
19/1 (2021), 17–33
DOI: 10.5485/TMCS.2021.0518

Teaching performance testing

Gábor Árpád Németh and Péter Sótér

Abstract. Performance testing plays a vital role in the verification of large scale software
systems. It is used for testing the speed, responsiveness, capacity and stability of the
investigated system. However, despite the significance of this topic, the effort invested
in teaching performance testing in Computer Science is insufficient.

The current paper shows, how the fundamentals of performance testing can be
demonstrated to students both from a theoretical and a practical viewpoint through
step-by-step practical examples that are used in the industry. It is also discussed how
a basic toolchain can be set up for performance tests using only free tools. With the
presented examples, the reader will be able to take first steps in the performance testing
area.

Key words and phrases: performance testing, load tests, load generation, teaching.

MSC Subject Classification: 68M15.

Introduction

Large scale software systems are designed to serve thousands or even millions

of parallel requests. Performance testing is applied to verify if these requirements

are fulfilled: numerous transactions are generated for the SUT (System Under

Test) in order to check how it performs in terms of responsiveness and stability.

This topic has been extensively studied in the last few decades, see for example

(Jiang & Hassan, 2015) that overviews around 200 papers on this topic. More

recent papers investigate different performance testing tools (Abbas, Sultan, &
17

18 Gábor Árpád Németh and Péter Sótér

Bhatti, 2017) or related hot topics, like using reinforcement learning to find per-

formance bottlenecks (Koo, Saumya, Kulkarni, & Bagchi, 2019; Ahmad, Ashraf,

Truscan, & Porres, 2019).

Problems related to system performance arise periodically in various fields,

underlining the importance of performance testing. The authors remember the

time as students in the 2000s when the software that was used for exam and

course management crashed regularly when the period for choosing courses was

opened. But to be fair, similar problems occur regularly in much bigger interna-

tional software companies, although typically at a larger scale. Web shops have

performance issues (crashes, the wrong handling of inventory items, limitations

in the number of possible users, etc) during a Black Friday campaign (Wu, Patil,

& Gunaseelan, 2018). The overload of collaboration and visual conference appli-

cations during home office in the time of COVID-19 and the wrong scheduling of

patches that cause performance drops are also common examples.

Despite the importance of performance testing, very little effort has been

invested in the teaching of this topic at universities, at least in Hungary. As an

answer to this situation, a new course called “Modeling and testing” has been

launched in the ELTE Computer Science MSc program which - besides model-

based testing (Németh, 2020) also deals with performance testing. In the current

paper, some of the main cornerstones of the material related to the latter topic

is shown. The working principle of performance testing tools is illustrated with a

small-scale example from the telecommunication industry and it is also discussed

how an actual performance testing environment can be set up with freely available

tools for the website testing domain.

Performance testing

Performance testing types

Performance testing is a general term that consists of different types of test-

ing. Note that there are some inconsistencies in the terminologies in the docu-

mentation of corresponding testing tools, teaching materials (ISTQB, 2018) and

sometimes even in the related research papers (Jiang & Hassan, 2015). However,

the following classification can be used as a good starting point to understand the

different motivations behind performance testing as similar goals are presented

both in theory and in the industry (see Figure 1):

Teaching performance testing 19

Scalabilit
y te

sti
ng

time

load

Maximum capacity

S
tr

e
ss

 t
e
st

in
g

Spike testing

Normal expected utilizationLoad testing

Endurance (stability) testing

Capacity testing

Figure 1. Performance testing types

• Load testing: Used to observe the behaviour of the SUT under an expected

load to check its sustainability.

• Endurance or stability testing1: It investigates the stability of the system

over a large predefined time frame. It is used to detect memory leaks, thread

problems and any other types of problems that may threaten stability.

• Capacity testing2: It verifies if the SUT can manage the amount of work-

load that it was designed for. If not known in advance, it benchmarks the

number of users or transactions that the current system version is able to

handle, which can be used as a baseline for testing updated system versions.

