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Abstract. We present the main results about a teaching/learning path for engineering
university students devoted to the Principle of Mathematical Induction (PMI). The path,
of constructive and metacognitive type, is aimed at fostering an aware and meaningful
learning of PMI and it is based on providing students with a range of explorations
and conjecturing activities, after which the formulation of the statement of the PMI is
devolved to the students themselves, organized in working groups. A specific focus is put
on the quantification in the statement of PMI to bring students to a deep understanding
and a mature view of PMI as a convincing method of proof. The results show the
effectiveness of the metacognitive reflections on each phase of the path for what concerns
a) students’ handling of structural complexity of the PMI, b) students’ conceptualization
of quantification as a key element for the reification of the proving process by PMI; c)
students’ perception of the PMI as a convincing method of proof.
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Introduction

The Principle of Mathematical Induction (PMI) is a topic that generally

students meet at the university as a tool for proving statements P(n) depending on

a variable n in the set of natural numbers. It is well known that its learning is very
133
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problematic: very often the students feel the PMI as untied from their previous

mathematical experience and do not understand the reasons of the validity of

the PMI as a proof method, so they learn to apply it as a recipe without any

awareness about its meaning.

As we show in our theoretical frame, many studies: a) highlighted the over-

lapping of different types of difficulties met by students in their PMI learning; b)

gave indications about how to foster the students learning of the PMI; c) analysed

and classified students behaviours and conceptions in proving statements by PMI.

But, although the big number of papers on the PMI, there is a lack of studies

about the role of the teacher and the effects of his/her behaviours on the students’

understanding and perception of the PMI as a method of proof. This paper is

aimed to highlight this correlation.

We believe that the most common difficulties that inhibit an aware under-

standing of PMI are due to two main factors: first, a problematic relation of the

students with the matter, that displays in little attention to the interpretation

of the formulae and their logical connections; second, the traditional approach to

the PMI, often characterized by a concise and rushed teaching, mainly focused to

its application to prove closed-form statements.

We are convinced that is possible to minimize the detected difficulties by a

reflective teaching which pays specific attention to make explicit all the logical

and semantic ’knots’ hidden in the statement of the PMI. This should favour the

students’ understanding of the deep sense of the proving process.

To verify this hypothesis, we designed and implemented a constructive and

metacognitive teaching path on the PMI, articulated in various phases and based

on different types of activities where the students have to work in different ways

(individually, in small group work, in collective discussion with teacher). All

these activities are aimed at engaging students as active learners, allowing them

to conceptualize, apply, explain the PMI and embed this mathematical content

into a meaningful net of connections with previous knowledge and experiences.

The main idea is to involve at the beginning the students in the exploration of

connected questions that should make them explicit the reasoning underpinning

the PMI, so that the formulation of this principle can be devolved to them. After

the collective validation of the statements of the PMI formulated by the students,

our educational path envisages the exposure of the students to fallacious induction

arguments, in order to stress the essentiality and independence of the base step

and of the induction step in the PMI. Yet, the students are called to autonomously
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prove some not simple sentences by PMI and then – by a metacognitive question-

naire – to reflect on the experiences made and to express their understanding

and perception of PMI. Finally the students are involved in a role-playing game

where they act also as a teacher, either in posing problems involving the PMI to

classmates or in assessing solutions of those problems and proofs by PMI done by

classmates.

In such an educational path, clearly the role of the teacher is essential, since

he/she should foster the students’ understanding of the contents and focus their

attention on the several aspects involved in the processes in play.

Our specific research foci are related to both students and teacher. From the

students’ side we focus: i) on their handling of the structure of the PMI when they

use it to prove statements, and ii) on their perception of the PMI as a method

of proof. From the teacher’s side, our main aim is to highlight iii) the different

roles played by the teacher in the various phases of the teaching path and iv) the

incidence of her didactical choices on the students’ learning in terms of abilities

in proving by PMI and awareness on the effectiveness of PMI as proving method.

Our Theoretical Background

In this section, we describe the theoretical elements which we used in the a

priori cognitive and epistemological analysis that guided the design of the educa-

tional path. Moreover, we recall the theoretical lenses we used for the a posteriori

analysis of the steps of the educational path.

To fix a formulation of the PMI, we refer to the following statement:

Let P (n) a proposition depending on a natural number n. If

(1) P (n0) is true for a certain n0 in N;

(2) for all k ≥ n0, if P (k) is true, then P (k + 1) is true;

then P (n) is true for all n in N, n ≥ n0.

Obviously in point 2) we could use the same letter n used before, since the in-

dex is saturated by the quantifier, but we choose to differentiate the letters n and

k to avoid inducing the students’ common misconception concerning the circular-

ity of the PMI (i.e. we are assuming what we would like to prove). As usually,

condition 1) is said ’Base Step’ (BS) and condition 2) is said ’Induction Step’,

(IS); moreover, in IS the premise of the implication is said ’Inductive Hypothesis’

(IH). From now we shall use these abbreviations.
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Difficulties and non-traditional approaches
for teaching/learning the PMI

Based on the literature (Avital & Libenskind, 1978; Dubinsky, 1986, 1989;

Ernest, 1984; Harel, 2001), we distinguish some main categories of difficulties in

learning and understanding the PMI: logical and interpretative difficulties, con-

ceptual difficulties, technical difficulties, and also psychological difficulties. The

logical and interpretative difficulties regard the structure of PMI, for the intrinsic

complexity of its logical form. Its statement is a conditional proposition ”if...,

then...”, where the premise is the conjunction of two conditions, the second of

which is a quantified conditional proposition itself. The difficulties regard the two

settled implications and their different value, the double occurrence of the uni-

versal quantification, and the IS, which contains infinitely many inferences. Very

often the students do not grasp this chain because they see the variable n simply

as a generic fixed number and do not reflect on the role of quantification. The

conceptual difficulties are related, on the one side, to the essentiality of both the

BS and the IS, often not grasped by the students, and the link between them for

the validity of the PMI as proof method. On the other side there is the apparent

circularity between what we assume (the IH) and what we need to prove: the

students do not control the changes of role of the proposition P(k) in the inferen-

tial chain (from thesis in a certain step to hypothesis in the subsequent step) and

above all they do not understand why this process assures the general validity

of the proposition. The technical difficulties concern the algebraic manipulation,

i.e., the capability to face the specific form of the proposition to be proved. In-

deed, sometimes it is necessary a strategic way of thinking and the capability

to orient in an original way the transformations of the IH towards the desired

aim, activating forms of anticipatory thought (Bell, 1976; Boero, 2001). Finally,

we call psychological difficulties those that depend on a sense of discontinuity

between the PMI and the mathematics previously learned, and those arising by

the expression ”principle of induction”, which in the common language and for

empirical sciences means the generalization by few specific cases.

