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 Introduction 

This article is based on the panel on inquiry based mathematics education and the 

development of learning trajectories held at the VARGA 100 Conference, in Budapest in 

November 2019, and coordinated by the first author. As was pointed out in the 

presentation of this panel, in the last decade, a number of projects have been funded to 

support the large-scale dissemination of Inquiry Based Education in STEM disciplines, in 

Europe and beyond, and the expressions IBE, Inquiry Based Education and IBL, Inquiry 

Based Learning, coming from science education, have permeated mathematics education. 

However, as shown in (Artigue & Blomøj, 2013), in mathematics education, well 

established didactic traditions that have supported for decades the development of learning 

trajectories share evident values with the current conceptualizations of IBE and IBL in 

STEM education. This is also obviously the case for Tamás Varga’s approach in terms of 

complex mathematics education, celebrated and extensively discussed at the conference.  

The panel was structured into three phases, each addressing a specific set of questions. 

In the first phase, the questions at stake were the following ones: How do the 

conceptualizations of IBME underlying current European projects were established? How 

do they relate to these traditions? What do they take from these and what do they add to 

these? Katja Maass, professor at the University of Education in Freiburg and director of 

the International Centre for STEM Education, recently created in this university, who has 

to date coordinated nine large-scale European projects in this area, explained how a 

consensual definition of IBL has been progressively achieved in the project Primas (2010-

2013) and how it has been refined in the subsequent projects she has led. Then Michiel 

Doorman, associate professor at the Freudenthal Institute in Utrecht, who has been part of 

several of these European projects, situated this consensus with respect to the tradition of 

“Realistic Mathematics Education”, originated in Freudenthal’s didactic vision. Ladislav 

Kvasz, professor at the Department of Mathematics and Mathematics Education of the 

Pedagogical Faculty at Charles University in Prague, and member of the Institute of 

Philosophy at the Czech Academy of Sciences, did the same regarding the Czech and 

Slovakian tradition known as “Genetic constructivism”, developed by Vít and Milan 

Hejný decades ago.  

An important question if we want IBME approaches to have a substantial impact on 

mathematics education is how these approaches support the development of long-term 

learning progressions, and not only the design of interesting but isolated tasks and 

situations. This issue was addressed in the second phase of the panel, once again 

comparing different approaches and their outcomes. First, Péter Juhász, member of the 
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Alfred Rényi Institute of Mathematics at the Hungarian Academy of Sciences, and teacher 

at the Szent István High School in Budapest, explained the importance attached to the 

development of long-term learning progressions in the “Lajos Pósa Method”, an inquiry-

based method of teaching directly inspired by Varga’s ideas, used to nurture mathematical 

talents in informal settings such as week-end camps in Hungary since decades. Then the 

word was given to Marianna Bosch, professor at the IQS School of Management of the 

Universitat Ramon Llull, in Barcelona, one of the main contributors to the 

Anthropological Theory of the Didactic developed by Yves Chevallard. She presented the 

original vision of IBE that this theory proposes within the paradigm of “Questioning the 

world”, and the associated conceptualization of learning progressions in terms of “Study 

and Research Paths”. Both Michiel Doorman and Ladislav Kvasz were then offered to 

briefly react from their respective perspectives.  

The visions and approaches, the examples evoked by the panellists in the first two 

phases of the panel certainly open fascinating perspectives for mathematics education. 

However, it is well known that no substantial and sustainable move can be achieved 

without adequate preparation and support of teachers, and of teacher educators. This is no 

by chance that the development of resources for the classroom and for teacher professional 

development, the reflection on adequate strategies for the dissemination of resources and 

professional development activities, for the development and support of communities of 

practices, are at the core of most European projects. The last phase of the panel was 

devoted to this crucial issue, and the reflection was introduced by Katja Maass. She was 

asked to briefly summarize what she learned from the many projects she has been involved 

in and from ICSE activities, in that respect. Then time was devoted to interactions with 

the audience, as had been already the case between the first and second phases. 

In this article, we do not reproduce the chronology of the panel but, rather, each 

panellist presents his/her contribution in a specific section. However, we follow the order 

of their first presentation in the panel, thus begin with Katja Maass’ contribution, follow 

with the contributions by Michiel Doorman, Ladislav Kvasz, Péter Juhász and Marianna 

Bosch, and these five sections are followed by some more global reflections inspired by 

the panel. These contributions make clear how a diversity of conceptualizations of IBME 

has emerged from the diversity of theoretical approaches and experiences existing in 

mathematics education, and the efforts developed to reach definitions consensual enough 

to make collective work at European level possible.   
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Defining Inquiry-Based Learning for use in practice (Katja 

Maass) 

There are several definitions of Inquiry-Based Learning (IBL) in the theoretical        

discussion (NRC 2000; Artigue and Blomhøj, 2013). And among these different 

interpretations of inquiry-based learning, there are important differences regarding e.g. the 

degree of autonomy given to students, the objectives pursued with inquiry-based learning 

(e.g. the development of inquiry competences vs. development of scientific ideas and             

techniques) and the importance given to real-life questions (Artigue and Blomhøj, 2013). 

Whilst in a theoretical discussion it is fruitful to discuss different definitions, we face 

a different challenge when we intend to develop classroom materials and a common 

concept for professional development (PD) in an international project. In this case a 

common definition of IBL is urgently needed. This was the situation in the European 

project Primas (2010-2013), in which about 30 people from 12 different institutions and 

10 countries cooperated. The overall objective of Primas was a widespread 

implementation of IBL in day-to-day teaching across all partner countries. To this end we 

developed an international set of tasks and a common concept for a PD course. 

Considering the objective of the project it was also very important that the definition we 

found would be understood by teachers. Finding a consensus on a definition was difficult 

and finally kept us busy for three project meetings (thus, the first project year). 

