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Some Pythagorean type equations
concerning arithmetic functions

Ildikó Kézér

Abstract. We investigate some equations involving the number of divisors d(n); the sum
of divisors σ(n); Euler’s totient function ϕ(n); the number of distinct prime factors
ω(n); and the number of all prime factors (counted with multiplicity) Ω(n). The first
part deals with equation f(xy) + f(xz) = f(yz). In the second part, as an analogy to
x2 + y2 = z2, we study equation f(x2) + f(y2) = f(z2) and its generalization to higher
degrees and more terms. We use just elementary methods and basic facts about the
above functions and indicate why and how to discuss this topic in group study sessions
or special maths classes of secondary schools in the framework of inquiry based learning.
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Introduction

In a previous paper (Kézér, 2018) we presented some ideas of how a topic

related to the commutativity of the composition of arithmetic functions can be

discussed with students in the 9th grade in the special maths program and sum-

marized the experiences of the group study sessions we had with the pupils. The

main objective of the present paper is the same: to create opportunities for stu-

dents to experiment on their own and to do research, to motivate them to propose

questions while working on the material. The goal is to investigate problems -

related to special equations concerning arithmetic functions - that offer students

the framework for experimentation. Number theory, including arithmetic func-

tions, is one of the few topics in high school mathematics that does not require
157
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a tremendous amount of prior knowledge. We think the problems studied in this

paper do not require higher mathematical knowledge and are accessible for high

school students in the special math program. (Unfortunately, the pandemic pre-

vented so far to test our ideas with the students.) The questions involve different

grades of difficulty, and most of them can be divided into parts of different depth.

They open up some problem solving methods that students know already and can

practice, but also give rise to introducing new ones. We think that the questions

we investigate create enough space for creativity while also provide the oppor-

tunity for pupils to reach different levels in problem solving. We believe that

problem solving should be only partly directed: the teacher should be present to

support the students’ ideas and help them if needed but the main emphasis is

on the students’ approach and their communication about the problems. These

problems are open-ended, and give rise to many more questions than discussed in

this paper. We are confident that students will definitely achieve at least partial

results in solving these problems.

The approach meets the framework of inquiry based teaching, which is–

according to J. Hattie – ” ... the art of developing challenging situations in

which students are asked to observe and question phenomena; pose explanations

of what they observe; devise and conduct experiments in which data are collected

to support or contradict their theories; analyze data; draw conclusions from exper-

imental data; design and build models; or any combination of these. Such learning

situations are meant to be open-ended in that they do not aim to achieve a sin-

gle ”right” answer for a particular question being addressed, but rather involve

students more in the process of observing, posing questions, engaging in experi-

mentation or exploration, and learning to analyze and reason.”(Hattie, 2009).

As A. H. Schoenfeld notes: ”By definition, problem situations are those in

which the individual does not have ready access to a (more or less) prepackaged

means of solution.” (Schoenfeld, 1985) Of course, not having a prepackaged path

of progress, this type of experimentation also includes the possibility of errors,

but it is important to develop and improve the sense in the students during their

high school years that mistakes are self-evident parts of any discovery, including

mathematical discovery, as well. Citing the always appropriate thought of Gy.

Pólya: ”There is no such thing as a bad idea, something can only go wrong if we

accept it without criticism. The only bad thing is not to have thoughts at all.”

(Pólya, 1971).

We believe that working on these problems serves as a good example how one

can develop and extend a question, how the variants of a question can sometimes
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result in exactly the same answer as the original problem, and how they can lead

to a totally different outcome in other cases and how one can make generaliza-

tions. Of course, it is not granted that we can solve the analogue problem or the

generalization but it is worth an attempt to consider where the reformulation or

the generalization of the original problem could lead. It is important to make

pupils notice these kinds of opportunities, so they can manage to find similari-

ties, to compare solutions, and to adapt the main ideas of a certain solution in

a modified situation. On this journey we can also highlight some connections of

arithmetic functions to several other parts in high school math. So studying this

topic, besides being interesting in itself, can be beneficial also in solving diverse

problems or finding the basic idea behind a solution.

Arithmetic functions form an important area in number theory. Their ba-

sic properties and the other number-theoretic notions used in this paper (Fer-

mat primes, twin prime conjecture, etc.) can be found for example in (Freud &

Gyarmati, 2000).

We start with determining all solutions of equation f(xy) + f(xz) = f(yz),

where f(n) = ω(n) and Ω(n), or more generally, f is a positive strongly or

completely additive function. Multiplicative functions d(n), σ(n), and ϕ(n) show

a more diversified behavior even concerning solutions in prime powers. Some

results are also related to the twin prime conjecture and other unsolved problems

concerning primes.

The situation for equation f(x2)+f(y2) = f(z2) depends heavily on the con-

crete arithmetic function: for d(n) there is no solution even for any higher degree

generalization; for σ(n) there is no solution for any even degree generalization;

for ω(n) and Ω(n), we have infinitely many solutions, and regarding the latter

there exist infinitely many solutions even among prime powers; but there are no

solutions in primes for any of the five functions, including ϕ(n). We find it really

useful for students to experience that though the origin of these questions is the

same, the results and methods vary in a wide range.

Solvability of equation f(xy) + f(xz) = f(yz)

Additive functions

First we study the solvability if f is a positive strongly or completely additive

arithmetic function (by positive we mean that f assumes only positive values

except for f(1) = 0), and then we apply the results for the number of distinct
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prime factors ω(n) and the number of prime factors counted with multiplicity

Ω(n).

Strongly additive arithmetic functions

Definition 1.1

An arithmetic function f is strongly additive, if f(pα) = f(p) for any prime p

and integer α ≥ 1, and (a, b) = 1 implies f(ab) = f(a) + f(b).

The next statement is straightforward:

Proposition 1.2
If n =

∏
i

pαii , and f is strongly additive, then f(n) =
∑
p|n

f(p).

Theorem 1.3

If f is a positive strongly additive function, then all solutions of equation

f(xy) + f(xz) = f(yz) are (1; y; z), where (y, z) = 1.