• Scalability testing: It investigates how the SUT is capable of scaling up-

/out/down considering resources (like CPU, memory or network) to find pos-

sible bottlenecks of the system (related to both current or future efficiency

requirements). Two different approaches are present when investigating scal-

ability: (1) Increase the load over a period of time gradually to monitor the

amount of different resources used, (2) Scaling up/out the resources of the

tested system with the same level of load.

• Stress testing: It is performed around the maximum designed capacity of

the SUT to investigate how the system works near to this maximum.

• Spike testing: Focuses on the functioning of the system in case of sudden

bursts of requests, where the load consumedly exceeds the maximum designed

capacity. It checks whether the SUT crashes, terminates gracefully or just

dismisses/delays the processing in this case.

1Sometimes also referred to as soak testing.
2Sometimes also referred to as volume or flood testing.

20 Gábor Árpád Németh and Péter Sótér

Working principle of performance testing tools

Load generation

Load generator 1

…

Virtual

users 1

Virtual

users n

Load generator k

…

Virtual

users 1

Virtual

users n
…

Performance
monitoring
& reporting

Log analysislogs

SUT

Figure 2. Performance testing

The working principle of performance testing tools can be seen in Figure 2:

to be able to investigate the SUT (System Under Test) under various input con-

ditions (such as the number of concurrent users, the frequency and distribution

of different types of requests, etc.) a workload is created by different machines

called load generators. This workload is done by creating virtual users to sim-

ulate or emulate the behaviors of actors (users or other machines that use the

services of the SUT). Note that these virtual users are not necessarily just clones

of each other, they are also able to act independently depending on their user

profile. For example if a webshop is tested, one subset of these users will just

be browsing, another subset will be selecting products for their cart, yet another

subset will be paying, while an admin user may be checking some parameters of

the related database, etc. During the execution of the workload to the SUT, some

selected performance metrics are monitored. These monitored parameters can be

connected to hardware utilization (such as CPU/memory/disk/network utiliza-

tion) or related to the characteristics of the tested system (such as response time,

throughput rate, rate of successfully handled requests, number of active sessions,

etc) or can be connected to user’s experience (such as how long it takes to finish

the requested transaction). Performance monitoring may also give an alert in

case of suspicious or lower performance scenarios. At the end, a report is created

based on the observed metrics. After test execution, the collected logs may also

be converted for further analysis.

There are different approaches that describe the behaviour of the virtual

users used in load generation scaling from the simplest solution to more complex

scenarios:

Teaching performance testing 21

(1) Packet generators: This approach is the simplest. Some fundamental pa-

rameters of the generated packages can be modified, but the same setting is

used for the entire load. For example, Netstress3 is a free packet generator

tool.

(2) Traffic playback tools: This approach plays back a – previously recorded

or manually edited – call flow many times to generate the desired workload.

For example, Apache JMeter4 is a free traffic playback tool.

(3) Model-based generators: These generators use formal models to emulate

virtual users; besides the normal call flow, alternate flows and exception flows

are also investigated. Various models can be used; EFSMs (Extended Finite

State Machines) (Németh, 2016), Markov chains (Barros et al., 2007), Petri

nets (Youness, El-Kilani, & El-Wahed, 2008) and PTAs (Probabilistic Timed

Automata) (Abbors, Ahmad, Truscan, & Porres, 2013) are the most common

options. In (Erős & Csöndes, 2010) a TCFMM (Timed Communicating Finite

Multistate Machine) model is presented that is an extension of the EFSM

model with tokens and delays on transitions.

Examples for different load generation approaches: In the following,

the three different approaches for load generation are shown through an example

used in the telecommunication industry.

The SIP (Session Initiation Protocol) (RFC 3261: SIP: Session Initiation

Protocol , 2002) is a signalling protocol used for establishing, modifying, and ter-

minating real-time multimedia sessions such as internet telephony calls. SIP is a

text-based protocol with a syntax similar to that of HTTP (HyperText Transfer

Protocol). It operates with request and response message pairs. The type of the

request sent by a User Agent Client (UAC) participant (that can be for example

an IP (Internet Protocol) phone) is called method. A SIP server participant an-

swers to this request with a given response code. Each UAC needs to register to

a SIP server to ensure its location to be known in order to receive an incoming

call later. In the following, the functionalities of the UAC during the registration

process of the SIP over the TCP (Transmission Control Protocol) transport layer

will be discussed in order to simulate this participant for load generation. The

other participant of the communication, the SIP server will be the SUT in our

example.