Figure 1. First definition of IBL 

 

One problem was that the definition in the 

proposal was not very clear. Therefore we 

decided to define IBL with the help of 

activities students are supposed to carry out 

(Fig. 1). This definition appeared to be clear 

to us because of our hidden understanding of 

what IBL is and what kind of tasks we mean.     

However, this definition turned out to be not 

clear, neither for project partners nor for 

teachers. Consequently, teachers and school 

authorities asked for a clear definition as did 

the advisory panel of Primas. We were also 

told that other projects (e.g. the Fibonacci   

project) had similar difficulties.  
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I would like to illustrate these difficulties with three examples (Fig. 2,3 and 4): 

 

Figure 2. The signing task 

 

 

 

 

 

Figure 3. The “Odd one out” task       Figure 4. The jumper task 

Whilst some people would say that only the signing task is a task for inquiry, others 

might argue that the “Odd one out” requires mathematical reasoning and therefore is also 

an inquiry task. Whilst some might argue that the jumper task is by no means an inquiry 

task, other would say it is relatively open, because the question is missing. The different 

perspectives on the tasks might be based in the different cultural background of the          

different countries and different teaching traditions. 

Consequently, we had to find a balance: On the one hand, the definition needed to be 

a “one fit for all” and should not exclude too many tasks because partners needed to work 

with the definition in their countries and within their teaching tradition. On the other hand, 

the definition must allow for selecting a common set of tasks and PD materials. Therefore, 

within this big project team of about 30 persons we ran a world café and discussed what 

IBL means to us, what characteristics of inquiry-based learning should be part of the 

Gina wants to buy a 

new jumper. The original 

price was 60 Euro. But 

now it is reduced by 20%. 
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resource and what IBL is not. Based on the world café we came up with a definition 

outlining different features of IBL (Fig. 5). 

 

Figure 5. The definition of IBL in Primas 

The long time we spend on finding a definition proofed to be worth it, because we 

used this definition successfully throughout the whole four years of the project. We even 

continued to use it in later projects, because it was well understood by partners and 

teachers, our main target group. In our next project (Mascil, 7th Framework programme, 

2013-2016), the aim was also a widespread implementation of IBL but this time in 

connection to the world of work. We used the same definition as shown in Fig. 5, but 

expanded it to make it even clearer and to include the connection to the world of work 

(Fig. 6, new aspects typed in italic). 

 

Figure 6. Definition of IBL in Mascil 
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We kept using the definition of IBL even in the next project (Masdiv, 2017-2020); 

however, again we expanded the definition. Our approach in Masdiv first introduces IBL 

as a means for addressing achievement-related diversity to deliver inclusive education and 

basic skills for all, and thus addresses underachievement. Then, second, it expands IBL to 

realistic, relevant contexts to promote fundamental values and enhance active citizenship, 

which also builds social and civic competences and, third, it embeds IBL in multicultural 

settings to promote intercultural learning. 

Summing up, in projects aiming at a widespread implementation of IBL a common 

definition is important. It is, however, a challenge to find a common definition in large 

European consortia. It is worth taking some time to find a definition which fits for all. 

Relating IBL to Realistic Mathematics Education (Michiel 

Doorman) 

The definition of IBL given above by Katja Maass emphasizes the importance of using 

types of questions that allow for multiple solution strategies, teachers’ trying to connect 

learning to students’ experiences and trying to foster students’ inquiring minds. These   

elements are also connected to and maybe partly rooted in the tradition of Realistic         

Mathematics Education (RME), originated in Freudenthal’s didactic vision on 

mathematics as an educational task. In addition, recent developments in thinking about 

how to organize and implement IBL has highlighted how some aspects in RME can be 

improved or made more explicit. This dialectic relationship is illustrated below with a task 

that was used in an RME learning trajectory and in the previously mentioned Mascil 

project. 

Freudenthal’s vision on mathematics education originates from his critique on an     

existing practice taking the endpoint of the work of mathematicians as a starting point for 

instruction (Freudenthal, 1991). The endpoint is a well-organized system of definitions, 

axioms and theorems that in most cases is the result of a long period of working on 

problems, relations with other disciplines, generalizing and fine tuning notations and 

language. When we take that organized system as a starting point for education we kind 

of invert the route of inquiry. Education starts with definitions and theorems without clear 

needs for them, and ends with applications that might have been problems from which the 

mathematical notions originated. This inversion of practice is, according to Freudenthal, 
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anti-didactical, because we don’t provide students with any need and purpose for the 

mathematics we present to them, and maybe even worse, we don’t involve them in the 

work of mathematicians, i.e. in trying to organize phenomena mathematically. As an         

alternative, he and his colleagues promoted an approach in which learning mathematics is 

an activity of organizing subject matter from reality (horizontal mathematizing) and 

generalizing mathematical results of that activity (vertical mathematizing). In this RME 

approach, learning mathematics starts in problem situations that are meaningful for 

students such that they experience the need to mathematise them and have opportunities 

to start reasoning about the situation. By taking mathematics as a human activity for 

organizing phenomena, the notion of inquiry also becomes a central vehicle for learning.  

We illustrate the RME approach and its relation with IBL with a sequence of problems 

that was part of a learning trajectory used for introducing linear recursive relationships 

and their converging progression in grade 10. The starting situation concerns some basic 

information about drug level in a patient’s blood while using a certain kind of medicine 

(Fig. 7). 

A patient is ill. A doctor prescribes a medicine for this patient and advises to take a 

daily dose of 1500 mg. After taking the dose an average of 25% of the drug leaves the 

body by secretion during a day. The rest of the drug stays in the blood of the patient.  

