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Abstract. Teachers’ design capacity at work is in the focus of didactical research worldwide, and 

fostering this capacity is unarguably a possible turning point in the conveyance of mathematical 

knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards 

teachers as they are supposed to be able to plan their long-term processes very carefully. In this 

contribution, an extensive teaching material designed in the spirit of this tradition will be presented 

from the field of Geometry. For exposing its inner structure, a representational tool, the Problem 

Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing 

resources, helping teachers to reflect on their own preparatory and classroom work, and supporting 

the creation of new designs. 
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 Introduction   

Despite controversies at the time, the merits of Tamás Varga’s reform movement and 

the guided discovery approach are highly recognized within the Hungarian Mathematics 

Education community. The basic principles of this approach were elaborated in Varga 

(1988), Halmos and Varga (1978), and recently revisited by Gosztonyi et al (2018). Five 

of those principles are of special significance for this paper: students’ autonomy and 

creativity – learners rediscover mathematical knowledge through problem solving, teacher 

autonomy – the teacher acts as a facilitator and a guide, flexibility – a high degree of 

responsiveness to students needs and ideas on the spot, democratic conveyance of 

knowledge – great effort to teach ‘real’ and ‘modern’ mathematics to a large diversity of 

students, and deliberate buildup – long-term, cross-domain planning processes, concepts 

being revisited and broadened spirally and gradually. 

This paper focuses on the perspective of the teacher. Regarding teachers’ design work, 

Gueudet, Pepin, and Trouche suggested “10 Qs” in their article (2017). We focus on two 

of them: “What do they design?” and “How do they design?” In the spirit of the guided 

discovery approach, and also mobilizing the overly problem-oriented Hungarian 

mathematics education culture and rich problem solving tradition, we have designed a 

long-term teaching material for regular classrooms. The rationale behind this design is to 

create a long-term arch of problems that opens up the way towards such basic but complex 

concepts that are problematic to master for students. Moreover, experience shows that 

sometimes even teachers and textbooks lack a consistent approach to them. 

The design takes the form of a Series of Problems, an instructional object described 

by Gosztonyi (2018) as indigenous to the Hungarian guided discovery approach. 

Structurally, it is more flexible than a mere task sequence. To reveal this structural 

complexity, we created a representational tool, the Problem Graph. In the main section of 

the article, the central elements of the design and the problem graph approach will be 

discussed with some preliminary results and perspectives on their classroom 

implementation. 

The design  

Our design is an extensive problem structure titled ‘Distance under the magnifying 

glass’ in the field of Elementary Geometry, a domain that is traditionally discussed in 
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greater depth in Hungarian secondary education than in other European countries. It 

consists of over 40 individual problems with a number of subtasks and variations in many 

of them. Regarding the aforementioned question “What do they design?” (Gueudet, Pepin, 

and Trouche, 2017), this structure is in line with the principles of the Hungarian guided 

discovery approach for which problem situations are the catalysts of the learning process, 

and teacher intervention and mediation usually also take the form of new problems and 

questions. As for the curricular dimensions of this Series of Problems, it overarches 8 years 

(Grade 5-12), giving a fine example for long-term process planning. 

Contentwise, as the title suggests, it revolves around the fundamental, yet sometimes 

deceptive concept of distance, with a number of auxiliary and derivative concepts like 

perpendicular and angle bisector, line symmetry, inscribed circle, basic components and 

incidence in geometrical space, etc. These concepts are well embedded in the regular    

Hungarian curriculum, but experience shows that our problem situations often provoke a 

deeper classroom conversation touching on extracurricular topics. By no means we aim 

for setting these for students as requirements, but we observe that broadening the picture 

leads to their better grasp of both the curricular content in the narrow sense and the           

surrounding world. Opening up these conversations also accords with Tamás Varga’s          

principle as mentioned in the Introduction: teaching modern and real Mathematics. 

Geometrical concepts might be rooted more directly in the common human experience 

than notions from other mathematical domains, but this relationship often lacks harmony: 

as stated by Mariotti and Fischbein (1997), the double nature of geometrical concepts can 

result in persistent conflict between the figural and conceptual aspects, the concept image 

and concept definition. 

