
18/1 (2020), 1–17
DOI: 10.5485/TMCS.2020.0469

Teaching model-based testing

Gábor Árpád Németh

Abstract. Different testing methodologies should play an important role in the education
of informatics. In the model-based testing (MBT) approach, the specification of the
system is described with a formal model. This model can be used to revise the correctness
of the specification and as a starting point for automatic test generation. The main
problem with MBT is however, that there is a huge gap between theory and practice
and that this approach has a high learning curve. To cope with these problems, current
paper shows, how the MBT approach can be introduced to students through a small
scale example.

Key words and phrases: model-based testing, test design, teaching.

ZDM Subject Classification: P50.

Introduction

Testing plays a vital role both in software and hardware development. The

complexity of hardware and software products is continuously increasing, while

the time frame between the releases of different product versions becomes shorter.

Unsurprisingly, the fast-paced development increases the probability of faults.

Although quality assurance is essential, limited resources are allocated for testing

compared to the complexity of the problem. To cope with this challenge, the

execution of test cases are done automatically in most big software companies.

The next level of automation is the automation of test design. If the requirements

of the product are described in a formal model specification, then the test cases
1

2 Gábor Árpád Németh

can be generated automatically from this model to fulfill given testing goals. This

area of testing is called model-based testing (MBT).

Several formal models exist for system specifications. This paper focuses on

Finite State Machine (FSM) formal models, which have been extensively used

in diverse areas such as telecommunication software and protocols (Holzmann,

1990), software related to lexical analyzes and pattern matching (Ammann &

Offutt, 2008) and embedded systems (Bringmann & Krämer, 2008).

Although MBT would be virtually suitable for all type of problems, its prac-

tical application is limited. One of the main obstacles that has kept MBT from

becoming widespread, is its huge entry cost. This approach requires a different

way of thinking than other testing methodologies; competence build-up is a slow

and hard process. Another problem is that there is a huge gap between theory and

practice. Different terminologies are used in theory and in practice with different

focuses. For example, MBT theory focuses on good coverage, while in practice

the length of the test set is even more important. While theory concentrates on

the efficiency of test generation algorithms, nowadays the interfaces for (G)UI,

existing programming languages and tools are more important for the test engi-

neer, as he would like to integrate this new approach to an existing toolchain.

Theory mostly concentrates on rigid models, but in practice the systems evolving

continuously and the testing should follow it step-by-step.

To cope with this problem, a course in ELTE Computer Science MSc has been

launched, called ”Modeling and testing”. The curriculum is built on 3 pillars:

(1) State-of-the-art MBT theory research with their usual assumptions

(2) Typical problems and usual assumptions in industry related to MBT

(3) MBT tools

In the current paper, some of the main cornerstones of this MBT teaching

material is shown through one of the practical, small-scale examples presented

during the course.

Models

Finite State Machines

A Mealy Finite State Machine (abbreviated as ’FSM’ in the rest of the paper)

M is a quadruple M = (I,O, S, T) where I, O, and S are the finite and nonempty

sets of input symbols, output symbols and states, respectively. T is the finite and

Teaching model-based testing 3

nonempty set of transitions between states. Each transition t ∈ T is a quadruple

t = (sj , i, o, sk), where sj ∈ S is the start state, i ∈ I is an input symbol, o ∈ O
is an output symbol and sk ∈ S is the next state.

An FSM can be represented with a state transition graph, which is a directed

edge-labeled graph whose nodes are labeled with the state symbols and whose

edges correspond to the transitions between the states. Each edge is labeled with

the input and the output, written as i/o, associated with the transition.

The number of states, transitions, inputs and outputs of an FSM is denoted

by n = |S|, m = |T |, p = |I| and q = |O|, respectively.

FSM M is deterministic, if for each (sj , i) state-input pair there exists at

most one transition in T , otherwise it is non-deterministic. If there is at least

one transition t ∈ T for all state-input pairs, the machine is said to be completely

specified, otherwise it is partially specified.

In case of deterministic and completely specified FSMs, each (sj , i) state-

input pair defines a transition, which can be given as t = (sj , i, λ(sj , i), δ(sj , i)),

where λ: S × I → O denotes the output function and δ: S × I → S denotes the

next state function (Lee & Yannakakis, 1996). In this case m = p · n.

Two states, sj and sl of FSM M are distinguishable, iff there exists an x ∈ I∗
input sequence – called a separating sequence – that produces different output for

these states, i.e. λ(sj , x) 6= λ(sl, x). Otherwise we say that states sj and sl are

equivalent, i.e. sj ∼= sl, iff for all input sequences x ∈ I∗, λ(sj , x) = λ(sl, x). A

machine is reduced, if no two states are equivalent.

Example FSM: Battery-Operated Signal: The battery-operating toy

signal from the Märklin company1 has the following functionalities:

• The device has 2 LEDs (red and green), a 2-way switch and a press button.

• The 2-way switch turns the device off or on. When the device is turned on,

the green LED lights up.