Figure 7. Initial problem situation 

Different questions can be related to this context, for instance: how does the drug level 

in the blood evolve? When you forget to take a dose one day, is it dangerous to take a 

double dose the day after? After a collective discussion of the situation during which these 

questions emerged, students were asked to investigate the progress of the drug level in the 

blood and to create a leaflet that would provide basic information for the pharmacist who 

has to inform patients. Students worked in groups during one lesson and had the 

opportunity to present the next lesson their results and the information they wanted to 

include in this leaflet. The open task was expected to elicit multiple solution strategies that 

would let them experience the structure of recurrence relationships, use words to talk about 

such relationships,  and create the need for more systematic procedures and notations for 

describing their calculations. The work of the students showed a diversity in approaches 

and also in the final converging level of the drug in the blood (Fig. 8). 

Some students wrote systematically all the calculations, while others quickly 

organized them in tables, or even used graphs or formulas. This variety in approaches 
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provided an opportunity to formulate general characteristics of the approaches and of the 

underlying calculation procedures. Moreover, some of the groups also felt the need to 

describe the progress of the drug level with a ‘traditional’ functional relationship. In the 

middle of the work of the left group of Figure 8 can be seen how they tried to formulate 

such a functional relationship between days x and the increase of the drug level y. Next, 

the rather big differences observed between the converging levels obtained created the 

need to question the calculation procedures, in this case either next = 0,75·current + 1500 

resulting in a converging level of 6000 mg, or next = 0,75·(current +1500) resulting in a 

converging level of 4500 mg. During these activities and subsequent lessons language and 

notations developed, as well as final definitions of recurrence relationships and their 

convergence. 

 

 
 

Figure 8. Student work of two groups on the Drug level task 

The above example illustrates the RME approach, but also some shared visions 

between RME and IBL. Both approaches are student centred and foster the use of open 

non-routine problem situations to offer opportunities for mathematising and for processes 

of inquiry (e.g. questioning, experimenting systematically and communicating results). 

However, as processes of inquiry were not paid explicit attention in RME, the 

opportunities for reflecting on these processes might not have been taken. During EU-

projects like Primas and Mascil, we further developed the potential of the Drug level task 

to illustrate how such tasks can be a resource for addressing IBL explicitly (Doorman, 

Jonker and Wijers, 2016). One option is to discuss with teachers the difference between 
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the above open version of the task and a very structured textbook version (Fig. 9). The 

difference is obvious as the structured version provides all questions, all information 

needed and a stepwise solution procedure. The context can be neglected, students do not 

see alternative approaches and the need of each step, and the teacher receives limited 

information about what students can do when they do not have the provided steps at hand.  

• How much mg of the drug is in the blood of the patient after one day? 

• Finish the table. 

Day mg of drug in the blood 

0 0 

1 1125 

2  

3  

• Explain why you can calculate the amount of drug for the next day with the 

formula: new_amount = (old_amount + 1500) · 0,75 

• After how many days has the patient more than 4 g medicine in the blood? And 

after how many days 5 g? 

• What is the maximum of amount of the drug that can be reached?  

Figure 9. Structuring the Drug level task 

However, the unstructured version of the task also has the risk that students feel lost 

and get frustrated, or that parts of the task will ask so much time from the students that 

they are unable to reach a reasonable result within the timeframe of the lesson. To prevent 

this to happen, the teacher has a role in structuring the lesson. Consequently, the 

unstructured version of the task needs a carefully structured lesson plan to scaffold the 

students’ inquiry. Another option to involve students in the inquiry process - with a more 

structured task - is to cut the structured version into pieces and present all sub-questions 

in a different order, or as pieces of a jigsaw and ask the students to find the original 

textbook order. After deciding upon a sensible order, they would have the chance to reflect 

on the stepwise structure of their textbook and get the opportunity to reflect on the role of 

systematizing calculation procedures by using tables and formulas. These alternative 

versions of one task appeared to be a valuable resource for discussing IBL with 

mathematics teachers, for creating opportunities to let them experience its potential and to 

extend their teaching repertoire. 
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In retrospect, RME helped to understand how open and non-routine problems for IBL 

can also be used for content learning in topic related learning trajectories. These 

trajectories have attention for horizontal and vertical mathematization processes changing 

focus from situation-specific solutions to conventional concepts and procedures. IBL 

helped us to communicate with teachers why and how to explicitly address 

mathematization, problem solving and generalization processes. Although 

mathematization is at the heart of RME, a reflection on these processes has the risk of 

being neglected in daily teaching.  Moreover, the presence of a definition of inquiry-based 

learning in the EU projects helped teachers to create attention for more general processes 

of inquiry, like questioning, planning, modelling and experimenting systematically. 

Students of all ages have curious minds and can inquire. We need to use and foster that 

potential in mathematics education. 

The six principles of Genetic constructivism (Ladislav Kvasz) 

Genetic constructivism was developed by Vít and Milan Hejný, father and son. Vít 

Hejný (1904 – 1977) was a secondary school teacher of mathematics. He started to develop 

a new method of mathematics education in total isolation in Stalinist Czechoslovakia in 

the fifties. He lived in a small city, Martin, in central Slovakia. His son Milan (*1936), 

who was trained as a mathematician, joined his father in educational efforts in the early 

seventies, when horrified by the way his son was taught mathematics, he decided to teach 

mathematics in the class his son was attending. The contact with mathematics teaching 

engrossed him to such a degree that he abandoned his mathematics career and became 

involved in teacher training.  

In 1985 Tamás Varga visited Milan Hejný in Bratislava and taught in his primary 

school class. As Milan Hejný remembered, for about twenty minutes the children needed 

translation of what Varga was saying (the interpreter was one of the children speaking 

Hungarian), but gradually a kind of mutual understanding without words developed. 