Proof

As any prime divisor p of y also divides xy and f(p) > 0, we have∑
p|xy

f(p) ≥
∑
p|y

f(p) for any x, y ∈ Z+. Equality holds if and only if every prime

divisor of x is also a divisor of y. The same applies to prime divisors p of z and

xz.1

This implies a lower bound for the left-hand side of the equation:

f(xy) + f(xz) =
∑
p|xy

f(p) +
∑
p|xz

f(p) ≥
∑
p|y

f(p) +
∑
p|z

f(p) = f(y) + f(z)

for any x, y, z ∈ Z+, and equality holds if and only if every prime divisor of x is

a common divisor of y and z.

Now we establish an upper bound for the right-hand side of the equation:∑
q|yz

f(q) =
∑
q|y

f(q) +
∑
q|z

f(q)−
∑

q|y∧ q|z

f(q) and f(q) > 0

imply

f(yz) =
∑
q|yz

f(q) ≤
∑
q|y

f(q) +
∑
q|z

f(q) = f(y) + f(z)

for any y, z ∈ Z+. Equality holds if and only if
∑

q|y ∧ q|z

f(q) = 0, i.e. y and z are

coprime.

1We denote the set of positive integers by Z+ and the set of non-negative integers by N.
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The lower bound for the left-hand side and the upper bound for the right-

hand side coincide, so f(xy) + f(xz) = f(yz) holds if and only if both bounds

hold with equality. This means that (y, z) = 1 on the one hand, and every prime

divisor of x divides (y, z) on the other hand. Therefore, the set of prime divisors

of x is empty, i.e. x = 1. So all solutions of f(xy) + f(xz) = f(yz) are (1; y; z)

where y and z are relatively prime integers. �
As a special case, all solutions of ω(xy) + ω(xz) = ω(yz) are (1; y; z), where

(y, z) = 1.

Completely additive functions

Definition 1.4

An arithmetic function f is completely additive, if f(ab) = f(a) + f(b) for any

a, b ∈ Z+. The next statement is straightforward:

Proposition 1.5
If n =

∏
i

pαii , and f is completely additive, then f(n) =
∑
i

αi · f(pi).

Theorem 1.6

If f is a positive completely additive function, then all solutions of equation

f(xy) + f(xz) = f(yz) are (1; y; z), where y and z are arbitrary positive integers.

Proof

If f is completely additive, then the equation is equivalent to f(x)+f(y)+f(x)+

+f(z) = f(y) + f(z). This holds if and only if f(x) = 0, so x = 1. The values y

and z can be chosen arbitrarily. �
As a special case, all solutions of Ω(xy) + Ω(xz) = Ω(yz) are (1; y; z), where

y and z are arbitrary positive integers.

Of course, when working with students, we should choose a different approach,

the inductive method. We should consider first the question for the specific func-

tions ω and Ω, and move on to formulate generalizations based on the essential

properties used in the proofs.

We should start with Ω, as this is (relatively) easy and needs no additional

preparation. Then we can ask the students to point out which properties of Ω

were used in the proof. After clarifying these, they can be asked to find some

other functions satisfying these requirements. They will probably come up with

the logarithm and this is a good occasion to review its other properties, too.

Then we can inspire them how to construct further such functions by asking e.g.:

If (say) f(2) = 3, then which other values of f are determined? And if also

(say) f(3) = 5? Step by step we can conclude that the values assumed at primes
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determine such a function completely. But we are not yet done, as we must

check that choosing arbitrary values at the primes, the induced function satisfies

f(ab) = f(a) + f(b) for all positive integers a and b, indeed. Finally, we may add

that such functions are called completely additive.

Turning to ω, we should look first for solutions with x = 1, and realize that y

and z must be relatively prime. This helps to detect that for a fixed x > 1 there

are no solutions. Finally we can summarize all solutions as x = 1 and (y, z) = 1.

As for the generalization, students are already armed with the experience acquired

from Ω, so it will be easier for them to establish the general result for this case,

too.

Multiplicative functions

Now we turn to positive multiplicative functions assuming only integer values.

Our target functions d, σ, and ϕ satisfy this condition.

Definition 1.7

An arithmetic function f is multiplicative, if (a, b) = 1 implies

f(ab) = f(a)f(b) and is completely multiplicative if this applies to any a, b posi-

tive integers.

We shall use the following simple observation:

Lemma 1.8

(A) Let f be a positive completely multiplicative function.

(i) Equation f(xy) + f(xz) = f(yz) is equivalent to any of the following three

conditions:

(1)

f(x)((f(y) + f(z)) = f(y)f(z) ;

(2)

f(x) =
f(y)f(z)

f(y) + f(z)
;

(3)

f2(x) = (f(y)− f(x))(f(z)− f(x)) .

(ii) The equation has no solution satisfying x = y or x = z.

(B) The above are valid also for multiplicative functions concerning the pairwise

relatively prime solutions of the equation.
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Proof

A/(i) (1) follows from the completely multiplicative property. We obtain (2) by

expressing f(x) from (1) (the denominator is not 0 as f is positive). Multiplying

(1) by f(x) yields (3).

A/(ii) Substituting (say) x = y into (1), it reduces to f2(y) = 0 which is a

contradiction. The same arguments apply to B. �

We shall need a condition for the right-hand side in (2) to be an integer:

Lemma 1.9

The expression
ab

a+ b
defined on Z+ × Z+ is an integer if and only if

a = r(r + s)k and b = s(r + s)k, where (r, s) = 1 and k are positive integers.

Proof

If a and b satisfy the above conditions, then
ab

a+ b
=
rs(r + s)2k2

k(r + s)2
= rsk is

an integer, as well.

To prove the converse, let d = (a, b), i.e. a = rd and b = sd, where (r, s) = 1.

So the ratio
ab

a+ b
equals

rsd2

d(r + s)
=

rsd

r + s
. As r and s are coprime, (r+s, rs) = 1

follows, so the ratio
rsd

r + s
is an integer if and only if r + s | d. This means that

d = (r+s)k for some positive integer k. Substituting back into a = rd and b = sd,

we get the desired result. �

Now we turn to the concrete functions d, σ, and ϕ. We start with d where

we exhibit explicitly all solutions in prime powers and describe how to obtain all

pairwise coprime solutions in general.

The number of divisors

Theorem 1.10

Consider the equation d(xy) + d(xz) = d(yz).

(i) All prime power solutions are:

(4) x = prsk−11 , y = p
r(r+s)k−1
2 , z = p

s(r+s)k−1
3 , where p1, p2 and p3 are

distinct primes, r, s, k are positive integers, with at least one of them greater than

1, and (r, s) = 1, or

(5) x = p
kβ−1

2
1 , y = pβ2 , z = p

k(β+2)−1
2

1 , where p1 and p2 are distinct primes,

k and β are positive odd integers with at least one of them greater than 1.