Several scholars proposed interesting suggestions aimed at fostering a better

understanding of the PMI. In the following we review the approaches that mainly

informed our teaching/learning path. Avital and Libenskind (1978) introduced

a naÏve approach to mathematical induction, based on the verification of the

BS and of some local implications P(k) → P(k + 1) for successive values of k.

Precisely, students should be invited to check the validity of the statement P(n)

to be proved for the first value of n, say n = 1, verified by the BS, and for a
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few other consecutive values. They should show how P(2) follows from P(1),

P(3) from P(2), and so on. In agreement with Avital and Libenskind (1978),

we think that, through this approach, the common structure of each specific

inference should suggest the structure of the proof of the IS. Moreover, the sharp

connection between the BS and the IS should arise, making the proof via PMI

clear and explaining.

Analogously Cuoco and Goldenberg (1992) proposed that students should

be induced in recognizing self-similarity of the stream of syntactical transfor-

mations. This focus on an invariant structure arose also in the study by Harel

(2001), where the author talked about generalization of result-pattern and gen-

eralization of process-pattern. According to these notions, a statement turns out

from the regularity of a result or a process respectively. In the quoted paper Harel

proposed that the conceptual learning of the PMI springs from the progressive

assimilation of the generalization of process-pattern (”quasi-induction”). Namely,

first students should become able to apply the PMI autonomously and sponta-

neously and then they should conceptually recognize it as a method of proof.

According to Harel (2001), in ”quasi-induction” students recognize the implica-

tion P(n) →P(n + 1) as the last inference step needed for assuring the truth of

the proposition P(n+1), starting from the BS; instead in mathematical induction

P(n)→P(n + 1) is a variable inference form which represents the generic ring of

the entire sequence of inferences.

In our path the notions of generalization of result- and process-pattern are

used to foster the students’ deepening of the meaning of the IS; the concepts of

inference steps and inference form help us to analyse the progress of students’

understanding of the PMI. If 1 is the first natural number for which P(n) holds,

we go through the verification of the local inferences P(1)→ P(2), P(2)→ P(3),

etc., which should suggest how to prove the generic implication P(k)→P(k + 1)

through the generalization of a process. This step should be made explicit also

to promote the shift of meaning of k from generic number to a variable in N.

Moreover, to bring the students to conceive the IS as the synthesis of the infinite

chain of the successive implications starting from P(1) →P(2), the introduction

of the universal quantifier is essential. Surprisingly, this focus on quantification

does not appear in most studies on the PMI.

We believe that to induce the transition from the inference steps view to the

inference form view, and, most importantly, the view of the entire sequence of

inferences, the key point is to make explicit the role of the universal quantification.
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We would like it spontaneously emerges from the experiences we have designed

for students and from the meanings they attribute to the mathematical induction.

Summarizing, from the literature on PMI the need for constructive approaches

arose, taking into account critical issues about the traditional teaching of the PMI

and suggestions for remedial: the introduction of the statement of the PMI, often

done abruptly, should arise from exploration and conjecturing phases; it would

be suitable to make the students feel the need for proofs by PMI, rather than de-

scribe the method as a recipe to be applied; students should be required not only

to prove statements, but also to produce conjectures; analogies and metaphors

should be suggested in order to make clear the connection between the PMI and

the structure of the set of natural numbers; students should be exposed to het-

erogeneous kinds of problems and statements, and not only to finite sums, to be

faced via the PMI. All these suggestions have been considered in the design of

our educational path.

Roles of the teacher as a model of aware
and effective behaviours

The analysis of the various phases of the educational path is realized by

referring to the roles played by the teacher who ”poses him/herself as a model of

aware and effective attitudes and behaviours for students” (Cusi & Malara, 2015).

The authors identified some behaviours that such a teacher should display during

the classroom activities; he/she should:

a) be able to play the role of an investigating subject, stimulating the students’

attitude to the research, and acting as an integral part of the class towards

the shared research aim;

b) be able to act as a practical/strategic guide, sharing knowledge with students,

and as a reflective guide in identifying practical/strategic models during the

classroom activities;

c) be aware of his/her own responsibility in maintaining a harmonic balance

between semantic and syntactic aspects in using the algebraic language;

d) stimulate and provoke the enactment of fundamental skills for the develop-

ment of thought processes and play the role of activator of interpretative

processes and of anticipating thoughts;

e) foster meta-level attitudes, being an activator of reflective attitudes and of

metacognitive acts.
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Methodology

The context of the study

The project has been carried out in the second term of the academic year

2018/19, within an optional course of 48 hours for Computer Engineering sopho-

mores at Polytechnic University of Marche. The class consisted of about 30

attending students. The PMI was a major topic of the course, and the other

subjects treated were propositional logic, sets, relations and functions, natural

numbers and divisibility, algebraic structures. Each specific content was taught

with the aim to give an overview on the mathematical proof, a theme which was

an underlying fil rouge along the course (Lolli, 2005).

The educational methodology

From the first lectures, the course was dialogue-based, to favour the inter-

actions of the students with the teacher and the peers, and laboratory-based,

to foster the students’ work in groups, communication about mathematics and

argumentation. Both these features are non-traditional at the tertiary level of

instruction, at least in Italy, and allowed us to involve students in subsequent

cycles of 1) exploration; 2) formulation of questions and their solution supported

by argumentations; 3) refinement of the productions and meta-reflections. In

these cycles the individual or small group work are intertwined with collective

discussions. These choices are in tune with the recent trends of research studies

at university level (Jaworski & Matthews, 2011).