Afterwards Varga invited Milan Hejný to teach in his primary school class in Budapest. 

The premature death of Tamás Varga in 1987 prevented this collaboration to bring more 

tangible fruits than a paper (Hejný 2007). 

After the split of Czechoslovakia in 1992 Milan Hejný moved to Prague and started 

to implement the method developed by his father into a series of primary school textbooks. 

In Czech Republic the Ministry of education only checks whether a textbook fulfils the 
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requirements concerning the basic goals, but schools are free to choose any of the 

approved textbooks. Currently about 20% of the children are taught mathematics 

according to the textbooks written by the team led by Milan Hejný.  

Vít Hejný was not a mathematician but a teacher; the method he developed has some 

features in common with other approaches developed by mathematicians, but some of 

them are different (see Bachratý et al., 2012, 2016). I will present the cognitive principles 

of Genetic constructivism. In general this method is an Inquiry Based Learning method in 

the sense that students are discovering mathematics by their own activity. The method 

consists mostly in posing questions, it fosters student´s reasoning, encourages 

collaboration, appreciates mistakes as a basis for further inquiry and discussion and it 

develops a dialogic classroom culture. These characteristics are in line with those outlined 

above by Katja Maass.  Nevertheless, it is specific by taking the social as well as historical 

dimension of mathematics seriously. The problems follow the general process of 

development of mathematics. 

1. The principle of epistemic closeness of mathematics. Thinkers like Plato, 

Descartes, Kant, or Brouwer claimed that mathematical knowledge has a special status – 

it is inborn, a priori or intuitive. It is not important to decide who is correct. The very 

existence of these views indicates that mathematical knowledge is epistemologically 

close. If someone wants to find out where is the spring of Nile, he must travel to Africa. 

In this sense geographical knowledge is epistemologically distant. Mathematical 

knowledge is accessible to immediate experience and authentic mathematical knowledge 

emerges from student’s own experience acquired in the process of his/her own cognitive 

activities in contact with mathematical reality.  

This principle is shared with many reformers inspired by constructivism. The role of 

the teacher is not to tell the students how things are but to pose problems, so that they are 

supposed to solve these problems autonomously. In Genetic constructivism the textbooks 

contain almost only problems, which the children are supposed to solve. So the teacher 

totally draws himself back. 

2. Principle of ontological grounding of mathematics. There are thinkers like 

Aristotle, Galileo, or Arnold, who stress the connection of mathematics with reality. 

Arnold famously said that mathematics is a part of physics where experiments are cheap. 

Again, our task is not to decide who is right. The very existence of such views indicates 

that mathematics is ontologically grounded. If we consider language, which is 

epistemologically close just like mathematics, i.e. a native speaker has immediate access 

to the entire richness of linguistic meaning, the difference is that language is grounded in 
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social conventions. That 2 + 2 = 4 is not an outcome of any such social conventions but a 

fact rooted in the very way how things in the world are. Of course, the language in which 

we formulate mathematical results has a conventional component. But the fact that for 

instance the group of rotations in three dimensional space is noncommutative is a fact that 

is independent from the conventions of the language we use when formulating and proving 

it. 

In Genetic constructivism this principle has deep consequences. The teacher is not 

allowed to say the children if they make a mistake, he is only allowed to show them a 

related problem, where they can find the mistake themselves. The point is that if the 

teacher takes on the role of judge who decides what is right and wrong, the children start 

to develop strategies to please the teacher. The answer of a question “why is xxx yyy” of 

the form “because the teacher said so” is wrong, because it replaces the ontological 

grounding of mathematics by its social grounding. So the role of the teacher is shifted to 

a rather difficult role. He has to know for any mistake the children make, problems or 

questions that make it possible for the children to discover their mistake themselves. 

3. The principle of instrumental anchoring of mathematics. Even if the basic facts 

of arithmetic are immediately accessible, and it is possible to count without a positional 

system, as the Egyptian or Roman numerals show, if one wants to find the product of two 

7-digit numbers, it is much better to have a positional system at one’s disposal. 

Mathematics is interested not only in the basic truths, but also in complex situations. For 

dealing with them mathematicians developed representational instruments such as the 

decimal positional system, the notational system of polynomial algebra, or fractions; these 

allow solving complicated problems. Mathematics educators agree that one task of 

mathematics education is to teach children to use the standard representational tools of 

mathematics.  

Genetic constructivism is radically different. In genetic constructivism we do not teach 

representational tools. Instead we develop several so called environments. For instance, 

for addition these include the number line drawn on the floor of the classroom, where the 

children can walk and find out, how many is 7 (steps) plus 8 (steps). This environment has 

the advantage that minus 7 means to walk seven steps backwards. And – (–7) means turn 

back and walk 7 steps backwards. So in this context it is clear why minus times minus is 

plus. Another environment for addition is the bus. There are several stations; at each 

station some passengers get off and some get on and the children have to find out how 

many passengers are on the bus at the terminal station. There are other environments for 

addition, and they all are isomorphic (even if not totally, because – (–7) has no meaning 
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in the context of the bus). When children discover the isomorphism of the environments 

the right moment has come to show them the representational tool for addition. The same 

happens with algebra, there are again several more or less isomorphic environments in the 

framework of which similar problems are solved. Only when the children realize that they 

need not to solve a problem in the next environment, because the solution of the 

algebraically isomorphic must be the same as in the previous one, they are prepared to 

learn the algebraic notation. Thus the conventional rules are introduced only after the 

children understand the mathematics behind them. This is so, because the main danger 

that is lurking behind the work with the representational tools is that children take the 

conventional rules to be of the same importance as the mathematical principles behind 

them. 