(ii) All pairwise coprime solutions can be obtained by fixing x arbitrarily and

describing the corresponding infinitely many solutions in y and z.



164 Ildikó Kézér

Remark 1

As a corollary we obtain that the equation has no solutions in primes, but x

and y can be primes while z is a 4th power of a prime for k = 3, β = 1 in (5).

Remark 2

We cannot prescribe the values of two variables arbitrarily. E.g. if both x

and y are squares, there are no solutions in z, since the parities of the left-hand

side and the right-hand side are different regardless of z being a square or not.

Proof

(i) We distinguish three cases: (A) the three variables are pairwise coprime; (B)

exactly two of them are powers of the same prime; (C) they are all powers of the

same prime.

A) x = pα1 , y = pβ2 and z = pγ3 , where primes pi are distinct and α, β, γ ∈ Z+.

By (2) in Lemma 1.8, we have α+1 =
(β + 1)(γ + 1)

(β + 1) + (γ + 1)
, since d(nδ) = δ+1,

if n is a prime. By Lemma 1.9, this is equivalent to α+1 = rsk, β+1 = r(r+s)k,

and γ+ 1 = s(r+ s)k, where r, s, k are positive integers and (r, s) = 1. As α > 0,

we have rsk > 1, so at least one of r, s, and k is greater than 1. This gives (4).

B) The equation is symmetric in y and z, so we have two subcases: (B/I.) y and

z; or (B/II.) x and (say) z are powers of the same prime.

B/I.) x = pα1 , y = pβ2 and z = pγ2 , where pi are distinct primes and α, β, γ ∈ Z+.

By (1) in Lemma 1.8, we have (α + 1)(β + γ + 2) = β + γ + 1, a contradiction,

since the right-hand side is always less than the left-hand side.

B/II.) x = pα1 , y = pβ2 and z = pγ1 , where pi are distinct primes and

α, β, γ ∈ Z+. Again, by (1) in Lemma 1.8, we arrive at β(α − γ) + 2α + 1 = 0.

This implies β | 2α+ 1, so kβ = 2α+ 1 for some k ∈ Z+, where β and k are both

odd, and at least one of them is greater than 1. This gives α =
kβ − 1

2
, hence

β

(
kβ − 1

2
− γ + k

)
= 0. As β 6= 0, this is equivalent to γ =

k(β + 2)− 1

2
. This

yields (5).

C) x = pα, y = pβ and z = pγ , where p is a prime and α, β, γ ∈ Z+.

We have 2α + β + γ + 2 = β + γ + 1, a contradiction, since the right-hand

side is always less than the left-hand side.

(ii) By (3) in Lemma 1.8, d2(x) = (d(y) − d(x))(d(z) − d(x)). This means that

d(y) − d(x) and d(z) − d(x) are complementary divisors u1 and u2 of d2(x),

and we can find all these pairs by factoring d2(x). So d(y) = u1 + d(x) = v1,

d(z) = u2 +d(x) = v2. Each factorization of v1 determines a system of exponents
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in the standard form of y: if v1 = k1 · . . . · kr with r ≥ 1 and every ki > 1,

then all possible values of y are y = pk1−11 · . . . · pkr−1r , where pi are distinct

primes. Similarly, each factorization of v2 determines all possible values of z. To

guarantee the pairwise coprime property, no pair of y and z can contain common

prime factors or prime factors of x. �
Studying the equation specifically for d(n) offers a lot to improve the students’

knowledge, skills, and perspective in many aspects. The notion and formula of

d(n) are easily accessible for them; the multiplicative property can be detected

already from a few examples and then proved from the formula; and forming

pairs of divisors is a simple but very efficient method to solve even seemingly

hard problems. We can start by rephrasing this particular equation similar to

the general formulas (1) and (2) in Lemma 1.8. This induces the natural demand

to find the condition for the expression on the right-hand side of (2) to be an

integer, so we can prove Lemma 1.9, an interesting question in itself. Armed with

this machinery, students will come up soon with some particular solutions of the

equation.

After listing these (probably sporadic) examples, we can start a systematic

search. The multiplicative property facilitates handling the equation, so it is

worth to restrict ourselves to pairwise coprime solutions. The next step can be to

fix the value of x starting with x = 1 (some of the students’ preliminary solutions

probably are of this type). This leads to the equation d(y) +d(z) = d(y)d(z) that

can be transformed into (d(y) − 1)(d(z) − 1) = 1. Hence d(y) = d(z) = 2, so y

and z are arbitrary distinct primes. For x = 2 we get 2(d(y) + d(z)) = d(y)d(z)

yielding (d(y) − 2)(d(z) − 2) = 4, so d(y) = d(z) = 4, or one of them is 3 and

the other is 6. So this equation gives rise also to solutions where y and/or z

are not necessarily prime powers, e.g. d(y) = d(z) = 4 holds if y and/or z are

products of two distinct (odd) primes. After a few more examples, the students

themselves can discover the general pattern and the way to find all solutions for

a given x, i.e. to prove part B of Theorem 1.10. In the meantime, they discovered

formula (3) in Lemma 1.8, and learned how to solve Diophantine equations of

type uv+au+ bv+ c = 0 in u and v where a, b, and c are given integers. Another

advantage was to see that characterizing all solutions is not necessarily an explicit

formula but can also be some algorithmic description of the above type.

Finally, we can make a search for solutions of special types. Asking the

students, they most probably will come up with one or more of the following

sets: primes, prime powers, squares, two or three variables assume the same

value, and many others. So, we can do part A in Theorem 1.10 and/or A(ii) in
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Lemma 1.8 and investigate many other questions depending on the sets suggested

by the students. It may turn out that we cannot give a complete or even a

partial answer in some cases, but it is good if the students see that it is a natural

phenomenon in mathematical research that we are unable to solve a problem, at

least temporarily (which may sometimes mean thousands of years, see the famous

unsolved problems posed by the antique Greeks). And it is a good occasion for

the students to use their creative energies both in raising original mathematical

questions autonomously and in working alone or in teams on the solution of these

questions proposed by them or their classmates.