• The button can be used to change which LED lights; red or green.

• If no button is pressed for 7 secs the device changes the lights.

The state transition table and the state transition graph of this FSM is given

in Table 1 and Figure 1, respectively (double circle denotes the initial state).

1Märklin my world – Battery-Operated Signal 72201, https://www.maerklin.de/en/products/

details/article/72201/. Accessed: 2019-11-27

4 Gábor Árpád Németh

Switch on Switch off Press button Wait for 7 secs

soff sgreen / green - soff / - soff / -

sgreen - soff/- sred / red sred / red

sred - soff/- sgreen / green sgreen / green

Table 1. The FSM of Battery-Operated signal

off

green

t1: switch on/green t4: switch off/-

red

t2: timeout(7s)/red t3: press button/red

t5: switch off/-

t6: timeout(7s)/green t7: press button/green

Figure 1. The FSM of Battery-Operated signal

Extended Finite State Machines

The Extended Finite State Machine (EFSM) is an extension of the FSM

formalism with variables and operations based on variable values.

Formally, an EFSM M is a quintuple M = (I,O, S, V, T) where I, O, S, V

and T are the finite and nonempty sets of input symbols, output symbols, states,

variables and transitions, respectively. Note that inputs are sometimes referred

to as events. Each transition t ∈ T is a sextuple t = (sj , i, o, sk, Gx(V), Ax(V)),

where sj ∈ S is the start state, i ∈ I is an input symbol, o ∈ O is an output

symbol, sk ∈ S is the next state, Gx(V) is a guard condition on current variable

values and Ax(V) is an action on current variable values.

Example EFSM: Battery-Operated Signal: Extend the functionalities

of the previous signal with the following: if the button is pressed 3 times, then the

device will play the MÁV music signal, but won’t change its state. The counter

of button presses is set to 0 when the music signal ends, or when the device is

switched on. The EFSM is given in Table 2 and Figure 2. Note that because the

guarding condition on variable value counter precedes the action on this variable

value, the guarding condition is set to 2 instead of 3.

Teaching model-based testing 5

Switch on Switch off [counter < 2]
Press button

[counter == 2] Press
button

Wait for 7 secs

soff sgreen /
green

- soff / - soff / - soff / -

sgreen - soff/- sred / red sgreen / green, play
MÁV music signal

sred / red

sred - soff/- sgreen /

green

sred / red, play MÁV

music signal

sgreen / green

Table 2. The EFSM of Battery-Operated signal

off

green

t1: switch on
/<counter=0>, green

t4: switch off
/-

t8: [counter == 2] press button
/<counter=0>, green, play MÁV music signal

red

t2: timeout(7s)
/red

t3: [counter < 2] press button
/<counter++>, red

t5: switch off
/-

t6: timeout(7s)
/green

t7: [counter < 2] press button
/<counter++>, green

t9: [counter == 2] press button
/<counter=0>, red, play MÁV music signal

Figure 2. The EFSM of Battery-Operated signal

Conformance testing

The structure of model-based test generation and testing is shown in Figure

3. From the requirements a formal specification, an abstract model is created,

denoted by M . M can be considered a white-box with a known internal structure:

its state transition graph is given. Based on M , an implementation is created,

denoted by Impl. Impl is considered a black-box with unknown internal struc-

ture: we can only observe its output responses upon given inputs. Test cases

are derived from M ; these are the pairs of input sequences and expected output

sequences of M . A set of test cases form a test suite – see Figure 3(a). This test

suite is applied to the System Under Test (SUT) Impl and the tester checks if the

observed output sequences of Impl are equivalent to the expected results derived

from M – see Figure 3(b). This type of testing is called conformance testing.

6 Gábor Árpád Németh

(a) Test generation (b) Conformance testing

Figure 3. Model-based testing

FSM Fault Models

Fault models describe the assumptions of the test engineer about the imple-

mentation machine he is about to test. For completely specified and deterministic

FSMs the following three types of faults was proposed (Chow, 1978):

I. Output fault: for a given state-input pair FSM Impl produces an output that

is different from the one that is specified in FSM M .

II. Transfer fault: for a given state-input pair FSM Impl goes into a state that

differs from the state specified in FSM M .

III. Missing state or extra state

For non-deterministic and non-completely defined FSMs, the fault model of

(Chow, 1978) was extended with the following faults (Bochmann et al., 1992):

IV. Additional or missing transitions

Analogously for EFSMs the following additional faults may exist:

V. Guarding condition fault: different guarding condition than specified.

VI. Action fault: different action or action on different variable than specified.

VII. Additional or missing variables

A usual approach made in literature is that the faults do not increase the

number of the states of the machine (Lee & Yannakakis, 1996), thus the FSM

fault model of (Chow, 1978) and (Bochmann et al., 1992) are typically restricted

to output and transfer faults (Lee & Yannakakis, 1996).