The PMI was the focus of four lectures for an amount of ten hours (excluded

the role-play, see below). In the lessons preceding the treatment of the PMI,

the concepts of logical implication and modus ponens were treated. The stu-

dents had already met the PMI in the preliminary course, before their entrance

at the university. According to the hypotheses discussed above, we aimed to

(re-)introduce the PMI with a non-traditional approach, in order to bring the

students – after some opportune mathematical experiences – to formulate them-

selves the principle. We especially wanted the students to rediscover the PMI,

without previous conditioning. This is why we abstained from mentioning words

and symbols traditionally linked to the PMI, such as ”recurrence”, ”induction”,

”P(n)”, ”step”, etc.

During the educational path, we collected many oral and written produc-

tions by the students, to follow their progress. In particular, we collected a) the



140 Agnese Ilaria Telloni and Nicolina Antonia Malara

students’ interventions during the audio-recorded discussions made in the lec-

tures or workshops; b) the students’ proofs or refutations of conjectures; c) the

formulations of the PMI provided by the students working in small groups; d)

the students’ analysis of fallacious proofs by induction, in tune with Brumfield

(1974), and the formulation provided by the students of false proofs by induction,

together with the reasons of their fallacy; e) the students’ answers of a cognitive

formative test; f) the students’ answers to a metacognitive questionnaire.

The last phase of the project – excluded from the ten hours devoted to the

PMI – , has been organized as a role-play. During the role-play students played

first the role of teachers who assign problems about the PMI, then their role of

students who solve problems (assigned by a peer), and finally the role of teachers

again, since they evaluated the solutions of the problems (produced by a peer) on

the basis of some provided criteria of correctness, completeness, and proficiency.

All the steps of the role-play also envisaged an argumentative phase, sometimes

consisting in a metacognitive analysis – like the discussion of the difficulties en-

countered in learning the PMI –, sometimes consisting in the justification of given

solutions or responses – like the motivations for which a specific problem is con-

sidered simple or difficult.

The research methodology

For each phase, 1) the audio recording of the lectures, 2) the teachers notes

about the students’ behaviours and her own behaviours and feelings, and 3) the

students’ productions; have been analysed. This analysis has been done taking

into account: a) the indicators offered by the quoted literature; b) the didactical

choices and roles assumed by the teacher. A specific attention has been given

to the students’ proofs and argumentations, classifying them according to the

ways of reasoning, the detected difficulties, and the argumentative styles, also

highlighting the beliefs and awareness emerged. For each lecture, a study of

the teacher’s choices and behaviours has been done, also taking into account the

teacher’s notes about her feelings and actions carried out.

The Experimental Educational Path

Our educational path has been planned with the aims:

a) to engage students at all the levels of learning and to provide students with

a set of experiences of exploration and conjecturing activities, bringing them
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to formulate themselves the PMI by means of a co-construction of a personal

comprehension of the principle with their teacher and the peers;

b) to make the IS and the structure of its proof emerge from particular inferences.

This should clarify the role of the BS and the IS and their link, by means of

a specific focus onto 1) the meaning of the letter involved in the statement

as variable; 2) the need and the role of quantification. These aspects should

foster the perception of proofs via PMI as clear and convincing.

c) to improve and observe the progressive development of students’ mastery of

complexity, in connection with the teacher’s choices and aware behaviours.

We will only focus on some of the key phases of the educational path, dis-

cussing the main results emerged according to the aims of the research.

The exploration and conjecturing phases

The first lecture on the PMI was devoted to: i) highlight the difference be-

tween empirical and mathematical laws; ii) propose some exploration and conjec-

turing activities that should allow students to construct, according to Dubinsky

(1986, 1989), the mental schemas needed for deeply understand meanings and

processes underlying the method.

First, students were exposed to activities aimed at making them perceive

the need for proof of a mathematical proposition (see for example Avital &

Libenskind, 1978; Carotenuto et al., 2018; Nardi & Iannone, 2003; Ron &

Dreyfus, 2004). The first activity was mediated by a storytelling approach, cho-

sen to engage students and foster their learning at the affective level (see, for

example, Albano et al., 2016). The teacher exposed the fictional adventure of the

agent Blazkowicz (the main character of a widespread videogame), who fails in

his mission as an infiltrator for taking an empirical observation as a law. After a

classroom discussion about the differences between empirical and mathematical

laws, the exploration of the series of numerical equalities shown in Table 1 – some

of which cannot be generalized – was carried out, and the formulation of conjec-

tures about them was required to the students. These problems are in tune with

those proposed in Stylianides et al. (2016) to encourage a work of exploration

and not only the proof of a known result.

On the one hand, this was aimed to accustom the students to formulate con-

jectures by generalizing a finite number of observations, according to the notion

of cognitive unity (Boero et al., 1996) and, on the other hand, to make explicit the

need for a proof to accept the validity of a proposition and for a counterexample

to sanction its falsity. In this phase, the teacher explored the sequences with
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the students and posed herself as an investigating subject (Cusi & Malara, 2015),

orchestrating the students’ interventions and acting as an element of the class

towards the shared objective; at the beginning her interventions aimed at scaf-

folding attitudes and behaviours in the students, but progressively her support

faded.

To give an idea of the classroom interactions during this phase, we report

some students’ interventions. During the collective analysis of case 1 in Table

1 – the first one faced with this method – students proposed conjectures in the

following terms. S1: ”The difference between the sum in a row and the sum in the

previous one is the last even number added”, S2: ”We obtain always odd numbers”

and S3: ”We obtain always prime numbers”.

Table 1. Exploration and conjecturing activities

All these purposes show that students focused only on one side of the equal-

ities; all the sentences but the first one suggest that students did not look for

a general formula through a combined analysis of two or more consecutive rows.

Through a collective discussion, the previous statements were clarified and

rephrased, giving them the form of conjectures, and they were written on the

blackboard. This refinement forced students to find out a general structure of

both sides of the equality; they had to use the summation symbol or the dots and

write each side of the general formula P(n) by connecting it with the correspond-

ing natural number n.

In this phase, some critical issues arose: the students displayed not being used

to have an active role during the lectures, especially to explore and conjecture,

and they had many linguistic difficulties. For example, in conjecturing about

case 2, S4 said: ”The sum of the first ciphers is the square of the number of the

ciphers: the first one is 1, the second one is 2, the third one is 3 and so on”. In
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this intervention, we can highlight an attempt to take into account both sides of

the equality, but also a poor linguistic capability in explaining what the left-side

is: the term ”cipher” is improperly used and it is not paid attention to what

numbers are added there.