Euler’s totient function

There are many types of solutions of the equation for ϕ, and some of them

are related to famous unsolved problems concerning primes.

Theorem 1.11

Consider equation ϕ(xy) + ϕ(xz) = ϕ(yz).

(i) There are infinitely many solutions in powers of 2.

(ii) If x and y are powers of 2 in a solution, i.e. x = 2α and y = 2β (with integers

α, β ≥ 0), then β = α+ 1, and there is a simple algorithm to find all solutions for

such a pair α, β.

(iii) For any integer k > 31, there exist at least 31 solutions where x = 2k and y

is, but z > 1 is not a power of 2.

(iv) There is no solution where two variables are powers of the same odd prime.

(v) A triplet (p1; p2; p3) is a solution in primes if and only if pi are distinct and

(p1 − 1)2 = (p2 − p1)(p3 − p1).

(vi) Any prime triplet of the form (2k + 1; 3k + 1; 6k + 1) is a solution.

(vii) Any pair of twin primes induces a solution.

Proof

(i) The triplet x = 2α, y = z = 2α+1 is a solution for any integer α ≥ 0 since

2 · ϕ(22α+1) = ϕ(22α+2).

(ii) Let x = 2α and y = 2β , and z = 2s · t, where s ∈ N and (t, 2) = 1. After

substitution and rearranging the equation we get ϕ(t) =
2α+β−1

2β+s−1 − 2α+s−1
=

=
2α+β−1

2α+s−1(2β−α − 1)
. Since (2α+β−1, 2β−α− 1) = 1, the ratio is an integer if and

only if 2β−α − 1 = 1, i.e. β = α+ 1 and 0 ≤ s ≤ α+ 1.
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The possible values for z 6= y are determined by the odd solutions t of the

equation ϕ(t) = 2α−s+1. For instance, if α = 2, i.e. x = 4, y = 8, while 0 ≤ s ≤ 3

holds, we have to check whether there exist odd solutions t of equations ϕ(t) = 1,

ϕ(t) = 2, ϕ(t) = 4, and ϕ(t) = 8. These are: t = 1, t = 3, t = 5, and t = 15,

respectively. So the solutions in z of equation ϕ(xy) + ϕ(xz) = ϕ(yz) with x = 4

and y = 8 are z1 = 23·1 = 8, z2 = 22·3 = 12, z3 = 21·5 = 10, and z4 = 20·15 = 15,

i.e. (4; 8; 8), (4; 8; 10), (4; 8; 12), and (4; 8; 15) in this special case (the first one

being listed in (i), too).

(iii) If x = 2k, then the assumptions and (ii) imply y = 2k+1 and z = 2s · t, where

s ∈ N, t > 1 and (t, 2) = 1. We saw in the proof of (ii) that all solutions are

characterized by 0 ≤ s < k + 1 and ϕ(t) = 2k+1−s.

Since ϕ(t) is a power of 2 and t is odd, t must be a product of distinct Fermat

primes, i.e. primes of the form 2m + 1. The presently known five Fermat primes

belong to the exponents m ∈ {1; 2; 4; 8; 16}. This implies that ϕ(t) = 2n has

exactly one odd solution in t > 1 for any integer 1 ≤ n ≤ 31 as n has a unique

binary representation n =

4∑
i=0

εi · 2i , εi ∈ {0, 1}, 0 ≤ i ≤ 4. For any fixed k > 31,

we have at least 31 values of s satisfying 1 ≤ k+1−s ≤ 31, and for every possible

pair (k; s), we have exactly one odd t with ϕ(t) = 2k+1−s, so we have at least 31

solutions z = 2s · t.

(iv) If x = pα, y = pβ , and z = pst, where s ∈ N, p > 2 and (t, p) = 1, then the

equation is equivalent to ϕ(t) =
pα+β−1

pβ+s−1 − pα+s−1
. This cannot hold for a prime

p > 2 since the denominator is even, but the numerator is odd, so the fraction is

not an integer.

If x = pst, y = pα, and z = pβ , where s ∈ N, p > 2 and (t, p) = 1, then the

equation is equivalent to ϕ(t) =
pα+β−1

pβ+s−1 + pα+s−1
. This cannot hold for a prime

p > 2 since the denominator is even, but the numerator is odd, so the fraction is

not an integer.

Since the equation is symmetric in y and z, we have no more cases to check.

(v) We know from (ii) in Lemma 1.8 that there are no solutions for x = y or

x = z. Also x = p and y = z = q is impossible with primes p 6= q since

2(p − 1)(q − 1) = q(q − 1) holds only for p = q = 2. So x, y, and z have to be

three distinct primes (p1; p2; p3). Since ϕ(n) = n − 1 if n is a prime, we obtain

the result by (3) in Lemma 1.8.
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Such prime triplets are e.g. x = 5, y = 7, z = 13, or more generally, if x and

y are twin primes x = p, y = p+ 2 and also z =
p2 + 1

2
is a prime.

(vi) This follows immediately from (v).

We obtain such prime triplets e.g. for k = 2, 6, 26, 90 or 200. For k > 2, only

k ≡ 0, 6, 20, or 26 (mod 30) may work but it is unsolved whether there exist

infinitely many such prime triplets.

We constructed these solutions using Lemma 1.9 with r = 1, s = 2. We can

produce further similar types of triplets by choosing other values for r and s.

E.g. if r = 1, s = 3, then we get x = 3k+ 1, y = 4k+ 1 and z = 12k+ 1 yielding a

solution of our equation when all three values are primes.

So, if there are infinitely many k ∈ Z+, for which 2k + 1, 3k + 1 and 6k + 1,

or 3k+ 1, 4k+ 1 and 12k+ 1 are primes – an unsolved problem so far –, then the

equation ϕ(xy) + ϕ(xz) = ϕ(yz) has infinitely many solutions in primes.

(vii) If p and q = p + 2 are twin primes, then (2p; pq; 2q) is a solution since

p(p − 1)(p + 1) + 2(p − 1)(p + 1) = (p + 2)(p − 1)(p + 1) holds. So, if the twin

prime conjecture is true, then we have infinitely many solutions, where x, y and

z are all products of two distinct primes. �
We suggest to investigate this problem similarly to the question we studied

earlier involving the number of divisors. And while examining this question, stu-

dents will realize some of the basic differences between the two functions on their

own. If we are searching for pairwise coprime solutions and start our examination

with x = 1, we get 1 = (ϕ(y)−1)(ϕ(z)−1), hence ϕ(y) = ϕ(z) = 2. All solutions

of ϕ(n) = 2 are n = 3, 4 and 6, but only 3 and 4 are coprime, so for x = 1 the only

solutions are y = 3, z = 4, or vice versa. As also ϕ(2) = 1, we have no coprime

solutions for x = 2.