Problems on the distance concept 

First we introduce a selection of problems that delves directly into the concept of    

distance. 

P1. Kate, Pete and Lilly are caught in a large spring 

downpour at the playground. They take refuge under a 

narrow rainpipe as quickly as possible. Draw (in the 

figure), which route should they run. 

Modify the length/position of the rainpipe. How does it 

change the route of the children?  



148                                                                                                              Varga E. 

b) What could be the position of the rainpipe, if Pete and Lilly run the same distance? 

(Required: dynamic tools: figures on the board and/or stickers) 

P2. Use navigation apps (e.g. Google Maps) and determine the distance between 

Budapest and Szeged/Paris/New York. Compare your results. Why is it possible to get 

different results? (What do you think we should actually call distance?) 

P10. Our friend lies injured and dehydrated in the sand of 

the desert, in point B, and he is unable to get to the wadi 

(temporary stream) marked on this sketch. We ride our 

camel from point A to bring water for him from the wadi as 

fast as possible. Construct the shortest possible route to 

rescue our friend. 

P11. In March, Sigmund, the stork flies from Windhoek, Namibia to its nest in Budapest 

in search of its mate. Calculate the estimated distance it has to travel. You can use only 

the given offline resources (globe, atlas and household items). Present your 

calculations and results to the whole class. 

Table 1. Problems on the distance concept 

P1 is intended for Grade 5-6, but can be revisited later in Grade 9. The text of the 

main problem is unsurprising as plenty of similar tasks can be found in textbooks.  The 

new element is the dynamic variation of the factors depending on students’ responses and 

ideas. In Grade 5, we count on students’ difficulties not only with distance, but also with 

the notions of segment and line, and the idea of infinity. The tasks intend to scaffold the 

development of these notions as well. An interesting aspect of task b) is the opportunity 

to observe whether students abandon the restrictions originating from the actual problem 

situation and enter the abstract realm. In this case, the perpendicular bisector position      

occurs as an alternate solution. Note that if the rainpipe is a segment, alternative solutions 

to the parallel position can also be found. In this case, by moving the child that should run 

to the endpoint, students can also learn about the circle. 

P2 is also a multilevel problem: first treated in Grade 5 and revisited in Grade 9 and/or 

Grade 12. The possibility of different results originates either from students’ different     

interpretations of the text or from the different settings of the navigation app: distance as 

the crow flies or shortest route that one can actually travel, optimization for travelling time 

or cost, different transportation, less walking, etc. Note that all these interpretations are 

reasonable and have their abstract equivalent in higher mathematics. This problem, and 
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even more definitively P11 require the consideration of the basics of spherical geometry, 

with P2 leading later to other geometries (taxicab), graph theory, optimization problems, 

and the naturally occurring question of how navigational systems work, with rich 

mathematical consequences. P11 goes seemingly the other way round by banning digital 

devices and resources. This problem is usually implemented in groupwork. A variation of 

the task is when – after they observed the globe – the students can prepare three questions 

(not about the actual distance, of course) that help them solve the assignment.  

P10, with a slightly different text, is well known in the Hungarian tradition. Besides 

the obvious connection to the matter in hand – gradually approaching the concept of        

distance as a minimal route – what makes it relevant is that a majority of university          

students and novice teachers report that they “have seen the solution of the problem”, not 

that they were able to solve it themselves. This will be a significant aspect later on, when 

we investigate the structure of the entire design. 

These problems demonstrate our aspiration to react to the observation that the unified, 

consistent concept of distance often eludes students throughout their 12 years of 

instruction, as they grasp only special cases and measuring techniques instead. In our 

design we also take into account that the use of everyday language can be both a catalyzing 

and hindering factor in this aspect. 