4. The principle of discursive anchoring of mathematics. The main feature that 

distinguishes mathematics from other discipline is the idea of a proof. Thus to teach 

mathematics means to teach proving. In Genetic constructivism this means that the 

children have to learn to find, formulate, evaluate and defend arguments in discursive 

intercourse among each other. The teacher must not tell, which argument is correct and 

which not. That must be decided by the children themselves. If the entire class accepts a 

wrong argument, that only means that the class is not ready. The task of the teacher is not 

to question, criticize or to correct the decision of the class but to wait and after some time 

come with a similar problem, in which the mistake in the argument would come to the 

fore. Further the teacher has to make sure that every argument gets heard and that the 

argumentation happens in a friendly cooperative atmosphere. 

5. The genetic principle. The genetic principle means that the cognitive development 

of the child happens in phases and that the problems formulated by the teacher have to 

take into account the state reached by the children. Genetic constructivism is based on the 

belief that the cognitive development of the child copies the main features of the historical 

development of mathematics. For more detailed exposition and discussion of the genetic 

principle see (Schubring, 1978). 

Genetic constructivism is like an iceberg; on the surface we see only a series of 

problems. We do not see the enormous amount of research engaged into the selection and 

formulation of these problems. This work means first to study carefully the historical 

development of the particular area of mathematics and to identify the basic developmental 

stages. Then the series of mathematical problems is tested with children, in order to find 

suitable series of problems, the solution of which can lead children with different 

mathematical abilities from one stage to the next, up to the final level. The next task is to 
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identify all epistemological obstacles, all misconceptions and other difficulties, that 

resurface    during the testing. And finally additional problems are searched for, problems 

that enable the child to successfully surmount these difficulties. 

6. The historical principle. Mathematics is an integral part of human culture and of 

human history. Teaching of mathematics by reinventing the main conceptual shifts in the 

historical development of mathematics has the potential to reintegrate the children into a 

culture of rational discourse and acceptance of the views of others. The children learn that 

truth is the outcome of discussion, dialogue and argumentation. It further fosters in the 

children the understanding of the cultural heritage of western science and enhances the 

creative potential of self-development. 

7. Further non-cognitive principles. Besides these cognitive principles Genetic 

constructivism has also several educational goals. I can list only some of them. 1. To give 

the weaker students the experience of enjoying intellectual work by means of including 

problems of various levels of difficulty. 2. To reduce the fear of making mistakes and to 

show that a mistake can be the beginning of a new learning process by not penalizing the 

mistakes. 3. To teach to have joy from the success of others by fostering team work. 4. To 

systematically teach to recognize the difference between demagogy and rational reasoning 

by letting the children discuss the solutions they find. 5. To let the students experience a 

culture of friendly discussion and fairness in the class.  

Conclusion. Genetic constructivism can be seen as an IBL approach that bases the 

learning trajectories of children on a thorough reconstruction of the historical development 

of mathematics. The research is used mostly for understanding the cognitive background 

of mathematical knowledge.  

Discovery learning: the Pósa method (Péter Juhász) 

Historical background 

Lajos Pósa is an outstanding teacher especially engaged in the nurturing of Hungarian 

mathematical talents (Győri & Juhász, 2018). Born in 1947, he was a child prodigy and 

silver and gold medalist in International Mathematical Olympiad in 1965 and 1966. He 

co-authored 4 papers with Pál Erdős, the first one when he was 15. After getting a PhD in 

graph theory Pósa turned to teaching mathematics. In the beginning of the 1970s, Pósa 
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joined the “complex mathematical education” movement in Hungary led by Tamás Varga 

(Gosztonyi, 2018). In the 1980s, he became a member of the Mathematical Didactics 

Research Group at the Alfréd Rényi Institute of Mathematics, led by János Surányi, 

studying the applicability of the Varga method in high schools. Between 1982 and 1991, 

he taught two high school classes for 4 years each, during which he developed teaching 

materials with the aim of making the learning of mathematics enjoyable, focusing not on 

the mechanical application of formulas and algorithms, but on relaxed and cheerful, 

autonomous and logical thinking.  

He then turned to talent care, which has a well-established tradition in Hungary, with 

a national network of special mathematics circles for students, the organization of several 

‘high-quality’ competitions, and a mathematics journal for students, the KöMaL published 

since 1893 (Frank, 2012). However, Pósa felt that the school environment, with maximum 

90 minutes for study circle sessions did not enable students to be involved in the intense 

thinking that highly talented students need. Besides he did not consider preparing for 

competitions to be at the core of nurturing talent, but rather that students think on exciting, 

interesting problems and discover the beauties of mathematics autonomously. 

Pósa launched a talent nurturing weekend math camp for one single group in 1988. 

Camp organization has been evolving continuously since then; for instance, in the early 

times the main activity was students’ individual autonomous work, together in a large 

room; now they work in groups of 2-4 students in separate rooms. While in the first camps 

Lajos Pósa was the only teacher and organizer, there are presently 2-7 ‘assistant teachers’ 

offering help to the ‘camp leader’. One group has 2 or 3 camps a year, and follows the 

program during 6 years (Juhász, 2019). 

The main goal of teachers implementing the Pósa method is to give students the 

opportunity to dive into the beauty of mathematics using and improving their creativity, 

problem solving skills, and perseverance. Providing enough time for the students to find a 

solution, a good definition or an exciting follow-up question is an essential feature of the 

method. The teacher supports the construction of a new “building” in the students’ mind; 

the bricks are the problems, new definitions, and challenging follow-up questions, the 

walls are the different strategies and approaches to solve problems. The “construction” 

spreads over 4-5 years and many weekend camps with many homework problems given 

to students between them. 

