
18/2 (2020), 107–120
DOI: 10.5485/TMCS.2020.0511

Task variations for backtrack

László Menyhárt and László Zsakó

Abstract. This article has been written for informatics teachers who want to issue back-
track based tasks on their lessons or as homework or on competitions. We present a few
methods to generate a more complicated problem from a simpler task, which will be
more complex, and its solution needs a good idea or trick. Starting from an example,
we lead the reader through increasingly difficult task variations.

Key words and phrases: education, task, variation, backtrack.

MSC Subject Classification: 97P50.

Introduction

Our present article is for those informatics teachers, who wants to release

tasks for their students on lessons, as a homework or on competitions with differ-

ent difficulty and which are solvable with backtrack. Modifications can be needed

if the same task wouldnt be solved with different ability groups, with different

classes on the same year, or in every year or semester. On competitions tasks of

different age groups can be variant.

A concrete example and its variations are analysed, and generally usable

methods are determined from these.

Backtrack is very useful algorithm in a very wide range of problem solving.

Its essence is to approach the task with a regular attempt. Sometimes this is the

The research has been supported by the European Union, co-financed by the European Social

Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding

Innovation in Informatics and Infocommunications).

107

108 László Menyhárt and László Zsakó

best solution! However, most of the books on algorithms do not deal with back-

track. Some contain examples for backtrack like topics eight queens, tree traversal,

games, evaluation of logical formulas (Shen, 2010) (Dasgupta, Papadimitriou, &

Vazirani, 2006). This method is present in more university curriculum with top-

ics eight queens, map colouring, solitaire, sudoku (Sullivan, 2012) (Harder, 2012)

(Skiena, 2017) (Zelenski, 2008). On Etvs Lornd University Faculty of Informatics

students learn this on course Artificial Intelligence (Lőrentey, Fekete, Fóthi, &

Gregorics, 2001). None of them contain similar tasks for practice that we present

in this article.

Backtrack is a general method that decreases the number of steps with using

an idea (Wirth, 1976) instead of testing all possible cases (brute force). Proper

data representation and skilful terms are needed.

Given N series with number of elements M[1], M[2], . . . , M[N] respectively,

but sometimes with same number of elements (M). Choose one item from each one

so that the choices from each series affect others! This is a complicated search

task, in which N elements must be chosen with a given attribute without looking

at all the options.

A common feature of these tasks is that they result in a series. Every items

of the result series are come from another series, but the items are related to each

other (for example a queen cannot be placed where a former queen would attack

her; one job cannot be given to two workers; once a bakery has run out of bread,

it can no longer be ordered).

• Backtrack is usable when the search space can be imagined as a tree structure

in which we search for a vertex from the root.

• The essence of the algorithm is that it takes a path from the starting point

to a subdivision of the task, and if it turns out that it can no longer reach

the destination, it goes back to an earlier decision point and chooses another

path - a different subproblem.

First, we try to select an element from the first series, then from the next

one, and we do this as long as possible. Denote X[i] the ith item selected from

the series! The value will be 0 if there was no choice yet. If there is no good

item in the next series, a new choice should be found from the previous. At this

backstep the previous choices must be deleted from which the stepping back is

happened. The process will be finished when items were chosen from every series

or after a lot of step back there is no possible item in the first series already, so

there is no solution of the task.

Task variations for backtrack 109

Search (N, Exist ,X) :

i :=1; X [] : = [0 , . . . , 0]
While i≥1 and i≤N { the re are more , but not ready}

LookingForGoodElement (i , Exist , j)

I f Ex i s t
then X[i] := j ; i := i+1 { forward }
e l s e X[i] : = 0 ; i := i−1 {backward}

End o f whi l e
Ex i s t :=(i>N)

End o f procedure .

A linear search starts in the ith series: decision path j cannot be selected in

step i if it is not good for the former selections or it is not good itself.

LookingForGoodElement (i , Exist , j) :

j :=X[i]+1
While j≤M[i] and (isBad (i , j) or fo rb idden (j))

j := j+1

End o f whi l e
Ex i s t :=(j≤M[i])

End o f procedure .

It can be stated that each new choice may depend on all previous ones (for-

malized with isBad function), but not on later ones!

isBad (i , j) :

k:=1
While k<i and al lowed (i , j , k ,X[k])

k:=k+1
End o f whi l e
isBad :=(k<i)

End o f func t i on .