The Problem Graph 

Reverting to the question “How do they (the teachers) design?”, we find that expert 

teachers who follow the guided discovery method usually don’t design separate problems, 

they consider the impact of different arrangements of tasks very carefully in their 

instructional process planning. Quoting the preface of Polya’s famous Induction and 

Analogy in Mathematics (1954): “In order to provide (or hide) such clues with the greatest 

benefit to the instruction of the reader, much care has been expended not only on the 

contents and the form of the proposed problems, but also on their disposition. In fact, 

much more time and care went into the arrangement of these problems than an outsider 

could imagine or would think necessary.” No written form can truly reflect the complexity 

of this thought process, nor can it be observed entirely in classroom enactment, since the 

structure inevitably becomes fixed and more or less linear at this point. However, it is a 

crucial aspect of the design process that equips teachers for sensitive, adequate reactions 

to students’ ideas or difficulties. To reveal this hidden structure, we introduced the 

Problem Graph as a   representational tool. In the following the problem graph of the 
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series of problems in question will be displayed (Figure 1), and we discuss the potential 

of the tool through this example. 

Problem graphs in general are the representation of a network of problems as a 

(topological) graph, where the nodes are assigned to the individual problems, and the 

edges show the connections among them. These connections can be determined by the 

analysis of a researcher, and in this case, the Problem Graph serves as an analytical tool, 

but investigating the links can also be part of the teachers’ reflection and/or preparatory 

design work. The connections can reflect similar mathematical content, similar solution 

strategies, different aspects of the same concept or other didactical considerations. One-

way arrows represent corollary relations, in the sense that the antecedent problem supports 

the solution of the subsequent one. But, as it is discernable in our graph, the arrows do not 

fully determine the ordering for classroom implementation. Wanderings on the graph give 

multiple learning trajectories with slightly different outcomes, and forward leaps open the 

opportunity for differentiation. The forks in the displayed Problem Graph clearly show 

that the educator, as a guide, has multiple choices.  

In the case of this particular design, we also use letter coding for grouping, and the graph 

consists of three clearly distinguishable parts. In the center of the graph, C1-4 mark the 

Core microseries, the kick-off point and mobilizing factor of the whole design. In the     

upper part, P marks the preparatory problems that were built towards the Core, and these 

problems are designed to obtain or mobilize the mathematical knowledge and practice 

necessary to enter C1. These problems are originally designed for Grade 5-8, but many of 

them can be revisited later. The preparatory problems have thematic labels: 

D: Distance G: (Other) Geometries L: Loci of Points   

T: (Geometrical) Transformations 

In the lower part, the ramifications from the Core are displayed, these are interlinked 

threads of problems that can be opened up as a consequence of the dialogue over the Core. 

Each of them cover curricular contents from Grade 9-12, but often culminates in problems 

that exceed the curricular requirements in their complexity. The ramifications are coded 

thematically: 

S: Space Geometry E: Existence Problems R: Radii of Circles  

Co: Combinatorics  I: Incidence AnG: Analytical Geometry 

A: Angles and Proportionality 
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Figure 1. The Problem Graph representation of Series of Problems ‘Distance under the            

Magnifying glass’ 
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The Core Problems 

The following four problems are the largest hub of the structure, designed for Grade 

9 and intended to be handled in the classroom in close succession: 

C1. Find the equidistant points from three different lines (in the plane). 

C2. Construct (in Euclidean terms, using only rulers and compasses) the equidistant 

points from three given lines (on the plane). In case the lines are non-concurrent and 

mutually non-parallel, rephrase the defining features of the constructed points and 

lines. What are their relations to the triangle bounded by the given lines? 

C3. P1, P2, P3 and P4 are four equidistant points from three lines of the plane. Construct 

these three lines. (The points are given in an illustration, they can’t be chosen                 

arbitrarily!) 

C4. Let P1, P2 and P3 be three different points that are equidistant from exactly three 

different lines in the plane. Construct any other points that are equidistant from the 

same lines. Discuss the number of cases. What does it tell us about the solvability of the 

previous problem? 