3Netstress. Network benchmarking tool. http://nutsaboutnets.com/archives/netstress
4Apache JMeter. Performance testing tool. https://jmeter.apache.org

22 Gábor Árpád Németh and Péter Sótér

Note that this example has been selected due to the following reasons: (1) the

related standards (RFC 3261: SIP: Session Initiation Protocol , 2002; RFC 3665:

Session Initiation Protocol (SIP) Basic Call Flow Examples, 2003) are freely

available and relatively easy to understand for everyone and (2) telecommunica-

tion is a perfect domain to show the convergence of functional and performance

testing. The reason for the latter is that there is no sense to talk about whether a

server fulfills all of the required functionalities if it is not able to handle the given

number of users parallel, and vice versa: the performance of the server should be

investigated with a given functionality mix.

(1) Packet generators: The load generation can be described with simple pack-

ets which imitate only the main structure of the registration process. For ex-

ample the REGISTER message is sent multiple times with a preset encrypted

user information regardless of the existence of any challenge it should respond

to (Section 2.1 of RFC 3665). Due to this preset property of each package,

one can only observe performance parameters, but is unable to check func-

tionalities, such as authentication (in this case the appropriate authentication

header should be determined previously by functional testing or the authen-

tication should be turned off for the SUT side).

(2) Traffic playback tools: The load generation can be described with different

call flows that implement the various functionalities of the UAC registration

process – see Figure 3. The network communication between the UAC (tester)

and the SIP server (SUT) participant is denoted with solid lines and the event

that occurs within the UAC participant (i.e a message that is received from

or sent to its operation system) is shown with dotted lines.

• Figure 3(a) shows the call flow of successful registration with authenti-

cation (Section 2.1 of RFC 3665): The UAC sends a REGISTER request

to the SIP server, which provides a challenge in his 401 Unauthorized

response. The UAC responds with a REGISTER message that con-

tains the encrypted user information according to the challenge. If the

validation was successful, the SIP server sends a 200 OK response.

• Figure 3(b) shows how the cancellation of registration works (Section

10.2.2 of RFC 3261 and Section 2.4 of RFC 3665): The UAC sends

a REGISTER request to the SIP server with a 0 value in the Expires

header. Note that all registrations expire after their time defined in

Expires header has elapsed.

Teaching performance testing 23

(a) Registration (authenticated) (b) Removing registration (c) Handle negative responses

(d) Interval too brief (e) Silent discard (f) Re-registration

Figure 3. Call flows for the registration process of SIP UAC

• Figure 3(c) deals with the handling of negative responses for registration

requests (Section 10.3 / 4th − 6th points of RFC 3261): Receiving a 403

Forbidden, a 404 Not found or a 400 Invalid response message for the

REGISTER request indicates that the registration was unsuccessful.

• Figure 3(d) deals with the case when a too brief interval is chosen for

registration (Section 10.3 / 7th point of RFC 3261): If the interval given

in the Expires header of REGISTER request is too short (i.e. it is

less than one hour and less than the minimum value defined by the

SIP server), then the SIP server responds with a 423 Interval too brief

message with a requested minimum value defined in the Min-Expires

header. It triggers the UAC to send another REGISTER request with

an appropriate value in the Expires header.

• Figure 3(e) shows silent discard (Section 10.2.7 / 7th point of RFC 3261):

If no response has been received for the REGISTER request within a

predefined time, a Response timeout event is received by the operation

system of the UAC that triggers the UAC to resend the REGISTER

request to the SIP server after waiting some reasonable time.

24 Gábor Árpád Németh and Péter Sótér

• Figure 3(f) describes re-registration (Sections 10.2.1.1 and 10.2.4 of RFC

3261): After a predefined time has elapsed since the registration on

the server, an internal timer of the UAC indicates with a Registration

timeout message that the registration will expire and the UAC should

send a REGISTER request to the SIP server again to keep registration

alive.