When all the possible solutions must be looked through, the easiest solution is

a recursive function call for the backtrack and continue the search with a recursive

function call.

Let Cnt the count of solutions and let Y the vector which contains the so-

lutions! Instead of search we select the good initial solutions and continue the

selection with recursion!

A l l S o l u t i o n s (i ,N, Cnt ,Y,X) :

I f i>N then
Cnt:=Cnt+1; Y[Cnt] :=X

e l s e
For j=1 to N

I f not isBad (i , j) and not fo rb idden (j) then

110 László Menyhárt and László Zsakó

X[i] := j ; A l l S o l u t i o n s (i +1,N, Cnt ,Y,X) ;

End o f For
End o f I f

End o f procedure .

Task-variations

The base task

A business is looking for workers for N different jobs. At applying all M

applicant will share some certain information. The main task is to determine

which job should be filled by whom.

Variation 1

A business is looking for workers for N different jobs. There are exactly N

candidates and each applicant told us which jobs they are qualified. The boss of

the business wants to recruit all the candidates and make all the jobs done.

Let value of F[i,j] is false, if the applicant i is not good at job j and it is

true if the applicant is good at it.

Jobs (N, F , Exist ,Y) :

i :=1; X [] : = [0 , . . . , 0]

While i≥1 and i≤N { the re are more , but not ready}
LookingForGoodElement (i , F ,Y, Exist , j)

I f Ex i s t
then X[i] := j ; i := i+1 { forward }
e l s e X[i] : = 0 ; i := i−1 {backward}

End o f While
Ex i s t :=(i>N)

End o f procedure .

It is clear, that the main procedure is the same, it should not be modified,

the general schema must be copied only. Second level must be simplified, N went

instead of M[i], and the forbidden(j) function was changed to a matrix element

reference.

LookingForGoodElement (i , F ,Y, Exist , j) :

j :=X[i]+1
While j≤N and (Occured (i , j) or not F [i , j])

j := j+1

End o f whi l e

Task variations for backtrack 111

Exis t :=(j≤N)

End o f procedure .

Choosing a job is not good on the third level if it was given to someone else.

Occured (i , j) :
k:=1

While k<i and X[k] 6= j

k:=k+1
End o f whi l e

Occured :=(k<i)

End o f Function .

Variation 2

This variation is the same as the first one with another representation. Let

D[i] the number of jobs which can be done by an applicant i, E[i,j] is the serial

number of the assumed jth job by applicant i!

Jobs (N,D,E, Exi s t) :

i :=1; X[] : = [0 , . . , 0]

While i≥1 and i≤N { the re are more , but not ready}
LookingForGoodElement (i ,D,E, Exist , j)

I f Ex i t s

then X[i] := j ; i := i+1 { forward }
e l s e X[i] : = 0 ; i := i−1 {backward}

End o f whi l e

Ex i s t :=(i>N)
If Exist then For i=1 to N

X[i]:=E[i,X[i]]

End of for
End o f procedure .

It is clear, that the main procedure is the same, it should not be modified, the

general schema must be copied only. The only modification is that the number

of the job must be generated from the earlier solution because it was the number

of the choice.

Second level must be simplified because now no need to check whether an

applicant is good at a job or not.

LookingForGoodElement (i ,D,E, Exist , j) :
j :=X[i]+1

While j≤D[i] and isBad (i , j ,E)

j := j+1

112 László Menyhárt and László Zsakó

End o f whi l e

Ex i s t :=(j≤D[i])
End o f procedure .

The comparison will be a little more complicated because j and X[k] are not

the serial number of the job, but it is serial number from the list of workers job.

isBad (i , j ,E) :

k:=1

While k<i and E[k,X[k]] 6=E[i,j]
k:=k+1

End o f whi l e

isBad :=(k<i)
End o f func t i on .

Variation 3

A business is looking for workers for N different jobs. There are exactly N

candidates and each applicant told us which jobs they are qualified and how

much salary would be asked. The boss of the business wants to recruit all the

candidates and make all the jobs done, but up to an amount S.

Let value of F[i,j] is zero (=0) if the applicant i is not good at job j, and

it is positive (>0) if he is good at this job and the value means the salary.

The cost constantly rising with mandating any new employee, and we take

advantage of it in the solution.