This suggests to continue by the values of ϕ(x) instead of x, and study to-

gether x = 3, 4, and 6 satisfying ϕ(x) = 2. Now our equation is

4 = (ϕ(y) − 2)(ϕ(z) − 2). One of the differences and difficulties compared to

the number of divisors is that we can only have even factors here, since ϕ(n)

is even for every n > 2. It means that in this case there is only one possible

factorization of 4, namely 4 = 2 · 2 which leads to ϕ(n) = 4, so y and z must

be coprime elements of the set {5; 8; 10; 12} and coprime to x. So for x = 3 the

only solutions are y = 5, z = 8, or vice versa, and we have no pairwise coprime

solution if x = 4 or x = 6.

At this point we can discuss in general that if an odd number n is a solution

of ϕ(n) = k for a fixed k, then also 2n is a solution. If x is even we cannot be sure

that there exist two odd elements in the set we get for y and z. It leads to another
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question: are there values k in the range of ϕ(n), for which it is guaranteed to

have at least one odd solution in n. And this way we can discuss in general the

role of Fermat primes in solving these kinds of problems. We can also experiment

with other special types of primes, e.g. twin primes, as well.

While searching solutions when ϕ(x) is fixed, we should highlight that op-

posite to d(x), we have only finitely many possibilities in x for any fixed value

of ϕ(x). After not finding pairwise coprime solutions when x = 2, 4, or 6, we

should make it clear that this does not mean that there are no solutions at all in

y and z in these cases. If we do not restrict ourselves to pairwise coprime triplets,

students can easily find solutions with x = 2, for instance x = 2, y = 4 and z = 5;

or x = 2, y = 6 and z = 3; or x = 2, y = 4 and z = 4. For sure some students

will come up with one of the last two, and it is a nice and easy task to prove

the generalizations: for every positive integer k, triplets (k; k(k + 1); k + 1) and

(2k; 2k+1; 2k+1) are solutions. Upon the latter one we can challenge students to

find triplets in which two of the unknowns are powers of the same odd prime. and

after a few failed attempts we should prove that there are no such triplets.

Another difference compared to the number of divisors is that there are even

integers not in the range of ϕ(n), so called nontotients, e.g. 14, 26, 34, 38... etc.

(it is proved that there are infinitely many nontotients), which means that for a

fixed value of ϕ(x), not every theoretically possible even factorization is really an

option. For instance, for ϕ(x) = 12, the equation is 144 = (ϕ(y)−12)(ϕ(z)−12),

but the factorization 144 = 2 · 72 cannot lead to a solution, since ϕ(n) = 14 is

not solvable.

The next two theorems examine the case when x and y are powers of two

distinct primes. In the first one we determine all solutions where z is divisible by

both of these primes.

Theorem 1.12

Let x = pα and y = qβ , where p and q are distinct primes, α, β ∈ Z+. Then

equation ϕ(xy) + ϕ(xz) = ϕ(yz) has a solution in z divisible by pq if and only

if x = 8, y = 9; or x is a Mersenne prime, y = x + 1; or y is a Fermat prime,

x = y − 1. To each such pair (x, y), we can find the corresponding values of z by

a simple algorithm.

Proof

By assumption, z = paqbt, where a, b ∈ Z+ and (t, pq) = 1. After substitution,

rearranging and simplifying the equation we have ϕ(t) =
pα−1 qβ−1

pa−1 qb−1 (qβ − pα)
. As
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qβ−pα is coprime to the numerator, this equality holds if and only if qβ−pα = 1

and ϕ(t) = pα−a qβ−b. We distinguish four cases.

I) α, β > 1

First we prove that q = 3, p = 2, β = 2, α = 3 is the only solution to equation

qβ − pα = 1 in this case.

Since the difference of the powers is odd, p has to be 2 and q an odd prime,

or vice versa.

Consider p = 2. Then qβ − 1 = (q − 1)(qβ−1 + qβ−2 + · · · + q + 1) = 2α. If

β > 1 is odd, the second factor of the product is an odd divisor greater than 1, a

contradiction. If β > 1 is even, qβ − 1 = (q
β
2 − 1)(q

β
2 + 1). Both factors can only

be powers of 2 if q
β
2 − 1 = 2, thus q = 3, β = 2, so α = 3.

Consider q = 2. Then 2β = pα + 1. If α > 1 is odd, then 2β = (p+ 1)(pα−1−
−pα−2 + · · ·+ p2 − p+ 1), but the second factor of the product is an odd divisor

greater than 1, a contradiction. If α > 1 is even, then pα + 1 ≡ 2 (4), while

2β ≡ 0 (4) for any β > 1, a contradiction again.

Thus the only solution is q = 3, p = 2, β = 2, α = 3, indeed.

So we get equation ϕ(t) = 23−a · 32−b, which gives us six options for a and b:

A) If (a; b) = (3; 2), then ϕ(t) = 1, so t = 1.

B) If (a; b) = (3; 1), then ϕ(t) = 3, a contradiction, since ϕ(t) cannot be odd for

t > 2.

C) If (a; b) = (2; 2), then ϕ(t) = 2, a contradiction, since (t, 6) = 1.

D) If (a; b) = (2; 1), then ϕ(t) = 6, so t = 7.

E) If (a; b) = (1; 2), then ϕ(t) = 4, so t = 5.

F) If (a; b) = (1; 1), then ϕ(t) = 12, so t = 13. Thus, if x = 23, y = 32, then

z1 = 23 · 32, z2 = 22 · 3 · 7, z3 = 2 · 32 · 5, and z4 = 2 · 3 · 13.

II) α = 1, β > 1

Then q = 2, p is a Mersenne prime, and a = 1. For example: if x = 7, y = 23,

we need all values of t coprime to 14 satisfying ϕ(t) = 23−b for some 1 ≤ b ≤ 3.

These are t1 = 5, t2 = 3, and t3 = 1. So all solutions for x = 7, y = 23 are

z1 = 2 · 7 · 5, z2 = 22 · 7 · 3, and z3 = 23 · 7.