However, the linguistic capabilities and the handling of symbols improved

progressively during the teaching/learning path, as we will discuss later.

Refutations and proofs. From the first local implications to their
generalization

This step was devoted to confuting or proving the above conjectures. For the

conjectures that students felt to be true, the teacher suggested collectively arrange

a proof starting from the verification for the smallest value of n, say the first case,

and then showing that from the first case the second follows, from the second case

the third follows and so on, through local implications. Students were organized

in small groups of three people and required, for each fixed conjecture, to prove

a specific local implication. The productions of the groups were collected and

shared with the classroom by the teacher, who highlighted the common structure

of the local implications and brought the students to grasp the opportunity of

proving a generic local implication, that is the implication from a generic value

to the subsequent one.

Moreover, in order to state the general validity of the proposition, the inser-

tion of the universal quantifier is a key point, allowing to pass from the generic

local implication P (k) → P (k + 1) to the general implication P (k) → P (k + 1),

for all k.

For example, about conjecture C2 in Table 1, the teacher provided the classi-

cal geometrical interpretation involving the gnomons, that suggests the syntactic

transformations needed to prove first the passage from a fixed value to the subse-

quent one (local implication) and then the passage from the generic value k to k+1

(generic local implication). Finally, the teacher stimulated the students metacog-

nition, aiming at making the need for quantification arise, in order to prove the

conjecture for all the cases. These interventions fit for the teacher’s role as an

activator of interpretative processes, metacognitive acts and anticipating thoughts.

Indeed, the teacher favoured the students’ insight to the identification of steps

needed to construct a proof by PMI. Moreover, she fostered the coordination

between different semiotic registers (the arithmetic one and the graphical one) to
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make the students see first the generic and finally the general in the particular

(Mason, 1996; Mason & Pimm, 1984)

Figure 1. Schema of the activity of the first lesson, from the explo-
ration to the proof of C2

As an example about false conjectures, let us consider the students’ be-

haviours when facing C4 (Table 1). Students, generally doubtful about the truth

of C4, used different approaches: some of them looked for a counterexample by

the direct analysis of the cases, but they were not able to find it; some other stu-

dents tried to arrange a proof of its validity. One of them, after a failed attempt,

declared ”Maybe the difficulty we have in finding a proof for this conjecture sug-

gests that it does not hold in general”, referring to the heuristic function of the

mathematical reasoning.
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In the described activities of conjecturing, refuting and proving, the stu-

dents should not only recognize the self-similarity (Cuoco & Goldenberg, 1992)

in the stream of calculation to formulate a conjecture, but also make it visible

by highlighting the common structure of the local implications. In other terms,

both the generalization of the result-pattern and the generalization of the process-

pattern (Harel, 2001) should be applied, the former when the students found out

a conjecture from the exploration, and the latter when the proof of the general

implication was obtained as a generalization of the local implications (Figure 1).

Both the generalizations are here a remarkable signal of a mature mathematical

way of thinking: when students generalized the result-pattern, they were aware

that their conjecture could be false, since it was an extension from a finite num-

ber of cases. The exposure of the students to fallacious extensions of empirical

laws was just aimed to reach this awareness. Just the reflection, fostered by the

teacher, on the soundness of the provided reasonings as proofs of the conjectures

made the need for the quantification in the IS essential. So, it turned out that

there is a chain of local inferences that, from the verification of the statement for

the first value, allows to assert the truth of the statement for any value.

The students’ formulation of the PMI

After some experiences with propositions of different kinds (equalities, ge-

ometrical statements, sentences in verbal language, inequalities), other working

groups of three people were formed and required to state the method used to

prove the true conjectures, together with the reasons of its validity. In Table 2

we report some prototypes of the groups of students’ productions.

The statements have different degrees of formalism, from the very discur-

sive form of G3 to the formal and symbolic statement of G2. All the formulations

highlight a clear effort to fix the structure of the PMI, which was one of our learn-

ing goals. Some elements reveal that the formulations arose from the students’

experience during the exploring and conjecturing phase; for example, G1 used

the term ”conjecture” and focused on the operational steps needed to arrange a

proof via PMI, while G3 showed to understand the link between BS and IS and

to conceive IS as a chain starting from the ”verification of some first cases”.

Some linguistic inaccuracies afflict the protocols and display the students’

difficulty in considering the statement to be proved as a propositional form that

can be evaluated in the set of natural numbers: for example, G1 wrote ”assume
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the k-th case is true”.

Group Formulation of the PMI Reasons of validity of the PMI

G1 Taken a conjecture, in order to ver-

ify its truth, I must consider three
essential steps: 1) prove that the

proposition is true for k0 (k0 not

necessarily 0); 2) assume that the
k-th case is true, k ≥ k0, and prove

the case k + 1; 3) from the points

1) and 2) it follows that the propo-
sition is true for every k ≥ k0.

The method works well since I can con-

struct a chain for the validity of the
proposition: for the first case k0, it is

true (point 1)); by applying point 2), we

can say that it is true for k0 + 1; by ap-
plying point 2) again, we can say that it

is true for k0 + 2 and so on.

G2 Let P be a property. P holds for

all the natural numbers if: 1) P (0)

holds and 2) the implication P (n)
holds → P (n + 1) holds is true for

all n ∈ N.

The method is valid since, for every n,

there is a chain of inverse implications in

which hypothesis and thesis interchange
their positions; the truth for the value

n is led back to the truth for the value

n− 1, then to the value n− 2, up to the
value 0, for which the property is true.

G3 The proof method that we used al-

lows proving a proposition through

the verification of some first cases
and the possibility to deduce, for

every k, from the k-th case the next

one.

It is as to go up on a ladder with infin-

itely many rungs. I have the first rung

and I know that I can go up on the sec-
ond one. When I am there, I know that

also the third rung is safe and I can go

up. So, if I want to arrive at the n-th
rung, I know that I can do it since I know

that from the (n−1)-th rung I can reach

the n-th one; but I can reach the (n−1)-
th if I can reach the (n−2)-th and so on

until I say that I can reach the second
rung if I can reach the first one. But I

verified that I can go on the first rung,
hence I can go up to the n-th rung.