Thus the Pósa method shares evident characteristics and values with IBL as defined 

above: the central role given to the formulation and solving of significant problems and 

questions, the autonomy given to students in the inquiry process, the importance attached 
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to the quality of their mathematical activity. However, beyond the fact that it has been 

developed for nurturing mathematical talents in informal settings, the attention paid to the 

aesthetic dimension of mathematics and the organization of problems along long term 

threads make it specific. We focus below on the special characteristics of problem threads. 

Problem threads in the Pósa method 

A problem thread in the Pósa method refers to a series of tasks the teacher proposes 

to students. Students have the real opportunity to solve interesting and challenging 

problems. The tasks are carefully sequenced and selected; they build on each other like 

building blocks, gradually guiding students to learn a particular mathematical idea. 

Furthermore, these tasks serve as vehicles for fostering students’ reasoning, problem 

solving, and communication skills. Tasks can be of many different types: a mathematical 

problem to be solved, posing a question or developing a definition (which helps students 

think like mathematicians), playing a game to find a winning strategy or to discover some 

kind of connection. Threads typically span over long periods of time, often several years. 

Many tasks simultaneously belong to different threads, thus creating a complex network. 

We focus here on one example: the thread called “Proof of Impossibility”. One of the 

most exciting parts of mathematics, indeed, is that we can prove that something is 

impossible. We cannot construct something, or we cannot arrange numbers with some 

given property, etc. A priori, there are a lot of options to try, but with mathematical tools 

it can be proved that it is impossible. This breath-taking property has the potential to 

impress even young students. To give the reader a taste, we selected four problems from 

this thread. 

Problem 1.  Draw at least three from the following four maps: there are exactly a) 

6, b) 7, c) 8, d) 9 towns on the map and exactly 3 highways go out from every town (each 

highway connects two towns without passing through others). 

Students often ask questions while they are working, for example: is it allowed to 

connect two towns with more than one highway? Is it required that we can reach every 

town from every other town?, etc. It turns out that it is not so difficult to draw maps with 

6 and 8 towns. However, students struggle with the other two tasks. And there is a good 

reason! These maps are impossible to create. We always stress to our students the interest 

and importance of being able to prove this impossibility. This shows the strength of 

mathematics. 
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Problem 2. One corner of a standard chessboard is removed. Is it possible to cover 

the remaining 63 squares with 21 triominos? (A triomino is a 3×1 rectangle) 

Before we propose this problem, the students have solved the well-known problem where 

two opposite corners of a chessboard are removed and the question is: is it possible to 

cover the remaining 62 squares with 31 dominos? To solve this problem it is enough to 

use the traditional colouring of the chessboard. To solve the triomino problem, students 

need to improve the solution of the previous problem, because the traditional colouring 

does not help. If the students understand why the solution of the previous problem worked, 

then they can find how to colour the board with 3 colours to prove that the required 

covering does not exist (see Fig. 10). Believing that 3 colours can help to solve the problem 

is the first step, and after this idea they need to find a proper colouring. (Note that there 

are other ways to prove the impossibility in both problems.) 

 

Figure 10. A possible chess colouring 

The thread Proof of Impossibility contains even more interesting problems involving 

boards or other figures which can be solved with appropriate adaptations of this colouring 

strategy. 

Problem 3. Given ten integers on the circumference of a circle, we can replace two 

neighbouring numbers with their average. Is it always possible to make all ten numbers 

equal using this operation? 

Lot of students think that mathematics is an abstract science with no room for 

experimentation. But this is absolutely not true. Although experimentations cannot prove 

a general statement, they can make easier to find a conjecture and understand the whole 

situation. In the Pósa method we emphasize that making experiments in mathematics is 

very much welcome. We have another long thread; the title is Experimentation, 

Conjecture, Proof. This third problem contributes to this thread, too.  

Trying some steps and calculating the average of adjacent numbers shows that if we 

start with integers, we only get rational numbers whose denominators are powers of 2 
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since if you take two numbers with this property and calculate their average, the 

denominator of the result will be a power of 2. Considering this and the fact that the sum 

of the numbers does not change during the process, we can easily find an initial situation 

from where it is not possible to reach the desired situation. 

Another important goal of the method is to teach students how to pose good questions. 

After solving this problem, the next task is to collect interesting questions. A very natural 

and easy way to pose good questions is trying to generalize the problem. We can ask now 

what we can tell if we have n numbers on the circumference of the circle. Using the above 

mentioned idea it is not so difficult to show that if n is not a power of 2, we can always 

find a counterexample. It is obvious that if there are only 2 numbers then we can make 

them equal. The next step is more or less obvious, starting with 4 integers we can always 

make them equal. So the first really interesting question is: what happens if we have 8 

numbers?  

This is one of the most difficult problems in our math camps. 

Problem 4. Given a line (e) and a point P not on (e) in the plane, is it possible to 

construct a line perpendicular to e, such that P lies on it, using only a straightedge? 

Before we pose this question students have solved a sequence of problems where we 

want to understand how many times we need to use a compass to construct a line which is 

perpendicular to a given line. Then we let them discover the rich area of geometrical 

transformations in the plane, and at last we (or they) pose the question: does there exist a 

geometrical transformation in the plane which preserves lines but not angles. If they have 

solved this problem and know that such a transformation exists, they can work on the 

construction problem. We do not mention them that the existence of such a transformation 

can help. After a while we give them this information as a hint if necessary. Teachers 

should be very careful with this problem because it is very hard to figure out the solution, 

despite the fact that understanding the proof is not so difficult. 