Jobs (N, Exist ,Y) :
i :=1; X [] : = [0 , . . . , 0]

While i≥1 and i≤N { the re are more , but not ready}
LookingForGoodElement (N, i , F ,Y, Exist , j)

I f Ex i s t and Cost(N,i,j,F,Y)≤S
then X[i] := j ; i := i+1 { forward }
e l s e X[i] : = 0 ; i := i−1 {backward}

End o f whi l e

Ex i s t :=(i>N)
End o f procedure .

The second level is almost the same as in the first variation, only the value

of F[i,j] is not logical, but an integer number (the salary).

LookingForGoodElement (N, i , F ,Y, Exist , j) :

j :=X[i]+1

While j≤N and (isBad (i , j ,Y) or F[i,j]=0)

Task variations for backtrack 113

j := j+1

End o f whi l e
Exi s t :=(j≤N)

End o f procedure .

Calculating the cost is very simple, it can be done with a simple summary.

Cost (N, i , j , F ,Y) :

s :=0
For k=1 to i−1

s := s+F[i ,X[k]]

End o f f o r
s := s+F[i , j]

Cost := s

End o f func t i on .

In this solution the Cost function is the limitation, so stepping back hap-

pened earlier because it can be detected that there cannot be good solution yet.

So, the essence of the limitation is the earlier step back.

Variation 4

There are exactly N candidates to the N jobs and each applicant told us which

jobs they are qualified and how much salary would be asked. The boss of the

business wants to fill all the jobs but at the least cost to him.

His idea is this: first all possible job fill will be generated (if there is). It

means that all applicant will have a serial number of a job with two conditions:

• we can choose a job for him, what he can do (F(i,j)>0);

• we can choose a job for him, what is not given to others (Value of

Occured(i,j,x) function is false).

First parameter of AllJob procedure is the serial number of the actual appli-

cant i, the second parameter is the number of the applicants (and so the jobs),

it is N.

AllJob (i ,N, F , Cnt ,Y,X) :
I f i>N

then Cnt:=Cnt+1; Y[Cnt] :=X
e l s e For j=1 to N

I f not Occured (i , j ,X) and F [i , j]>0

then X[i] := j ; AllJob (i +1,N, F , Cnt ,Y,X)
End o f f o r

End o f i f

End o f procedure .

114 László Menyhárt and László Zsakó

Occured (i , j ,X) :

k:=1
While k<i and X[k] 6= j

k:=k+1

End o f whi l e
Occured :=(k<i)

End o f func t i on .

Now the task last part is to choose the most economical solution for the

boss from the solutions gathered in vector Y. However, it may be revealed very

soon that there may be too many elements in the vector Y. Here the new idea is

that it is redundant to store all possible solutions, it is enough to store the most

economical solution after every step.

The question is with which would the first solution be compared. Let be a

new variable what contains the best cost till now. Initial value of this should be

the possible maximum value at the beginning of the program. When we found a

solution, that will be the better, so it will be changed to this new value.

BestJob (i ,N, F , MaxCost ,Y,X) :

I f i>N then
If Cost(N,F,X) <MaxCost

then Y:=X; MaxCost:=Cost(N,F,X)

e l s e
For j=1 to N

I f not Occured (i , j ,X) and F [i , j]>0

then X[i] := j ; BestJob (i +1,N, F , MaxCost ,Y,X)
End o f f o r

End o f i f

End o f procedure .

Cost (N, F ,X) :

s :=0
For i=1 to N

s := s+F[i ,X[i]]

End o f f o r
Cost := s

End o f func t i on .

It is possible of course, that there is no solution for this task, so there is no

best solution. Now we can think another small refinement: if there is a solution,

and we can see that the solution that is now being prepared will be not better,

so it will be more expensive, we can stop the process.

Task variations for backtrack 115

Let the cost is a parameter of the procedure and the procedure will be con-

tinued if it does not reach the earlier maximum cost. That is why the cost must

be calculated continuously instead of at the readiness of a solution.

The method must be changed, procedure BestJob will have a new parameter,

it is the cost before the actual choices.

BestJob (i , cost ,N, F , MaxCost ,Y,X) :

I f i>N then
I f cost<MaxCost

then Y:=X; MaxCost:= cos t
End o f i f

e l s e

For j=1 to N
I f not Occured (i , j ,X) and F [i , j]>0

and cost+F[i,j]<MaxCost

then
X[i] := j ;

BestJob (i +1,cost+F[i,j] ,N, F , MaxCost ,Y,X)

End o f i f
End o f f o r

End o f i f

End o f procedure .