We always have at least one solution: for a = 1 and b = β we get ϕ(t) = 1,

i.e. t = 1, so z = xy.

III) α > 1, β = 1

Then q is a Fermat prime, p = 2, and b = 1. For example: if x = 24, y = 17,

we need all values of t coprime to 34 satisfying ϕ(t) = 24−a for some 1 ≤ a ≤ 4.
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These are t1 = 15, t2 = 5, t3 = 3, and t4 = 1. So all solutions for x = 24, y = 17

are z1 = 2 · 17 · 15, z2 = 22 · 17 · 5, z3 = 23 · 17 · 3, and z4 = 24 · 17.

We always have at least one solution: for b = 1 and a = α we get ϕ(t) = 1,

i.e. t = 1, so z = xy similar to the case of Mersenne primes.

IV) α = β = 1

Then q = 3, p = 2, and a = b = 1 yielding ϕ(t) = 1 , i.e. t = 1. This gives

the solution x = 2, y = 3, z = 6. �
The hardest part of the proof was to show that the only consecutive prime

powers are 8 and 9. This is a challenge even for the best students, though it is

elementary but requires a sophisticated application of identities. Students gen-

erally dislike such identities but this application can convince them that these

can be very efficient tools. And they will be even more proud of their achieve-

ment if they learn about the story of the natural generalization of the problem,

namely that 8 and 9 are the only consecutive powers of integers. This famous

conjecture of Catalan dating from 1844 was unsolved for more than a century. In

1976 Tijdeman proved that if n is large enough, then both n and n + 1 cannot

be powers. His bound was so enormous that computers were unable to check the

possibility of consecutive powers up to this limit. Finally, in 2002, Mihailescu

settled the question completely by proving that there are no other consecutive

powers besides 8 and 9, indeed. 2

The situation gets much more complicated when x and y are powers of two

distinct primes, while z is relatively prime to at least one of them. We illustrate

the increasing difficulties on powers of two concrete primes:

Theorem 1.13

Let x = 3α and y = 11β , where α, β ∈ Z+. All solutions of equation

ϕ(xy) + ϕ(xz) = ϕ(yz) are obtained from α = 1, β = 2, i.e. x = 3, y = 121,

and the corresponding values of z are z1 = 93 and z2 = 186.

Proof

We distinguish three cases according to z being coprime to exactly one of x and

y, or to both of them.

A) z = 3a · t, where a ∈ Z+ and (t, 33) = 1.

By substitution, simplifying and rearranging the equation we have

ϕ(t) =
10 · 3α−a · 11β−1

10 · 11β−1 − 3α
. Since for any exponents α, β, a ∈ Z+ the numerator

and the denominator are coprime, their ratio is a positive integer if and only

2source: https://en.wikipedia.org/wiki/Catalan’s conjecture
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if the denominator is 1. We show that 10 · 11β−1 − 3α = 1 can only hold for

β = 1, α = 2. If β > 1, then necessarily 3α ≡ −1 (11). But there is no exponent

α satisfying this congruence, because the remainders of 3α mod 11 are 3, −2, 5,

4, and 1, respectively. So β = 1, α = 2, and ϕ(t) = 10 · 32−a where a = 1 or

a = 2, and (t, 33) = 1. We get a solution only for a = 1: t1 = 31 and t2 = 2 · 31.

So, x = 32, y = 11, z1 = 3 · 31, and z2 = 3 · 2 · 31.

B) z = 11b · t, where b ∈ Z+ and (t, 33) = 1.

By substitution, simplifying and rearranging the equation we have

ϕ(t) =
2 · 3α−1 · 11β−b

11β − 2 · 3α−1
. Using the same argument as in A), the denominator

must equal 1. Equation 11β − 2 · 3α−1 = 1 cannot hold since for any α, β, b ∈ Z+

the left-hand side and the right-hand side are incongruent mod 5: all powers of

11 are congruent to 1 mod 5, while the other term on the left-hand side is not

divisible by 5.

C) (z, 33) = 1

In this case we have ϕ(t) =
10 · 3α−1 · 11β−1

5 · 11β−1 − 3α−1
. The greatest common divisor of

the numerator and the denominator is 2, so their ratio is a positive integer if and

only if the denominator equals 2. But then the right-hand side is an odd integer

greater than 1, so it cannot be equal to ϕ(t). �
In each case of the proof, we had to deal with exponential Diophantine equa-

tions. It causes no difficulty if the students have not yet learned about exponential

problems in general, as we are working only with non-negative integer exponents

and use just divisibility and remainders. And it is a well-known ”trick” for stu-

dents from a very young age that they should search for patterns and repetition,

e.g. that finding the last digit or the last two digits of 22021 depends on realizing

(and at a later stage also proving) that the sequence of the last or last two digits

of powers of 2 is periodic. This refers to examinations just mod 10 or 100, so

discussing the equations in the proof of Theorem 1.13 gives us a good opportu-

nity to underline that we can use similar methods for other moduli, too. Trying

to prove that there exists no solution to an equation of this type, it is enough to

find a suitable modulus for which the two sides of the equation are incongruent,

and we have some strategies to find such nominees, e.g. try the ones which are

divisors of the base or are one less than the base of the power. Of course we do

not have to use the concept of congruences, but it is certainly one of the concepts

students understand and apply easily.
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The sum of divisors

Several results show analogy to the ones obtained for ϕ(n).

Theorem 1.14

Consider equation σ(xy) + σ(xz) = σ(yz).

(i) There are no solutions where all variables are powers of the same prime.

(ii) A triplet (p1; p2; p3) is a solution in primes if and only if pi are distinct and

(p1 + 1)2 = (p2 − p1)(p3 − p1).

(iii) Any prime triplet of the form (4k − 1; 5k − 1; 20k − 1) is a solution.

Proof

(i) If x = pα, y = pβ , and z = pγ , where α, β, γ ∈ Z+, then
pα+β+1 − 1

p− 1
+

+
pα+γ+1 − 1

p− 1
=
pβ+γ+1 − 1

p− 1
. As

pk − 1

p− 1
= pk−1 + · · · + p + 1 ≡ 1 (mod p) for

every k ∈ Z+, the left-hand side is 2 (mod p) while the right-hand side is 1

(mod p). So equality cannot hold.