NotRegistered

AwaitRegResponse

USER.init
/ REGISTER

401 Unauthorized
(challenge)

 / REGISTER
(answer to
challenge)

Registered

200 OK
/ USER.done

AwaitDeregResponse

USER.exit
/ REGISTER (Expires=0)

 200 OK
 / USER.done

(a) EFSM for registration with authentication and for cancellation of registration

NotRegistered

AwaitRegResponse

USER.init
/ REGISTER (Expires>0)

40X Negative response
/ USER.notdone

[Expires < min(MinExpires, 3600sec)]
423 Interval too brief(MinExpires)

/ REGISTER(Expires > MinExpires)

 Response timeout
 / REGISTER(Expires>0)

401 Unauthorized
(challenge)

 / REGISTER
(answer to
challenge)

Registered

200 OK
/ USER.done

Registration timeout
 / REGISTER(Expires>0)

AwaitDeregResponse

USER.exit
/ REGISTER (Expires=0)

 200 OK
 / USER.done

 Response timeout
/ USER.done

(b) EFSM for full set of functionalities

Figure 4. EFSMs for the registration process of SIP UAC

(3) EFSM model-based generators: Figure 4 shows the EFSMs5 of the reg-

istration process of the SIP UAC that can be made by the combinations of

5Note that the strict formalism of EFSM models and how the desired output message for a

given input can be checked is described in more detail in our previous article (Németh, 2020).

Teaching performance testing 25

the call flows presented previously in Figure 3. The labels in each transition

between states denote the input and output messages written as input/out-

put derived from the request and response messages of the call flows. The

parameters of the request or response messages will be the variables of the

EFSM denoted in round brackets. The guarding conditions on variable values

– that may add additional triggering conditions for each transition besides

their input and start state – are denoted in square brackets.

In the following, it will be discussed step-by-step, how the call flows

presented in Figure 3(a) and 3(b) can be mapped into the simple EFSM

presented in Figure 4(a):

• Successful registration with authentication: The message pair, where the

init event of the UAC triggers the sending of the REGISTER request

to the SIP server is mapped into USER.init / REGISTER transition

from state NotRegistered to state AwaitRegResponse in the EFSM. Sim-

ilarly, the 401 Unauthorized (challenge) response from the SIP server

that triggers the UAC to send a REGISTER (answer to challenge) to

the SIP server is mapped into the 401 Unauthorized (challenge) / REG-

ISTER (answer to challenge) loop transition of the state AwaitRegRe-

sponse. At the end, the 200 OK answer received from the SIP server

that triggers the done event on the UAC will be mapped into the 200

OK / USER.done transition originating from state AwaitRegResponse

and leading to state Registered.

• Cancellation of registration: The init event of the UAC that triggers

the sending of the REGISTER (Expires: 0) request is mapped into

USER.init / REGISTER (Expires=0) transition from state Registered

to state AwaitDeRegResponse. When the 200 OK response is received

from the SIP server, the UAC goes to initial state AwaitDeRegResponse

and throws a USER.done event.

The mapping can be done similarly for other call flows by paying atten-

tion to how these call flows can be merged using appropriate start and end

states for each transition – see Figure 4(b) for the full set of functionalities

derived from call flows of Figure 3(a)–3(f). Note that a similar EFSM can

be constructed for the other side of the communication (SIP server) as well,

and the EFSMs of the two participants would communicate with each other

26 Gábor Árpád Németh and Péter Sótér

with message exchanges6, but now we focus on the emulation of virtual users

for the UAC side to be able to generate appropriate load for the SUT.

Although the resulting EFSM of Figure 4(b) is a very compact model,

it contains all the functionalities of Figure 3. It is not required to know the

entire call flow in advance to be able to test the SUT as in traffic playback

generation. The message received at each step of the communication can

be used as a triggering condition to determine, which step should be taken

next in the EFSM. Thus, the test engineer is able to create a traffic mix to

test different functionalities and balance between functional and performance

testing goals.

A toolchain for performance testing

Apache JMeter

For the course, Apache JMeter4 was selected for hands-on experience of per-

formance testing, because it is a well documented, easy-to-use, free and open

source performance testing tool with many functionalities. JMeter uses the traf-

fic playback approach for load generation.

