the n-th power an 

of a real number a. A naïve solution is, starting with value 1, to multiply n times this value 

by a. The final value one obtains is indeed the expected result, which is not very difficult 

to establish. The fact that this algorithm terminates is also trivially true since it contains a 

single bounded repetition. Finally, the complexity of this computation is asymptotically 

bounded above and below by n, counting for instance the number of multiplications 

performed, and assuming that multiplication by a is an elementary operation. 

 

5 We retrieve this example from Ouvrier-Buffet & al. (2018). 
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A more efficient technique relies on the observation that an=(a2)n/2 if n is even, 

otherwise an = a . (a2)(n-1)/2. This allow to write the recursive algorithm below 

• If n = 0, power (a, 0) =  1 

• If n is congruent to 0 modulo 2, return power (a2, n/2) 

• Else return a . power (a2, (n-1)/2)  

Table 4. An efficient algorithm for exponentiation by squaring (Ouvrier-Buffet, Meyer, Modeste 

2018, p.261) 

This example is used in Ouvrier-Buffet & al. 2018 (pp.261-262) to address some main 

issues in algorithmic thinking, linked to the general question about a given algorithm 

“Does it works?”. Given a problem P and an algorithm A supposed to solve the problem 

P and P(a) an instance of the problem, the following aspects are crucial: 1/ Termination: 

on any instance of P, A performs at most a finite number of computation steps. In the 

example above, this can be establish by a proof by reduction ad absurdum relying on the 

property that the relation less than is a well ordering on the set of natural numbers. 2/ 

Partial correctness: on any instance P(a) of P, the value computed by A is P(a). In the 

example above, this is established by a proof by complete induction. The conjunction of 

both properties might be seen as expressing correctness. 3/ Complexity - worst-case upper 

bound: a function f is a worst-case upper bound for the complexity of A if there exists a 

positive constant c such that, on any instance of size n of P, the number of computation 

steps performed by A is at most c . f (n) for n large enough. In the example above, 

considering the operation of dividing a number by two and rounding down and choosing 

the binary representation of integers for which dividing a number by two and rounding 

down correspond to erasing its rightmost digit allow to prove that the total number of 

multiplications performed by the algorithm power (a, n) is asymptotically bounded above 

by log2(n), against n with the naïve solution.  

Reasoning about programs or algorithms, in particular about their termination, 

correctness and complexity, draws upon a rather wide assortment of proof techniques and 

mathematical concepts, including notions usually attributed to discrete mathematics. In 

this respect, some knowledge of formal logic is of course useful. The notion of worst-case 

complexity is a relevant illustration of this claim: it involves several objects and concepts, 

and a non-trivial use of quantification. It is however a very important and classical notion 

which is a part of many computer science courses. (Ouvrier-Buffet & al. 2018). 
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Conclusion 

In this paper, we argue that logic and problem solving have long been considered as 

essential aspects of mathematics and computer science education, from Tamás Varga 

paper in 1972 to now-a-day researches linked to the re-introduction of computer science 

in French curricula. Discrete mathematics in general, and algorithms in particular, is a 

field at the interface between mathematics and computer science and a relevant domain 

for developing proof and proving skills, including logical proficiency. The importance of 

computer science in a digital area needs the development of research aiming to better 

understand the similarity and the difference of the epistemological foundation of both 

domains in order to support the development of didactical engineering. This is developed 

in the research project DEMaIn (Didactic and Epistemology of Interactions between 

Mathematics and Informatics) led by Simon Modeste in Montpellier (France). Logical 

issues in a semantic perspective linked with proof and proving  play an important role in 

this respect (Durand-Guerrier & al. 2019). 
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