(ii) By Lemma 1.8, there are no solutions where x = y or x = z. If x = p and

y = z = q, where p 6= q, then 2(p+ 1)(q + 1) = q2 + q + 1, a contradiction, since

the left-hand side is even, while the right-hand side is odd. So the primes pi must

be distinct, and we obtain the equality in the statement by (3) in Lemma 1.8.

Such prime triplets are e.g. x = 5, y = 7, z = 23, or more generally, if x and

y are twin primes x = p, y = p+ 2 and also z =
p2 + 4p+ 1

2
is a prime.

(vi) This follows immediately from (ii).

We constructed these solutions using Lemma 1.9 with r = 1, s = 4. We can

produce further similar types of triplets by choosing other values for r and s.

E.g. if r = 2, s = 3, then we get x = 6k − 1, y = 10k − 1 and z = 15k − 1 yielding

a solution of our equation when all three values are primes.

So, if there are infinitely many k ∈ Z+, for which 4k − 1, 5k − 1 and 20k − 1,

or 6k−1, 10k−1 and 15k−1 are primes – an unsolved problem so far –, then the

equation σ(xy) + σ(xz) = σ(yz) has infinitely many solutions in primes. �
Earlier we showed that d(xy) + d(xz) = d(yz) has no solutions where two

variables are squares by comparing the parity of both sides. Since σ(n) is odd

if and only if n = m2 or n = 2m2 for some positive integer m, it follows that

also σ(xy) + σ(xz) = σ(yz) has no solutions where two variables are squares or

doubles of a square.

Finally we illustrate that fixing the values of two variables, the number of

solutions can vary from infinitely many to zero.
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Theorem 1.15

Let x = 2. There exist values of y for which the number of solutions in z is

(i) infinitely many;

(ii) one;

(iii) zero.

Proof

(i) If x = 2, y = 3, then z = 11 · 3α is a solution for any α ∈ N.

By substitution we have 12 + 36 · 3
α+1 − 1

2
= 12 · 3

α+2 − 1

2
. Simplifying and

rearranging this equality we get 12 + 18 · (3α+1− 1)− 6 · (3 · 3α+1− 1) = 0, which

holds for any α ∈ N, indeed.

(ii) If x = 2, y = 11, then we know from (i) that z = 3 is a solution (since the

equation is symmetric in y and z). We prove that this is the only solution in this

case.

Let the standard form of z be: z = 2α ·11β · t, where α, β ∈ N and (t, 22) = 1.

By substitution we have (2α+2 − 1) · 11β+1 − 1

10
· σ(t) + 36 = (2α+1 − 1)·

·11β+2 − 1

10
· σ(t). Simplifying and rearranging the equation we get

180 = [11β+1 · (9 · 2α − 5) + 2α] · σ(t).

The right-hand side is not less than 485, so only β = 0 is possible. Then we

have 180 = [100 · 2α − 55] · σ(t) yielding α = 0. Finally 180 = 45 · σ(t) implies

σ(t) = 4, i.e. t = 3, so z = 3.

(iii) If x = 2, y = 5, then there are no solutions.

Let the standard form of z be: z = 2α · 5β · t, where α, β ∈ N and (t, 10) = 1.

By substitution, (2α+2−1) · 5
β+1 − 1

4
·σ(t)+18 = (2α+1−1) · 5

β+2 − 1

4
·σ(t).

Simplifying and rearranging this equality we get 36 = [5β+1 ·(3 ·2α−2)+2α] ·σ(t).

The right-hand side is not less than 126, so we only have to check two possible

values for β.

If β = 0, then 36 = [16 ·2α−10] ·σ(t) implying α = 0. So σ(t) = 6, i.e. t = 5,

a contradiction, since it is not relatively prime to 10.

Checking β = 1, we have 36 = [76 · 2α− 50] · σ(t) yielding no solution in t for

any non-negative integer α.

So there are no solutions for x = 2 and y = 5. �
As students experience the similarities in handling the equation for ϕ and σ,

it is a good occasion to point out some further related features. E.g. |f(n)−n| =
= 1 holds for both functions if and only if n is a prime; their average order
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of magnitude is symmetric to n:
6

π2
n and

π2

6
n; both are connected to famous

antique problems: constructing regular polygons and perfect numbers.

The equation f(x2) + f(y2) = f(z2) and its generalization

We investigate the equation first for the numbers of distinct and all prime

divisors, respectively.

Proposition 2.1

Equations ω(xk) + ω(yk) = ω(zk) and Ω(xk) + Ω(yk) = Ω(zk) have no solu-

tions in primes for k > 1. The first equation has no solutions even among the

prime powers, whereas the second equation has infinitely many such solutions.

Proof

Since ω(x) = ω(xk), and Ω(xk) = k · Ω(x) for any k, the equations are

equivalent to ω(x) +ω(y) = ω(z) and Ω(x) + Ω(y) = Ω(z), respectively. The first

equation cannot hold for prime powers since 1 + 1 6= 1. All prime power solutions

of the second equation are x = pα1 , y = pβ2 , z = pα+β3 , where p1, p2, p3 are primes,

and α, β ∈ Z+ are arbitrary. Similar statements are true if we have more terms

on the left-hand side. �
Now we turn to multiplicative functions, starting with the number of divisors.

Proposition 2.2

Equation d(xk) + d(yk) = d(zk) has no solution in positive integers for any

k > 1.

Proof

Since d(nk) ≡ 1 (mod k), the left-hand side is congruent to 2 mod k, while

the right-hand side is 1 mod k. �
When working with students, it is good to see some special cases before

turning to the general problem. As an analogy to the Pythagorean triplets, let

k = 2, so d(x2)+d(y2) = d(z2), and we can ask the students to search for solutions

in primes first. They will immediately find that there are no such solutions as

3 + 3 6= 3. Then we can advance step by step to prime powers, to products of two

prime powers, or whatever the students suggest to look at, and they will come

up with longer and longer calculations to realize that there are no solutions in

these sets either. Sooner or later they will formulate the conjecture that there

are no solutions at all in positive integers. And it will be very instructive to

see the one-line argument that as the number of divisors of a square is odd, the
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two sides of the equation are of opposite parity. This is a good example that a

simple proof can be much more appreciated if it was found after hard struggles

with complicated ideas. The students can extend then this argument for any even

exponent k instead of 2. Turning to odd exponents k, we can start with k = 3.