To illustrate the performance testing of websites with JMeter, two simple

load generation exercises are briefly discussed here.

I. Recording HTTP traffic and playback with 10 parallel threads:

1) Before the actual test design is started, the web browser must be config-

ured to allow JMeter to observe its traffic by adding a JMeter certificate

and by selecting manual proxy configuration.

2) After that, one is able to start the recording of browsing a webpage with

the HTTP(s) script recorder of JMeter. Loading the pages will be slow

due to the injection of JMeter into the communication.

3) Set the parameters of the Thread Group (TG) that will act as a group of

virtual users in load generation: The number of Threads (users) is set to

10 to create 10 parallel playbacks of the recorded traffic. The Ramp up

period that defines delays between starting parallel users is set to 1 sec.

The Loop count which defines how many times the test will be repeated

is set to 20 for example.

6These models are known as CEFSMs (Communicating Extended Finite State Machines).

Teaching performance testing 27

4) Add Aggregate report, Summary report and Graph Results statistics to

TG.

5) Save and validate the TestPlan.

6) Start the execution of test and observe statistics – see Figure 5 for results.

Figure 5. Performance testing with Apache JMeter

II. Creating HTTP traffic manually with 10 parallel threads:

1) Create a new Testplan, set the parameters of the TG as in the previous

exercise in step 3.

2) Add HTTP defaults to set the name of the SUT, i.e. the name or IP

address of the web server where all HTTP requests will be sent to.

3) Add HTTP cookie manager to ensure that each thread gets its own

cookies.

4) Add two HTTP requests: One will open the main page and one will open

a selected subpage of the given website.

5) Add statistics to the TestPlan, validate it, execute test and check the

results.

Related tutorials can be found in the JMeter documentation7. The examples

above are just small illustrations, but if one would like to generate significant

7Check chapters 26. Apache JMeter HTTP(S) Test Script Recorder and 4. Building a Web
Test Plan of JMeter’s user manual (https://jmeter.apache.org/usermanual/)

28 Gábor Árpád Németh and Péter Sótér

amount of load, then it is advised to use the CLI (Command Line Interface) of

JMeter instead of its GUI (Graphical User Inerface) for performance test execu-

tion and distributing the generation of workload to more computers. Also note

that the upload speed of a typical home network may be limiting.

If you are more interested in JMeter, the following list of functionalities may

be also worth to check:

• Handling listeners, creating own statistics or html test reports

• Parsing the response with regular expressions

• Testing other types of protocols or other types of load

Wireshark

The free, open source and well-documented Wireshark8 protocol analyser can

be used to augment the functionality of JMeter by observing the protocol stack

during performance testing and recording traces for further analyses.

When Wireshark is started, (after selecting the appropriate network connec-

tion) it automatically starts capturing network traffic. The recording can be

stopped with the red square icon at top left corner and a new recording can be

started with the blue shark fin icon.

The tool shows the network traffic in 3 main views (see Figure 6):

I. Packet list pane: shows the main parameters (such as time stamp, source and

destination addresses, name of the used protocol, length, further information)

of each message. The messages can be sorted by clicking on the corresponding

parameter column.

II. Packet details pane: By selecting a message at the packet list pane above, it

shows the protocol stack of the given message. Each level of the tree structure

of the protocol stack can be folded/unfolded to show the information the user

is interested in.

III. Packet bytes pane: Displays the data in hexadecimal view. The given element

selected in the packet details pane is highlighted.

Wireshark can filter message exchanges by regular expressions; the corre-

sponding window can be found above the Packet list pane. For example ap-

plying ip.src==192.168.0.0/16 and ip.dst==192.168.0.0/16 Wireshark will

display local traffic only, tcp || udp filters TCP and UDP (User Datagram Pro-

tocol) traffic and sip.To contains "Bob" shows packets where the To header

8Wireshark. Network protocol stack analyzer. https://www.wireshark.org

Teaching performance testing 29

Figure 6. The 3 main views of Wireshark

of SIP messages contain the string “Bob”. Wireshark handles more than 3000

protocol types and over hundred thousands of their fields; for more details check

the corresponding parts of Wireshark documentation9.