Table 2. Some groups’ formulations and justifications of the PMI as a
method of proof

Moreover, G2 wrote a) ”inverse implication”, meaning to go backward in

the deductive process, and b) ”hypothesis and thesis interchange their positions”,

which seems to refer to the ”change of state” of the proposition P(n), that first is

the thesis of the implication P(n−1)→ P(n), and then becomes the hypothesis in

the subsequent implication P(n)→P(n+1). Albeit the linguistic imprecision, this

protocol suggests that the students of group G2 understood the PMI mechanism

of transmission of the truth of the proposition P(n) from a natural value to the

subsequent one.

In order to explain the reasons of validity of the method, some groups referred

to metaphors or mental images (G1, a chain; G2, a ladder with infinitely many
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rungs), some of which were suggested by the teacher during the previous lessons.

These mental images, the utility of which is widely recognized (Ernest, 1984;

Harel, 2001; Nardi & Iannone, 2003), seemed to be preferred by the students

because they are insightful and facilitate the communication of the mathematical

ideas. Moreover, they induce students to reflect on the structure of the set of

natural numbers, and on the essentiality of the concepts of ”first element” and

”successor”, that in the PMI method mirror themselves in the ”base” and ”local

generic implication” step. Some groups provided the reasons of validity of the

used method by referring to a personal construction and to a dynamic process

involving themselves (G1: ”I can construct a chain”, G3: ”I have the first rung

and I know that I can go up on the second one. When I am there, I know that

also the third rung is safe, and I can go up. So, if I want to arrive at the n-th

rung,...”).

From a general point of view, the overall analysis of the protocols of the ten

groups highlights that, except for a group that misunderstood the request and

did not provide a formulation of the method:

(1) all the groups identified correctly the logical structure of the PMI;

(2) most groups (6 of 9) did not indicate explicitly the quantification in the IS,

while almost all inserted the quantification in the conclusion;

(3) only 5 groups of 9 used a generic first value for which the proposition holds,

while the remaining fixed the first value as 0 or 1;

(4) 6 groups showed to guess the reasons of the validity of the PMI as a method

of proof (mainly referring to inference steps rather than to inference form)

and mentioned suitable mental images, mainly associating the method to a

dynamic process of transmission of the validity of the statements;

(5) only 2 groups used an impersonal formulation of the PMI.

The outcomes of this phase suggested some critical points to be fixed and the

learning needs of the students, having in mind the learning goals that should be

achieved. For example, point 2) induced the teacher to project and enact further

activities, like inviting students to come back to previously faced propositions

and reflect on them, focusing on the meaning of the IS, from which the need of

quantification arises. Also, it turned out to be essential to bring the students to a

more mature view of the principle. Indeed, the groups’ reconstruction of the PMI

as a method of proof was mainly oriented towards the sequence of n inference

steps, assuring the truth of P(n) starting from the BS, rather than towards the

inference form, that is the view of the generic implication P(k) →P(k + 1) as
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representative of a ring of the entire sequence of implications (Harel, 2001). In

other terms, the students saw mainly the potential infinity, which allows proving

the truth of P(n), for each n, by considering the implications linking P(n0) and

P(n), but not yet the actual infinity of the whole sequence of implications. We

believe that this view can be reached only by the awareness on the role of the

universal quantifier in the IS. This suggests the need to force the students’ view

of n as a variable in N, and therefore to introduce the quantification in the IS,

that enriches the meaning of the sentence, allowing to pass from the vision of

potential infinity, intrinsic of the PMI, to the actual infinity of N.

As regards point 3), the teacher opened a collective discussion on the inequal-

ity n2 < 2n through stimulus questions such as i) for what value it is true? ii)

How can we prove the inequality for these values? During the analysis of the

proposed inequality, the students observed that n2 < 2n holds for n = 0 and

n = 1 and some of them tried to prove the inequality by induction, starting from

one of these values, but they are not successful. So, through a direct analysis of

the cases for small values of n, it was collectively remarked that the inequality

does not hold for n = 3 and n = 4. ”But for n quite large, the inequality holds,

since 2n is an infinity of degree greater than n2!”, said a student, while other ones

justified the same conclusion by referring to the graph of the functions y = 2x

and y = x2. So the students were induced to search the first value for which the

inequality definitively holds and finally they found n = 5. Hence, they concluded

that it is possible to prove the above inequality by induction with BS n = 5, and

the proof via the PMI was done in the classroom.

All the described activities were aimed to collectively obtain the rigorous

formulation of the PMI in quantified form, with a generic first value for the BS.

The role played by the teacher in this phase of the educational path was that

of activator of reflective attitudes. She was also responsible for the balance between

semantic and syntactic aspects: she fostered the students’ awareness about the

value for the BS and she acted so that the quantification in the IS emerged from

the students’ experience. Moreover, she invited students to adjust by themselves

their formulation of the PMI in light of the elaborated reflections.

The formative cognitive test

In order to test the research hypotheses, evaluate the educational path and

gain information about the students’ level of knowledge about the PMI, a forma-

tive cognitive test was submitted to them (see Figure 2). The test includes five

problems, having different items (prove that ...; explore ..., formulate a conjecture
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and prove it; find the bug in the following proof ...; find a model for ...) and re-

ferring to statements of different kinds (equalities, inequalities, divisibility state-

ments, verbal language sentences). According to our research foci, the items are

aimed not only to evaluate the students’ capability to prove statements via the

PMI, but also their handling of the structural complexity of the PMI and their

use of the PMI as a tool to explore situations and make conjectures.

Figure 2. The cognitive test about the PMI

Problems 1 and 3 are the core of the test, since they involve a modeling

part, essential for engineering students: a statement should be formulated, proved

and finally the result should be interpreted according to the context. Instead,

problems 2 and 4 are proposed since also the low achievers should be able to solve

them, so avoiding detrimental frustrations. Problem 2 requires the formulation of

a simple conjecture that can be proved by straightforward manipulation. Problem

4 does not present specific difficulties in the setting of the solution, but it requires

an alignment between conceptual insight and technical handle, according to the

notion of relational necessity mentioned in Stylianides et al. (2016); indeed, the

combination of students’ skills and the posed problem requires a deepening of the

underlying mathematical relations to find out the solution, and not only blind

algebraic transformations. Finally, problem 5 aims at evaluating the students’

understanding of the fallacious proofs.