The thread “Proof of Impossibility” is a very extensive, colourful selection of tasks 

from very different traditional topics of mathematics. We think that these tasks serve the 

original purpose because they are interesting problems, students need to make real efforts 

to solve them, and during the time they work on them they can improve their creativity, 

problem solving strategies and perseverance. 
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Study and research paths in the paradigm of questioning the 

world (Marianna Bosch) 

The Anthropological Theory of the Didactic (ATD) was developed by Yves 

Chevallard from the eighties, as an extension of his theory of didactic transposition (see 

(Bosch & Gascón, 2005) for an historical presentation). More recently (Chevallard, 2015, 

2019), this researcher proposed to approach teaching and learning processes by 

considering two main paradigms. The first one is the paradigm of visiting works, which 

currently prevails in many educational systems. In it, the curriculum is proposed as a 

collection of contents – or works – teachers know in advance and organise for the students 

to learn them. Learning processes can be seen as guided visits to curricular contents where 

the teacher presents or introduces the topics to the students who have to know them and 

be able to do something with them. Some of the curriculum works are treated as real 

“monuments”, historical creations important enough to declare its visit as compulsory by 

all citizens. The “monumentalisation” of curriculum contents is part of today’s educational 

crisis. 

To avoid assuming the paradigm of visiting works as the only possible one, we 

consider a broader paradigm that includes the visit of works but radically modifies its role. 

We call it the paradigm of questioning the world. In this paradigm, the curriculum is not 

defined as a collection of works to study, learn or “visit”, but as a set of questions to 

address, study and answer.  This paradigm is only partially present at school, and in a very 

frugal and mitigated way. It is however dominant in other social institutions, like academic 

research for instance, but not only. We can consider police work, journalistic inquiries and 

lawyers’ investigations are also part of it.  

A key difference between both paradigms is the role played by questions and answers. 

In the visiting works, students learn answers, that is, knowledge organisations that have 

been historically elaborated to answer questions that might have lost their meaning today, 

or that we have just forgotten. These answers come first and, sometimes, teachers try to 

find problems to motivate their use. In this perspective, questions are subordinated to the 

works – the answers. In the paradigm of questioning the world, questions go first: one has 

to consider them as significant by themselves and approach them to elaborate an answer 

by any means, not by using this or that previously established work. 

In the ATD, we use the two paradigms as scientific models, that is, as tools to analyse 

the educational reality by pointing at some of its specificities. We are especially interested 

in the conditions that maintain the old paradigm in vigour and prevent the new one to 
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develop. Our research team has been working during more than ten years in the 

implementation and analysis of teaching and learning processes that try to include as many 

elements as possible of the paradigm of questioning the world (Bosch 2018). The 

instructional format used is what we call study and research paths (SRPs).  

Let us introduce the main elements of an SRP by considering an example taken from 

(Barquero, Monreal, Ruiz-Munzón & Serrano, 2018). The starting point of an SRP is an 

open question Q0 a community of study – made by students X and teachers Y – decide or 

are required to address. In the example, the generating question Q0 was proposed in 2016 

to a group of first-year university students in a degree of economics and management: “A 

research developed by Princeton University in 2014 predicted that Facebook would lose 

80% of its users before 2017. Can this forecast be true? What kind of forecast would you 

propose about Facebook users for the short and long term?” To answer Q0, the study 

community raises some derived questions Q’, Q’’, Q’’’, … they find easier to address: 

about the Princeton study and the methods used, the data directly available, the definition 

of Facebook users, the possible forecast strategies they can perform, etc. The partial 

answers obtained generate new derived questions in what is called a questions-answers 

dialectic, which creates a self-sustained dynamic in the SRP (Bosch & Winsløw, 2015) 

that ends up with the elaboration of a final answer A to Q0 (Fig. 11).  

 

Figure 11. Example of questions-answers map and of data available about Facebook users 

(Barquero et al., 2018) 

The students can answer some of the derived questions by using the means available 

in their milieu: previous knowledge about Facebook, Excel sheet to manage the collected 

data, elementary functions to model them, etc. Other questions will need some new 

information that can be searched in the media that comprises all the accessible information 
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sources. In this case, the media included the Internet, but also books, papers, other       

teachers, etc. The search for information leads the students to find some works other 

people have created and organised to provide answers to other questions, some of them 

similar to Q0, like the Princeton study; other only partially related, like the forecast 

techniques, the data presentations, etc. (Fig. 11). These works must be searched and 

studied, that is, deconstructed and reconstructed to provide specific answers to the derived 

questions. The milieu will then be enriched through what we call the media-milieu 

dialectic. For instance, the collected data will be modelled by different functional 

relationships (linear, exponential, etc.), raising the question about which of the proposed 

models is better and in what sense. Then the forecasts can be compared to the Princeton 

study, leading to the question of the assumptions made by each strategy. The process 

finishes when the community of study considers that its answer A to Q0 can be presented, 

defended and disseminated according to the initial requirements and time constraints.  

The inquiry process followed during an SRP is usually represented with what we call 

the Herbartian schema [S(X; Y; Q0)  M] A (Chevallard, 2019). In this schema, S(X; 

Y; Q0) designates the study community made of the students X and the teachers Y around 

question Q0. The process aims to provide the final answer A and, for this, the study 

community has to build an appropriate milieu M. This milieu includes the previously 

available tools and knowledge and all the other elements generated and found during the 

inquiry: derived questions, empirical data, external works (or answers to other questions) 

produced by others’ inquiries, etc. One can use this schema to describe the elements and 

dynamics of SRPs – or any inquiry process –, to question them and point at their 

limitations.  

Many questions can be raised thanks to the Herbartian schema, about the elements 

integrated into the milieu and their evolution, about the role of teachers and students in the 

managing of these elements, and especially about the elements that are not in the milieu, 

about possible study and research gestures students and teachers could do and do not, etc. 