Note that besides log analyses, Wireshark can be used to load generation as

well. To achieve this, a simple load generator application should be implemented

that replays the Wireshark trace of a previously recorded traffic10 with given

number of parallel threads (users), schedules the starting of these parallel threads

and defines a loop count for each thread. Note that the scheduling of parallel

threads can also be done with Jenkins11, introduced in next section.

9Check chapters 6.3. Filtering Packets While Viewing and 6.4. Building Display Fil-

ter Expressions of Wireshark’s User’s Guide (https://www.wireshark.org/docs/wsug html/)
and wireshark-filter of Manual Pages (https://www.wireshark.org/docs/man-pages/) to get

used to how the filter functionality works. The full list of available filters can be found in the
Display Filter Reference (https://www.wireshark.org/docs/dfref/)

10Note that any selected part of a previously recorded message trace can be saved separately

as a new trace, i.e. the test designer can select the part he is interested in.

30 Gábor Árpád Németh and Péter Sótér

Jenkins

When the performance tests have been created, one also needs a tool support

for the scheduling of different tests and an interface that shows the results of

already executed tests. Note that the results of these test executions can also be

used as a gating condition to version control systems, i.e. based on the verdict

of given test cases, the tool can decide automatically, if a code change is allowed

for a commit or not. This automatic gating functionality is essential in the nowa-

days’ fast-paced software development methods (like Agile, Continuous Delivery,

DevOps, etc) that are built on top of Continuous Integration. For scheduling,

reporting and automating gating of performance tests, Jenkins11 was selected in

our course.

Jenkins is a free, open source, easy-to-use test automation server with good

built-in documentation. It has active connections to nodes (servers), it uses script

execution on nodes by scheduling, and it is able to show the results of active and

archive tests.

Jenkins has many plugins, even some fundamental functionalities (such as

changing some basic display properties in test summary pages, integration with

Git12 version control, integration with Gerrit Code Review, etc.) are implemented

there. However, not all combinations of these plugins are tested, thus they should

be installed one by one and tested in a sandbox first, before they are applied in

live environment.

Performance plugin13 also exist for Jenkins, which can be used to integrate

Apache JMeter tests into the pipeline process. The plugin can be used in the

following way:

1. Install the plugin (in Jenkins Dashboard select Manage Jenkins/Manage Plu-

gins, then click on Available tab, search for term “Performance” and select

Install without restart)

2. Create a new Jenkins job with the New item button, then select Freestyle

project.

3. Open the Jenkins job configuration and add build step Execute Windows

batch command. Here one can add the path of JMeter binary, Testplan and

test report file, respectively with the following commands:

C:\<Jmeter path> \bin\jmeter -n -t

11Jenkins. Test automation server. https://https://www.jenkins.io
12Git. Distributed version control system. https://git-scm.com
13Jenkins Performance Plugin. https://plugins.jenkins.io/performance/

Teaching performance testing 31

C:\<Jmeter path> \bin\<name of the test plan>.jmx -l

C:\<Jmeter path> \bin\<name of the test report>.jtl.

4. Add the Publish Performance test result report under Post-build actions to

create a diagram from the JMeter test results; here one should define the

path of the test report (that should be the same used in the previous step).

Figure 7. Jenkins with Performance plugin

The result diagram of previous performance test executions are shown in Fig-

ure 7. Note that each member of horizontal axis presents the results of a distinct

execution, denoted by its build number after the # symbol. More information

about using Jenkins Performance Testing plugin can be found in its documenta-

tion14.

Conclusion

During the course, the students learn about the different types of performance

testing, various approaches used in load generation and the basics of performance

monitoring, reporting and log analyses. The convergence of functional and per-

formance testing is also discussed because in case of large-scale systems it has

14JMeter with Jenkins. https://www.jenkins.io/doc/book/using/using-jmeter-with-jenkins/

32 Gábor Árpád Németh and Péter Sótér

practically no sense to talk about the functional verification of a product without

investigating its performance and vice versa. This is illustrated by a real telecom-

munication protocol example from the industry that shows how a behaviour model

can be created step-by-step for load generation. A tool chain that consists of free

and open source tools is also presented to allow students to achieve some basic,

real life experiments and skills in the performance testing of websites. At the end

of the term, guest lecturers show how performance tests can be applied at a larger

scale in the industry both in telecommunication and website domains.