Variation 5

A business is looking for workers for N different jobs. M (M<N) candidates

arrived to the ad and each applicant told us which jobs they are qualified and

how much salary would be asked. The boss of the business wants to hire all the

applicants but at the least cost to him.

The solution is very similar to the previous one: it is ready here, when all M

applicants got a job instead of number N:

BestJob (i , cost ,N,M, F , MaxCost ,Y,X) :

I f i>M then
I f cost<MaxCost then

Y:=X; MaxCost:= cos t

End o f i f

e l s e
For j=1 to N

I f not Occured (i , j ,X) and F [i , j]>0 and co s t+F[i , j]<MaxCost
then X[i] := j ; BestJob (i +1, co s t+F[i , j] ,N,M, F , MaxCost ,Y,X)

End o f f o r

End o f i f
End o f procedure .

116 László Menyhárt and László Zsakó

Variation 6

A business is looking for workers for N different jobs. There are M (M>N)

applicants to the ads, and each applicant told us which jobs they are qualified

and how much salary would be asked. The boss of the business wants to fill all

the jobs but at the least cost to him.

Idea of the solution: do not search a job for the applicants, but we can search

applicant for the jobs! Thus, the solution will almost same as the earlier one, only

indexes should be interchanged.

BestJob (i , cost ,N,M, F , MaxCost ,Y,X) :

I f i>N then

I f cost<MaxCost then
Y:=X; MaxCost:= cos t

End o f i f

e l s e
For j=1 to M

I f not Occured (j , i ,X) and F [j , i]>0 and co s t+F[j , i]<MaxCost then

X[j] := I ; BestJob (i +1, co s t+F[i , j] ,N,M, F , MaxCost ,Y,X)
End o f f o r

End o f i f
End o f procedure .

Variation 7

A business is looking for workers for N different jobs. There are exactly N

applicants and each applicant told us which jobs they are qualified and how much

salary would be asked.

The boss of the business wants to fill all the jobs but at the least cost to him.

Maybe it is not possible, but we are interested in a solution when the most job is

filled.

Idea of the solution: Let a new fictive job as an element N+1 which is known

everybody! Let the cost of this be greater than every other cost in the table!

More people can choose this job N+1. Demonstrable that the most economical

solution will contain the minimal fictive jobs so the most jobs will be filled.

BestJob (i , cost ,N, F , maxValue , MaxCost ,Y,X) :

I f i>N then

I f co s t+maxValue <MaxCost
then Y:=X; MaxCost:= cos t+maxValue

End o f I f

e l s e

Task variations for backtrack 117

For j=1 to N

I f not Occured (i , j ,X) and F [i , j]>0 and co s t+F[i , j]<MaxCost then
X[i] := j ;

BestJob (i +1, co s t+F[i , j] ,N, F , maxValue , MaxCost ,Y,X)

End o f i f
End o f f o r

End o f i f

End o f procedure .

Change the basic task

We changed the number of the jobs and number of the applicants in the

presented task. We modified the known information whether we know the salary

or not. We changed the number of the required solution, so we need all or the

best one. Once we had limitation for data.

Generally, we can say that the size (N and M) of the multidimension data of

backtrack and their relationship to each other can serve to create variations.

There are newer opportunities to create other variations with changing the

types, meaning of the given data or with adding other additional, clarifying or

new information or with carrying info effect a new limitation.

The problem can be modified with changing the base task thus we get a large

number of task variation packages.

We can formulate the next combinatorial issues independently from the task

where all solutions are required. Every time the task is to generate the X vector

corresponding to the question. So, at these tasks the investigation of backtrack

algorithm is the important, how Xj and Xi are interdependent. For the sake of

simplicity X vector should contain integer numbers between 1 and N!

All permutations without repetition

Prepare all possible sequences of N different data! The task is to generate all

X vectors where XjXi in case of j < i.

All permutations with repetition

Produce all possible sequences of N different data, where the ith data occurs

Li times! The task is to generate all X vectors where for all i indexes
i∑

j=1
Xi=Xj

1 ≤ Li

118 László Menyhárt and László Zsakó

All variations without repetition

Select K different data from N different data where the choices with different

order are different results! The task is to generate all X vector with K elements

where XjXi in case of j < i.