Generally, the students’ productions displayed a full comprehension of the

PMI structure, the quantifications and the essentiality and independence of the
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BS and the IS. Most students indicated clearly all the steps of their proofs via PMI

and the corresponding actions, using expressions like ”I will proceed by induction”,

”I verify the BS”, ”I will prove the IS”, ”Let us assume the IH”, ”I use the IH”

and whatnot (see Figure 3, black boxes).

Figure 3. A protocol of the cognitive test; the student sketches out
the steps of the proof (black boxes), but does not handle correctly the
indices in sums (dotted ellipses)

All but one student recognized and chose correctly the value defining the BS

for all the proposed proofs. However, some students were not able to conclude the

proof because of troubles in modeling the situation of problem 3, or for algebraic

and interpretative difficulties, that emerged mainly in cases of the statements

involving inequalities and concerning divisibility of problem 4. Indeed, in these

cases generally the proofs are not straightforward and require goal-oriented syn-

tactic transformations. As a positive aspect, we observed that some students

showed a good metacognitive effort in recognizing their difficulty in algebraic ma-

nipulation, since they wrote declarations like ”I cannot go on” or ”I am not able

to continue to prove the IS” (see Figure 4).

Moreover, also in problem 2, concerning an equality, some protocols present

inaccurate writings; for example, some students used incorrectly indices in sums,

as in the expressions highlighted by dotted ellipses in Figure 3. Finally, a group of
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Figure 4. A protocol of the cognitive test; the student writes ”I am
not able to continue”

students did correct algebraic transformations but did not interpret the obtained

formulae to conclude the proof, like considering them self-evident.

On the other hand, from a general point of view, the cognitive test displayed

that students improved their linguistic, argumentative and reflection capabilities:

this also emerged in the metacognitive questionnaire, as we will discuss later. As

a further remark, we observe that some students, during their algebraic manipula-

tion, obtained expressions, mainly inequalities, that do not convince them; then,

they used again the PMI to prove these inequalities. This can be interpreted as

a signal of their perception of the PMI as a proof method that ascertain, that is

convince themselves, according to the terminology used by Harel (2001).

The metacognitive questionnaire

After the cognitive test, a metacognitive questionnaire, shown in Table 3,

was submitted to 28 students. It was aimed at evaluating their perception of

the meanings and the processes involved in the PMI, together with its reasons of

validity. The design of the questions was informed by the questionnaire presented

in Fishbein and Engel, 1989.
The responses to the questions highlighted that most students understood

the deep meanings involved in the PMI and the reasons of its validity. In this

respect, 26 over 28 students were able to explain the connection of the BS and



152 Agnese Ilaria Telloni and Nicolina Antonia Malara

1) Giacomo and Luca talk on the PMI. Giacomo says: ”Right now I proved a theorem using
the method of mathematical induction, but I don’t know if the theorem proved is really true,

because I relied on the inductive hypothesis (the truth of the statement for a certain k) and

I don’t know if this statement is true for this k.”

Luca says: ”But it is the base step that ensures the truth of the statement for a certain k: to

understand the mechanism of proof, you have to connect the inductive step to the base step.

This connection guarantees the truth of the statement for that certain k”.

Do you agree with Giacomo or Luca? Explain your viewpoint and justify your choice.

2) Carlo is doubtful by the PMI proof method. He says: ”In a proof based on the PMI, there

is a defect contained in the inductive step. At this stage we suppose that the statement is

correct for a generic k; relying on this, we say that it is correct for k+1, finally we conclude
that the statement is true for all k. I think there is a leap. How is it done by reasoning on

a fixed value to conclude that it is valid for everyone?”

Try to explain to Carlo what he is neglecting to consider and why the conclusion is correct.

3) Ugo states the principle of mathematical induction as follows: ”Let P(n) be a proposition
that has meaning for natural numbers. If we prove that P(0) is true and that, for some k,

if P(k) is true, then P(k + 1) is true, then we can conclude that P(n) is true for every n”.

Do you agree with him? Do you think that the statement is correct or should it be corrected?

Justify your answer.

4) We know that every non-zero natural is the successor of a single natural number which

is its antecedent. Does this proposition come into play in induction proofs? Justify your
answer.

5) In light of what has been done in class and in the collateral activities, do you think a
proof by induction is only a procedure that guarantees the truth of the sentence or is it a

procedure that makes clear and convincing the reason for the truth of the sentence? Justify
your answer.

Table 3. The metacognitive questionnaire about the PMI

IS and to reconstruct the mechanism of the PMI. For example, S8 referred to

the ”transmission gear guaranteed by the existence of a successor for each natural

number, that allows us to connect the BS to the IS; therefore, this assures the

truthfulness of the statement for the k that interests us. S9 says: ”The strength of

the principle of mathematical induction is on the link between the BS P(k0) and

the IS, P(k) →P(k + 1) for every k ≥ k0. [...] P(k0) is the base of the ladder

with rungs, where the rung P(i) is based on the previous one P(i− 1) and this is

based on the previous one P(i− 2) and so on...up to P(k0)”. 23 over 28 students

reacted to incomplete and incorrect formulations of the PMI proposed by fictional

colleagues (items 2 and 3) by correctly pointing out the fallacies or inaccuracies.

For example, S10 answered question 2 as follows: ”Carlo is missing the quantifier
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giving the condition on the k which is possible to choose; the quantifier ∀n ≥ n0,

where n0 is the smallest natural number such that p(n) makes sense, indicates

those values of k from which it is possible to reconstruct the chain of implications

starting from the BS.”

Moreover, the same student S10 corrected the Ugo’s statement proposed in

question 3 as follows:

”Ugo’s statement has two mistakes that should be corrected:

In the explanation of the BS, Ugo writes that p(0) needs to be proved, but

instead we should prove that p(n0) is true, where n0 ∈ N [is] the smallest number

for which p(n) makes sense; in fact, some propositions do not make sense for

n = 0, but can be treated by induction for n > 0.