After characterizing the standard form of cubes, we can see that the number of

their divisors has a remainder 1 mod 3, yielding immediately that there are no

solutions for cubes either. It is important to point out that in contrast to the

case of squares, d(n) ≡ 1 (mod 3) holds not only for the cubes, but also e.g. for

products of an even number of primes. And after the cubes it is straightforward

to generalize the proof of insolvability to kth powers for any k.

Another direction of generalization is to increase the number of terms on the

left-hand side of the equation. Taking three terms first, d(x21) + d(x22) + d(x23) =

= d(z2) has infinitely many solutions, e.g. x1 = p1, x2 = p2, x3 = p3 and z = p44,

where pi are primes. For four terms we have no solutions due to the opposite

parity of the two sides. The same applies to any even number of terms, whereas

there are infinitely many solutions if the number of terms is an odd integer n:
n∑
i=1

d(x2i ) = d(z2) holds with xi = pαii , z = qβ , where pi and q are primes, αi ≥ 1

and

n∑
i=1

(2αi + 1) = 2β + 1 (and in prime powers these are the only solutions).

Or more generally, when the exponents equal k, equation

n∑
i=1

d(xki ) = d(zk) is

solvable if and only if the number of terms on the left-hand side is congruent to 1

mod k, and there are infinitely many solutions in this case: e.g. xi = pαii , z = qβ ,

where pi and q are primes, αi ≥ 1, and

n∑
i=1

(kαi + 1) = kβ + 1 (and in prime

powers these are the only solutions).

We can apply the parity argument also for the sum of divisors if the exponent

k is even:

Proposition 2.3

Equation σ(xk) + σ(yk) = σ(zk) has no solution in positive integers for any

even exponent k.

Proof

As the sum of divisors of a square is odd, the left-hand side is even while the

right-hand side is odd. �
It is surprising compared to and contrary to the number of divisors that there

exist solutions of equation σ(xk) + σ(yk) = σ(zk) when k is odd, for example
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σ(33) + σ(103) = σ(133). This and other solutions can be found with the help

of mathematical softwares. From this alone we can get infinitely many solutions

with x = 3n, y = 10n and z = 13n, (n, 390) = 1. Finding all solutions for a fixed

odd exponent or – being more modest – finding all (x, y, z) = 1 solutions seems

to be hopelessly difficult. The same applies to the case when the number of terms

on the left-hand side is odd: it is probably beyond our means to give all solutions,

but we can find some of them, for example σ(112) + σ(172) + σ(232) = σ(312).

Multiplying each variable by integers coprime to each of them generates again

infinitely many solutions.

Finally we investigate Euler’s totient function.

Theorem 2.4

Equation ϕ(x2) + ϕ(y2) = ϕ(z2) has no solution in primes.

Proof

If x, y, and z are primes, we have equation x(x − 1) + y(y − 1) = z(z − 1)

which is equivalent to x(x− 1) = (z − y)(z + y − 1). Since x is a prime, it must

divide one of the factors of the right-hand side.

A) x|z − y ⇔ kx = z − y, for some k ∈ Z+.

This implies x− 1 = k(kx+ 2y− 1), a contradiction, since the left-hand side

is less than the right-hand side.

B) x|z + y − 1 ⇔ kx = z + y − 1, where k ∈ Z+.

This implies x− 1 = k(kx− 2y + 1), so

y =
(k + 1)((k − 1)x+ 1)

2k
and z =

k2x+ x+ k − 1

2k

follows.

As (k, k + 1) = 1, y is a prime exactly in the following three cases:

(a)
k + 1

2
= 1 and

(k − 1)x+ 1

k
is a prime, a contradiction, since we have k = 1

from the first equation implying y = 1, which is not a prime.

(b)
k + 1

2
is a prime and

(k − 1)x+ 1

k
= 1. Then (k− 1)(x− 1) = 0 giving k = 1

or x = 1 contradicting to
k + 1

2
and x being a prime.

(c) k + 1 is a prime and
(k − 1)x+ 1

2k
= 1

From the second equality k 6= 1, so x = 2 +
1

k − 1
. Then x is an integer only

for k = 2. So x = 3, y = 3, and z = 4, but 4 is not a prime, a contradiction. �
When working with students first we should show that the equation has

many solutions of different types. The students will probably find easily e.g.
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ϕ(22) + ϕ(32) = ϕ(42) or x = 4, y = 6 and z = 5. Multiplying each variable

by integers coprime to each of them generates again infinitely many solutions.

Using mathematical softwares or programming they can also find pairwise co-

prime solutions, for instance x = 3, y = 25 and z = 23 or with (x, y, z) = d > 1

that is not obtained by multiplying all variables of another solution by the same

integer, e.g. ϕ(32) + ϕ(122) = ϕ(92). They might come up with solutions con-

taining two primes (other than the first one, e.g. ϕ(22) + ϕ(102) = ϕ(72)). After

finding solutions with two primes, the question arises naturally whether there

exist solutions in primes. We should try to find the answer for a fixed value

of x, for instance x = 2. Supposing that both y and z are primes, we get

2 + y2 − y = z2 − z. It can be solved as a quadratic equation of parameter

z. So we write it as y2 − y − (z2 − z − 2) = 0, and the quadratic formula

gives y1; 2 =
1±

√
1 + 4(z2 − z − 2)

2
. The condition of y being an integer is for

1 + 4(z2− z− 2) to be an odd square. Since 1 + 4(z2− z− 2) = (2z− 1)2− 8 and

9 and 1 are the only squares with a difference of 8, so (2z − 1)2 = 9. Thus z = 2

and y = 1, a contradiction. Another way of solving the problem is rearranging

the equation to 2 = z2−y2− (z−y), equivalently 2 = (z−y)(z+y−1). The only

possible factorization gives z = 2, y = 1, a contradiction. The second method can

be generalized and we used it to prove that there is no solution in primes.

Turning to higher powers we can look for solutions of equation ϕ(x3)+ϕ(y3) =

ϕ(z3). Quite surprisingly, with both sides not being greater than max(ϕ(n3);

0 < n < 105 + 1), the first solution is x = 107, y = 354 and z = 251. We

can also have more terms on the left-hand side with a solution in primes, e.g.

ϕ(32) + ϕ(112) + ϕ(132) = ϕ(172), but answering these questions in general is

certainly out of our reach.
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