All combinations without repetition

Select K different data from N different data where the choices with different

order are different results! Since there is only one item between the choices the

same elements with different order, so the task is to generate all X vector with K

elements where Xj < Xi in case of j < i.

All combinations with repetition

Select K not necessarily different data from N different data where the choices

with different order are different results! Since there is only one item between the

choices the same elements with different order, so the task is to generate all X

vector with K elements where XjXi in case of j < i.

All partitions for the sum of K non-negative elements

The task is to generate K-digit numbers where the sum of the digits is exactly

N. In this case isBad function must cause step back when for an index i the
i∑

j=1

Xi > N

All partitions for the sum of K positive elements

The task is to generate numbers up to N digits where the sum of the digits

is exactly N and none of the digits is 0. In this case isBad function must cause

step back when for the index i the
i∑

j=1

Xi > N

Summary

The mathematical foundations of the method were dealt with by kos Fthi

and his colleagues (Harangozó, Nyékyné Gaizler, Fóthi, & Konczné Nagy, 1995),

References 119

but a different approach must take in public education. It should be based on

algorithm thinking instead of mathematics.

The purpose of this article is to evaluate and demonstrate the feasibility of

creating backtrack tasks of varying complexity. Through an example, we illustrate

the variations that can be made to a basic task.

We generally determined methods from the edifications of listed examples,

with which former modifications could come. Even more the problem solvers get

a new problem with the modification of base task or with changing the topic.

We hope that the patterns and methods presented here help our readers to do

their later work easier when setting up backtrack tasks with varying complexity.

Examples can be found on GitHub (Menyhárt, 2021).

Acknowledgements

The research has been supported by the European Union, co-financed by

the European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental

Research Collaborations Grounding Innovation in Informatics and Infocommuni-

cations).

References

Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006). Algorithms. New

York: McGraw-Hill.

Harangozó, É., Nyékyné Gaizler, J., Fóthi, Á., & Konczné Nagy, M. (1995).

Demonstration of a problem-solving method. In Acta cybernetica 12 (p. 71-

82).

Harder, D. W. (2012). Backtracking. University of Waterloo, Ontario,

Canada. Retrieved from https://ece.uwaterloo.ca/~dwharder/aads/

Algorithms/Backtracking/

Lőrentey, K., Fekete, I., Fóthi, Á., & Gregorics, T. (2001). On the wide variety

of backtracking algorithms. In E. Kovács & Z. Winkler (Eds.), Proceedings

of the 5th international conference on applied in-formatics: Education and

other fields of applied informatics, computer graphics, computer statistics

and modeling (p. 165-174). Eger: Molnr s Trsa 2001 Kft.

Menyhárt, L. (2021). Examples for this article. Retrieved from https://github

.com/laszlogmenyhart/task-variations-for-backtrack

120 László Menyhárt & Lászl Zsakó : Task variations for backtrack

Shen, A. (2010). Algorithms and programming: Problems and solutions. New

York: Springer. doi: 10.1007/978-1-4419-1748-5

Skiena, S. (2017). Analysis of algorithms: Backtracing. Stony Brook University

New York. Retrieved from https://www3.cs.stonybrook.edu/~skiena/

373/newlectures/lecture15.pdf

Sullivan, D. G. (2012). Recursion and recursive backtracking. Harvard Extension

School. Retrieved from https://sites.fas.harvard.edu/~cscie119/

lectures/recursion.pdf

Wirth, N. (1976). Algorithms + data structures = programs. New Jersey:

Prentice-Hall.

Zelenski, J. (2008). Exhaustive recursion and backtracking. Harvard Ex-

tension School. Retrieved from https://see.stanford.edu/materials/

icspacs106b/h19-recbacktrackexamples.pdf

LÁSZLÓ MENYHÁRT

ELTE EÖTVÖS LORÁND UNIVERSITY, BUDAPEST,

HUNGARY 3IN RESEARCH GROUP, MARTONVÁSÁR,

HUNGARY

E-mail: menyhart@inf.elte.hu

LÁSZLÓ ZSAKÓ

ELTE EÖTVÖS LORÁND UNIVERSITY, BUDAPEST,

FACULTY OF INFORMATICS

HUNGARY

E-mail: zsako@caesar.elte.hu

(Received July, 2020)