Then Ugo writes that if for some k p(k) true, then p(k + 1) true, we can

conclude p(n) true. But the allowed values of k are just all those greater than n0

and they are the same values for which we can conclude p(n) true.”

This response, albeit some linguistic inaccuracies, displays a good awareness

on the meanings involved in the PMI, especially on the value of the BS and on

the crucial role of quantification in the IS.

Some students (7 of 28) choose to write directly to the fictional students,

referring to mental images to foster their understanding. For example, S11 wrote:

”Dear Carlo, in order to better understand the mechanism founding the principle

of induction, you can try to think to a ladder with infinite rungs. With the BS we

fix the first rung from which we start to construct the ladder. The IS, in which the

proposition P(k) (or, in our metaphor, the presence of the k-th rung) is assumed

to be true, is considered for every k ≥ n0 ([n0] first rung)”.

The effect of the mental images used by 13 students over 28 seems to be

very deep, mainly in realizing the explanatory power of the PMI; for example, in

his response to question 5 of the metacognitive questionnaire, S12 writes that the

method of proof via PMI ”creates in our mind an image of the infinite implications

transmitting the truth of the statement P(n) from the first value n0 to any natural

number greater than n0”. Most students (19 of 28) thought that the PMI as

method of proof is convincing of the truth of the statement because of the link

between the BS and the IS; this emerged in many answers, like the following

one, in which the student S13 referred to the constructive character of the PMI:

”An induction proof clarifies why a statement is true since it gives a method for

verifying the statement by means of the BS and from the proof of the IS it is

possible to show the truth of the statement for any n > n0, just like climbing a

staircase from the first step (base step) to the last one”.



154 Agnese Ilaria Telloni and Nicolina Antonia Malara

Another student wrote that: ”when for a proposition P(n) the BS and the

IS have been proved, then it is possible to substitute to n each value and the

proposition P(n) will be true!”; this response displays that the student was able

to coordinate the general and the particular view in the understanding of the PMI

(Mason, 1996; Mason & Pimm, 1984) and reached a comprehension of the PMI

that overcomes the concept of potential infinity and is in tune with the actual

infinity of the set N.

Main General Outcomes

The students’ productions collected along the educational path allowed to

highlight a progressive acquisition of the structural aspects of the PMI. In the

cognitive test, all students correctly addressed both the BS and the IS when

proving statements through the PMI. Moreover, most students displayed having

interiorized the connection between the BS and the IS grounding the validity

of the PMI as method of proof. Another good result regards the students’ use

and understanding of the quantifications in the statement of the PMI. A direct

comparison of the students’ productions highlighted that although most groups

of students missed the quantifiers in the IS and/or in the conclusion in their for-

mulation of the PMI, this did not happen in the final cognitive test, in which

almost all students correctly inserted the universal quantifier when applying the

PMI as method of proof. Also, we observed a general improvement in the stu-

dents’ linguistic skills and availability to discuss their solutions, communicate

their perceptions and reflect on their own difficulties. This can be interpreted

as an effect of the constructive and metacognitive educational path taught in a

laboratory- and dialogue-based course, where the collective discussion was a stan-

dard methodology. At the beginning of the course, students were loath to interact

and report their thoughts on the matters of study; moreover, their argumentation

capabilities were very poor, since, as they said, it is not usual to discuss about

mathematics at university. Instead, at the end of the teaching/learning path, stu-

dents were much more available in this respect and their capability to share their

reflection about activities, difficulties encountered, progresses done and to explain

mathematical ideas (and not only to give definitions or statements) definitively
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increased. This clearly arose by comparing the students’ first argumentative pro-

ductions and the reflections they reported, sometimes spontaneously, in the final

part of the educational path.

In answering the metacognitive questionnaire, most students displayed of

perceiving the PMI as a convincing method of proof and discussed its explanatory

power by referring to mental images such as a transmission gear, a chain or a

ladder with infinite rungs. Students displayed good metacognitive control on the

logical knots of the statements of the PMI; they were able to identify the mistakes

of the fictional colleagues and to correct their statements. This seems to suggest

the effectiveness of the designed educational path to support the overcoming of

the logical-structural and conceptual difficulties in learning the PMI.

About the role-playing game, it had a clear impact on the students’ evolution

and on different levels of their learning. Students displayed to be very engaged

within the role-play, generally curious of an unusual activity and progressively

more available of getting involved. From the cognitive point of view, students

have deepened the meanings involved in the mathematical content at stake by

means of changes of perspective, either posing problems, solving and assessing

them. They displayed improvements in handling the structural complexity of

the PMI, and on algebraic skills, on the syntactic and the interpretative levels.

From the perspective of linguistic competence, students’ behaviours improved in

a significant way: they strived of being clear in solving problems and experienced

the need of clarity of notation and appropriate use of logic syntax when they

acted as assessors. From the metacognitive point of view, they have had the

opportunity to reflect on their knowledge, as well as on their own learning needs,

also taking the advantage of comparing them with the difficulties of their peers.

More details can be found in Telloni (2021).

As to the incidence of the different teacher roles on the students’ conceptu-

alization and handling of PMI, we remark how her role of investigating subject

seemed to have favoured the students’ understanding about how to pose them-

selves for searching regularities and how to formulate conjectures; her roles of

strategic and reflective guide, played reflecting aloud on the meanings of the two

premises of PMI, highlighting the effects of the connection between BS and IS,

also using metaphors, and analysing false proofs by PMI to favour the recognition

of fallacies, seemed to have fostered students’ abilities and behavioural traits that

widely appear in their proofs and argumentations; the relapses of her metacogni-

tive acts seemed to have effects in the students’ argumentations about the PMI

structure and their awareness of the explicative power of PMI as proving method.
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Conclusive Discussion

This study is focused on the teaching/learning of the PMI and aims to first

and second level objectives, concerning the students handling of the structural

complexity of PMI and their perception of it as a method of proof. We hypoth-

esized that a constructive educational path paying suitable attention to all the

logical knots of the PMI could help to minimize the obstacles encountered by

the students. In such a path, the role of the teacher as a model of effective and

aware behaviours (Cusi & Malara, 2015) is crucial, and we wanted to identify and

enhance these behaviours and their effects on the students’ learning of the PMI.