Table 2. The Core Problems 

Although C1 and C2 might be perceived as roughly equivalent mathematically, from the 

didactical aspect they differ considerably. C1 shares its characteristics with other entry 

point problems of the structure (P8 or the aforementioned P1): it is activating, does not 

demand extensive and precise knowledge, and it is a good diagnostic problem, meaning 

that it informs the teacher very well about the students’ strengths or difficulties and 

misconceptions. Note that in C1, depending on the level of the class, we consider finding 

the approximate position of the points a partial solution. The different possible cases add 

a categorization element to the task, and this leads to the Combinatorics branch in the 

graph. C2 necessarily demands the exact mathematical formulation of the solution (the 

center of the inscribed and ascribed circles derived from the angle bisectors), and leads to 

further investigation of these circles in branch R. C3 (solvable only if the points are 

orthocentric), the reverse problem is far more difficult, in fact, together with C4, out of 

reach of a regular classroom as individual problems. When working with this problem 

structure, the success in solving C3 mainly depends on the detailed discussion over the 

constructed figure in C2. 



How to be well connected  153 

Hubs and leaves 

The graph structure reveals a number of other hubs, rich, complex problems that         

require the synthesis of wide-ranging mathematical knowledge, and therefore can be 

identified as critical points of the instructional process. P7, a microseries itself contains 

treasure hunting tasks similar to certain textbook problems. What sets them apart is the 

gradual buildup, and, similarly to P1, the capitalization on the opportunities provided by 

dynamic tools and the inaccuracy of everyday language. 

In the lower part of the graph, problem S9/R8/E6 deals with inscribed spheres of     

solids, strongly relying on the plane-space analogies and mobilizing the knowledge         

discovered in threads R and E. 

In the leaf elements, as culmination points, we find some problems that are often 

deemed inaccessible for regular classrooms, although they have no extracurricular content. 

C3, C4 and A3 are on the level of national competitions. Nevertheless, it is possible to 

approach them through the designed problem structure with motivated students. By 

showcasing to students the creative power of their own, even lesser successes evoke the 

spirit of Tamás Varga’s Complex Experiment. 

P10 has already been discussed briefly in the second chapter of the main section. This 

series of problems design embeds it into a culminating thread, with subgroup P3, 4 and 6 

familiarizing the students with both the process and the properties of line symmetry, and 

P8 and 9 serving as immediate guiding problems. P9 is a different problem with the same 

solution as P10 (hit the billiard balls). As an alternative to the solution with reflection, 

students sometimes come up with a solution to P8 that rather provokes a solution with 

proportionality. That can lead to a much less elegant, but sufficient solution with 

calculations for P9 and P10. 

Concluding remarks and perspectives 

In this article we attempted to demonstrate with some examples how the principles of 

Tamás Varga’s Complex Mathematics are manifest in the design of a teaching material. 

This particular design is part of a collection of series of problems with detailed 

commentary that our research group plans to publish online in 2020. This collection 

intends to provide generic examples of working with the guided discovery approach for 



154                                                                                                              Varga E. 

Hungarian teachers. Regarding the question ‘what the practitioners of the guided 

discovery method design’, the examples show they primarily prepare problem situations. 

Dealing with the question ‘how do they design’, we build on Gosztonyi’s research (2018) 

and demonstrate the tendency to use problem structures rather than individual problems. 

The particular  example detailed in this paper, as a generic example for long-term process 

planning, shows that this structure can be far more complex than a linear task sequence. 

Finding and analyzing other extensive examples in the literature, and investigating 

practicing teachers’ capacity in designing such complex structures are important 

perspectives of our ongoing research. 

In this paper, we propose the problem graph representation for both analyzing and 

designing problem structures. We find this representational tool promising, and intend to 

investigate its potential in our ongoing research. Some pilot experiments have already been 

conducted in this regard. As a first step, the presented material was used in three PD       

programs with prospective and in-service teachers. In ensuing sessions, teachers used the 

Problem Graph approach to reflect and develop their own teaching materials. The detailed 

analysis of the experiments and the refinement of the PD sessions with the associated 

questionnaires are in progress. The pilot experiments suggest that both quantitative and 

qualitative differences could be detected between the graphs of expert and novice 

educators, and the complexity of the recognized relations may improve with the use of the 

graph approach, but these claims need further investigation. The participants’ self-

evaluation on their professional growth were enthusiastic, and that inspires us to move our 

focus in this direction. As a closing remark, we would like to quote a colleague’s post-

session questionnaire: “...(it improves) the structural reasoning to such a depth…I 

analyzed both what I want to teach and what can be taught through certain problems, and 

this was new...”. 
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