Acknowledgements

The project is supported by the Hungarian Government and co-financed by

the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00001: Talent Manage-

ment in Autonomous Vehicle Control Technologies).

References

Abbas, R., Sultan, Z., & Bhatti, S. N. (2017, April). Comparative analysis of au-

tomated load testing tools: Apache JMeter, Microsoft Visual Studio (TFS),

LoadRunner, Siege. In 2017 international conference on communication

technologies (comtech) (p. 39-44). doi: 10.1109/COMTECH.2017.8065747

Abbors, F., Ahmad, T., Truscan, D., & Porres, I. (2013). Model-based per-

formance testing in the cloud using the Mbpet tool. In Proceedings of

the 4th ACM/SPEC International Conference on Performance Engineering

(p. 423424). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/2479871.2479937

Ahmad, T., Ashraf, A., Truscan, D., & Porres, I. (2019). Exploratory performance

testing using reinforcement learning. In 2019 45th Euromicro Conference

on Software Engineering and Advanced Applications (SEAA) (p. 156-163).

doi: 10.1109/SEAA.2019.00032

Barros, M. D., Shiau, J., Shang, C., Gidewall, K., Shi, H., & Forsmann, J.

(2007). Web services wind tunnel: On performance testing large-scale

stateful web services. In 37th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN’07) (p. 612-617). doi:

10.1109/DSN.2007.102

References 33

Erős, L., & Csöndes, T. (2010, June). An automatic performance testing method

based on a formal model for communicating systems. In 2010 IEEE 18th

International Workshop on Quality of Service (IWQoS). doi: 10.1109/

IWQoS.2010.5542732

ISTQB. (2018). Foundation level specialist syllabus performance testing.

Jiang, Z. M., & Hassan, A. E. (2015, Nov). A survey on load testing of large-scale

software systems. IEEE Transactions on Software Engineering , 41 (11),

1091-1118. doi: 10.1109/TSE.2015.2445340

Koo, J., Saumya, C., Kulkarni, M., & Bagchi, S. (2019). PySE: Automatic worst-

case test generation by reinforcement learning. In 2019 12th IEEE Confer-

ence on Software Testing, Validation and Verification (ICST) (p. 136-147).

doi: 10.1109/ICST.2019.00023

Németh, G. A. (2016). A finite state machine-based description in performance

testing. UCAAT .

Németh, G. A. (2020). Teaching model-based testing. Teaching Mathematics and

Computer Science, 18 (1). doi: 10.5485/TMCS.2020.0469

RFC 3261: SIP: Session Initiation Protocol. (2002). (https://tools.ietf.org/

html/rfc3261 Accessed: 2021-03-16)

RFC 3665: Session Initiation Protocol (SIP) Basic Call Flow Examples. (2003).

(https://tools.ietf.org/html/rfc3665 Accessed: 2021-03-16)

Wu, C.-S. M., Patil, P., & Gunaseelan, S. (2018). Comparison of different ma-

chine learning algorithms for multiple regression on black friday sales data.

In 2018 IEEE 9th International Conference on Software Engineering and

Service Science (ICSESS) (p. 16-20). doi: 10.1109/ICSESS.2018.8663760

Youness, O. S., El-Kilani, W. S., & El-Wahed, W. F. A. (2008). A behavior

and delay equivalent petri net model for performance evaluation of com-

munication protocols. Computer Communications, 31 (10), 2210–2230. doi:

10.1016/j.comcom.2008.02.009

GÁBOR ÁRPÁD NÉMETH

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, DEPT. OF COMPUTERALGEBRA

H-1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C., HUNGARY

E-mail: nga@inf.elte.hu

PÉTER SÓTÉR

QUALYSOFT PLC, H-1118 BUDAPEST RÉTKÖZ U. 5., BUDAWEST OFFICE BUILDING, HUNGARY

E-mail: peter.soter@qualysoft.com

(Received March, 2021)