We designed and implemented an experimental teaching path aimed at providing

students with a set of experiences allowing them the co-construction of the mean-

ings involved in the PMI with their teacher and peers. Differently by some other

paths on the PMI suggested by the literature, which envisage the involvement of

students for relatively long periods, our educational path is compatible with the

time constraints of a semestral university course.

The outcomes of our study suggested the validity of our hypothesis: the de-

signed constructive approach to the PMI was successful in fostering the students’

handling of the logical-structural difficulties in learning the PMI raised by the

literature. An important aspect concerns the shift of the students’ view of the

PMI, from the potential infinity to the actual infinity. Indeed, albeit the induc-

tive process is naturally focused on the potential meaning of the infinity, through

a specific focus on the introduction of the universal quantifier in the IS and the

saturation of the variable, the objectification of the infinite chain of inferences

is obtained. In this way the infinity is reified, and hence grabbed in its actual

meaning. In this respect, it was important to bring the students to distinguish

between the logical concepts of ’free variable’ and ’bound variable’ and recognize

these different roles respectively in the writings P(k) →P(k + 1) and ∀k ∈ N
(P(k) → P(k + 1)). This specific focus on quantification as a key element to

convey the actual view of the infinity in the PMI is a new element with respect

to the studies on the PMI available in the literature.

Moreover, our path was also successful in making the explanatory and con-

vincing power of the PMI as method of proof emerge, according to the question

set by Hanna (1989, 2000) and Stylianides et al. (2016). Generally, our students

described a positive learning trajectory about the structural comprehension and

the control of meanings involved in the PMI, from the first incomplete proto-

cols to the metacognitive questionnaire. Our students, after the experimental
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teaching-learning path, were able to control and understand the processes behind

the structure of the principle and its elements, together with the quantifications,

and displayed to be convinced that the PMI not only proves, but also makes clear

why a proposition is true.

We believe that the adopted methodology, aimed at fostering the students’

deepening of the meanings of the treated mathematical concepts, contributed to

the positive outcomes of the educational path. The different roles assumed by

the teacher, which are a peculiarity of our path, were displayed to be important

elements for the students’ conceptualization. They should have favored the im-

provement of the students’ attitude to learning in a critical way and reflect with a

meta-perspective on their own learning. This is a first answer to questions – not

yet answered by previous research – concerning the teacher’s roles and behaviors

that can foster a meaningful understanding of the PMI in the students (Dubinsky,

1989; Cusi & Malara, 2008; Ron & Dreyfus, 2004).

Although the effectiveness of the educational path with respect to our focus

on the handling of the structural complexity of the PMI, some critical aspects

emerged: first of all, many students were not able to conclude proofs via PMI,

displaying difficulties in the algebraic manipulation and in the interpretations of

formulae. This happened mainly when they faced statements involving inequal-

ities or concerning divisibility. From this perspective, the collected data suggest

that our constructive approach supported them in recognizing their algebraic

difficulties. Some students, in fact, after having carried out syntactic transforma-

tions, concluded ”I cannot go on”. Then, this kind of approach, although seems

to induce a deep understanding of the principle, is not sufficient itself to bring

students to correctly apply it; some collected protocols, indeed, highlight alge-

braic/ interpretative obstacles that prevent the students to conclude their proofs

via PMI.

The positive effects on the understanding of the PMI suggest the possibility

to implement the educational path, with suitable modifications, at previous levels

of instruction. In fact, the methodology used seems to be particularly adequate

for secondary school classrooms, where the interaction of each student with the

teacher and the peers is simpler than in the university teaching context. In par-

ticular, for secondary school students the envisaged steps could be very suitable

to connect and distinguish the concepts of ”induction” – as an extrapolation of a

law from a finite number of cases – and ”mathematical induction” – as the gen-

eral validity of a statement from its truth for the first case and the transmission

of validity from any value to the subsequent one. It is worthwhile to recall that
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many countries where the PMI teaching is anticipated at the upper secondary

school. For instance, in our country, the ’Indicazioni Nazionali’ (National Guide-

lines, (MPI, 2010)) underline the opportunity to bring high school students to

reflect from the philosophical point of view on the PMI structure so that they

can become aware that it is an effective way of proving sentences related to the

natural numbers.

Moreover, the experimental teaching path seems to be useful also for pre- and

in-service teachers, because of its specific characteristics of aiming second degree

goals, improving argumentative capabilities and going beyond technical aspects,

by means of metacognition.

Summarizing, we can say that this study gives an innovative contribution on

the teaching of the PMI according to the following aspects:

• Role of the teacher as a learning guide on both the cognitive and metacogni-

tive level.

• Formulation of the PMI devolved to the students after exploring and conjec-

turing experiences and collective proofs constructed from local implications,

to the generic implication, to the general implication.

• Explicit focus on the quantification, as a key point to bring students to acquire

the actual infinity view about the PMI.

• Explicit focus on metacognition about the link between the BS and the IS to

make the students perceive the PMI as a convincing method of proof,

• The designed learning path is compatible with the usual time constraints of

the university instruction.
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matical induction. In M. Höines & M. Fuglestad (Eds.), Proceedings of the

28th conference of the international group for the psychology of mathematics

education (Vol. 4, p. 113-120). Bergen, Norway.

Stylianides, G., Sanderfur, J., & Watson, A. (2016). Conditions for proving

by mathematical induction to be explanatory. Journal of Mathematical

Behavior , 43 , 20-34.



References 161

Telloni, A. (2021). A role play to develop students’ awareness and robust learning

of advanced mathematical concepts, to appear in International Journal of

Mathematics Education in Science and Technology.

AGNESE ILARIA TELLONI

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MATHEMATICAL SCIENCES

POLYTECHNIC UNIVERSITY OF ANCONA

ANCONA, ITALY

E-mail: a.i.telloni@univpm.it, agnese.telloni@unimc.it

NICOLINA ANTONIA MALARA

DEPARTMENT OF PHYSICS, MATHEMATICS AND COMPUTER SCIENCE

UNIVERSITY OF MODENA & REGGIO E.

MODENA, ITALY

E-mail: nicolina.malara46@gmail.com, malara@unimore.it

(Received May, 2021)