For instance, it can be shown that in many inquiry-based instructional strategies, the 

media-milieu dialectic is only partially developed. In particular, the searching of new 

information and already available answers, their study and integration into the milieu, or 

their rejection if the study does not reveal anything important about them, these kinds of 

gestures are rarely put to the fore. And teachers and students do not always have the 

appropriate resources to do it. The management of the questions-answers dialectic also 

reveals important difficulties: students are not used to formulating derived questions, 

deciding which one to address first, planning the whole process, searching in the media, 
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questioning the information found and validating it, etc. And teachers do not have many 

resources to help them with it. For instance, the study community often lacks a 

terminology to designate the derived questions, the sources of information, the provisional 

answers, the dead ends, the useless information, etc., because, in the paradigm of visiting 

works, technical terms are usually reserved to the official and important works – the 

“monuments”.  

The design and implementation of SRPs are critical to analysing two main 

phenomena. On the one hand, we find many constraints that hinder the development of 

SRPs, and that we attribute to the prevalence of the paradigm of visiting works. For 

instance, the difficulty of taking Q0 seriously; the teachers’ temptation to show what they 

think is the best path because it leads to use more important pieces of knowledge, etc. On 

the other hand, we study the conditions and instructional devices that favour the transition 

to the new paradigm. In the case of the questions-answers dialectic, we have seen that the 

use of questions-answers maps (Fig. 11) appears to be a useful tool for teachers and 

students to plan and manage the inquiry process: it provides ostensive materiality to the 

lack of terminology previously mentioned. A lot of progress is still necessary, and many 

problems remain open, especially those related to the choice of the generating questions 

and, consequently, to the kind of final answers considered as acceptable, to their 

evaluation and destiny. If an inquiry process has to take Q0 seriously, then, as a 

consequence, the final answer A has to become something important and useful, not just 

the end of the inquiry. What to do with these final answers within and outside the 

community of study, how to assess them and by whom, how to make them available for 

further use, all these open questions are difficult to answer, given today’s school prevailing 

pedagogy and epistemology.  

Nevertheless, the investigations about SRPs carried out also show that many aspects 

of the related inquiry processes can be carried out, at least partially, under the school and 

university conditions. To mention only one, it is sometimes remarkable to see the 

unexpectable fruitfulness of many generating questions, when one lets the students follow 

their own paths and take their research seriously. Searching in the media usually provides 

pieces of information to decipher that generate much more interesting questions that those 

initially forecasted by the designers. The kind of works – and monuments – that need to 

be mobilised to address them also go beyond the controlled universe of knowledge that is 

organised at school. Finding the way to integrate this kind of inquiry processes in today’s 

educational systems remains a big challenge that still needs a lot of effort and research. 
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Reflection and conclusion  

As shown by the different sections of this text, different didactic traditions have 

developed in Europe, based on the vision of mathematics as the product of activities that 

human beings develop to answer questions arising from the world around them, and to 

better understand it, and with the conviction that this epistemological vision should also 

be at the basis of the teaching of this discipline and the mathematics that pupils and 

students experience in schools. Another important point is that these different traditions 

pay specific attention to the fact that mathematics is a highly connected field as stressed 

by Felix Klein in his famous lectures to teachers long time ago, thus also the importance 

of thinking not in terms of isolated sets of questions and answers, but in terms of long term 

teaching and learning trajectories. However, these contributions also show that such 

foundational principles have nurtured and still nurture a diversity of theoretical 

constructions and practical realizations, according to contexts and cultures, and to the 

particular profile and experience of those at their origin. For instance, despite the central 

role given to inquiry processes in all approaches evoked in this text, the visions of learning 

they rely on, the role given to the teacher in the learning process, are quite different. 

Genetic constructivism combines a radical constructivist vision of learning, a priori giving 

to the teacher a very limited role, and a genetic view seeing in the historical development 

of mathematical concepts a fundamental source for organizing learning trajectories. In 

ATD, the inquiry process is modelled in term of Herbartian schema, and according to this 

schema teacher and students constitute a community in charge of finding jointly an answer 

to the question at stake. Moreover, as made clear by the description and example, the 

selection of questions is not driven by genetic concerns. Differences are also clear when 

considering the logic underlying the design of long term learning and teaching trajectories 

in RME, in the Pósa method and in ATD, as made clear by the provided examples. In 

RME, the starting points are most often realistic extra-mathematical situations and 

learning trajectories are thought in terms of processes of horizontal and vertical 

mathematizations; in the Pósa method, the threads of problems developed over several 

years obey another logic, and as shown by the example, the mathematization of extra-

mathematical situations does not play a major role. In ATD, trajectories depend on the 

succession of questions that will emerge from the process of study and inquiry on an initial 

question, and are quite open.  

As made clear by Katja Maass in her contribution, developing the level of consensus 

necessary for making international collaboration possible and for capitalizing on the 

knowledge produced through different approaches, is not an easy task. However, 
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understanding better our similarities and differences, how these impact our didactic 

strategies and realizations, with what consequences, understanding how we can mutually 

enrich from the existing diversity, is something important, and we hope that this text will 

contribute to the efforts already made in this direction.  One of its originality is that it 

combines the contributions of traditions that, for historical reasons, remained rather 

separated for several decades. Genetic constructivism or the Hungarian tradition of 

mathematics education are not so much familiar to many researchers from Western Europe 

involved in research on IBME, and conversely many researchers from Eastern Europe are 

not so familiar with RME, and above all ATD. In fact, the efforts made here can be related 

to those undertaken since 15 years now and captured by the expression of “networking of 

theories” (Bikner-Ashbahs & Prediger, 2014) for limiting the risk of fragmentation of the 

field of mathematics education, due to the exponential increase of theoretical 

constructions, and for improving communication and capitalization of knowledge. These 

offer conceptual tools and methodologies which could be helpful for systematizing the 

work initiated in the panel at the Varga 100 Conference reported in this text.   
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