Teaching model-based testing 7

Assumptions About Specification and Implementation Machines

For (E)FSM-based testing, the subset of the following assumptions are usually

made about specification and implementation machines M and Impl (Yannakakis

& Lee, 1995; Lee & Yannakakis, 1996; Broy et al., 2005):

1. M is completely specified. Our example FSM and EFSM are partially speci-

fied as switch off and switch on functions are not defined for all states, how-

ever, they can easily be converted to completely specified machines by adding

loop transitions for these undefined state-input pairs.

2. M is deterministic. Our example FSM and EFSM are deterministic.

3. M is strongly connected. Otherwise we would not able to reach all states.

Our example FSM and EFSM are strongly connected.

4. M is reduced2. The reason for requiring a reduced specification machine

M is that by observing only the output sequences of Impl upon given input

sequences, one can not distinguish between equivalent machines. Our example

machines are reduced (button input produces a different output for all states).

5. Impl does not change during the test experiment and has the same input I

and output O alphabet as M .

6. An upper bound is required for the number of states of Impl. Otherwise, it

would be possible that the faulty part of Impl is never reached by our test.

It is usually assumed that Impl has no more states than M (Yannakakis &

Lee, 1995; Broy et al., 2005).

7. M and Impl have a reset message. The reset message is a special input

symbol that takes the machine from any state back to the initial state. For

EFSMs it also initializes variables. The reset is reliable if it is guaranteed to

work properly in any implementation machine Impl of M . In our examples

switch off works as reset as it takes the machines back to the soff initial

state.

Coverage criteria

Structural coverage criteria checks the machine systematically based on preset

structural roles. The most important are the following:

2Note that if M is not reduced, then it can always be transformed to an equivalent reduced

machine (for example with the minimization method described in (Gill, 1962)).

8 Gábor Árpád Németh

• all states: Each state is visited at least once by the test suite. It has O(n)

complexity3. In our examples soff , sgreen, sred states need to be covered,

what can be done with t1.t3, thus the test sequence is switch on.button.

• all events: Each input (event) is called at least once by the test suite. It

has O(p) ≤ O(m) complexity3. In our FSM and EFSM examples switch on,

switch off, press button, timeout events should be covered, what can be done

with t1.t3.t6.t4, thus the test sequence is switch on.button.timeout.switch off.

• all outputs Each output is checked at least once by the test suite. It

has O(q) ≤ O(m) complexity3. In our FSM example -, green, red outputs

should be covered, what can be done with t1.t3.t5, thus the test sequence is

switch on.button.switch off. In our EFSM example -, green, red, play MÁV

music signal outputs should be covered, what can be done with t1.t3.t7.t8.t4,

thus the test sequence is switch on.button.button.button.switch off.

• all transitions: Each transition is traversed at least once by the test suite.

It has O(m) complexity3. In the FSM example t1 − t7 transitions should be

covered, what can be done with t1.t2.t6.t3.t5.t1.t3.t7.t4, thus the test sequence

is switch on.timeout.timeout.button.switch off.switch on.button.button.switch

off. In the EFSM example t1 − t9 transitions should be covered, what

can be done with t1.t3.t7.t8.t4.t1.t2.t6.t2.t7.t3.t9.t5, thus the test sequence is

switch on.button.button.button.switch off.switch on.timeout.timeout.timeout.

button.button.button.switch off.

Note that beside structural coverage criteria, other criteria exist:

• functional criteria: Go through scenarios, use cases or user profiles. In the

examples above t1.t2.t6 transitions check the timeout functionality, thus the

test sequence of this functionality is switch on.timeout.timeout.

• stochastic criteria: Given transitions from given states are selected with

a given probability. The test coverage should reflect on these probabilities

with weighted random walks. This criteria can be used for risk based testing,

where more weight is assigned to more important features.

• fault coverage criteria: If some assumptions hold, then some algorithms

(see next section) are able to show the absence of given type of faults.

Example: Battery-Operated Signal: We investigate with all transitions

coverage the case, when instead of 2, 3 is used as a parameter for guarding

3Note that this complexity is true for FSM models. In case of EFSMs, the complexity can be

greater due to the actions and guarding conditions of some variables on given transitions.

Teaching model-based testing 9

State Event (Input) Next state Expected result Observed result

Step 1 soff Switch on sgreen green green
Step 2 sgreen [0 < 2] Press button sred red red
Step 3 sred [1 < 2] Press button sgreen green green

Step 4 sgreen [2 == 2] Press button sgreen green, play MÁV
music signal

red

Step 5 sgreen Switch off soff - -
Step 6 soff Switch on sgreen green green
Step 7 sgreen Timeout sred red red
Step 8 sred Timeout sgreen green green
Step 7 sgreen Timeout sred red red
Step 9 sred [0 < 2] Press button sgreen green green
Step 11 sgreen [1 < 2] Press button sred red red

Step 12 sred [2 == 2] Press button sred red, play MÁV
music signal

green

Step 13 sred Switch off soff - -

Table 3. All transitions coverage: Expected vs. Observed results

condition to button due to an implementation error. The results are shown in

Table 3. The difference from the expected and the observed output at Steps 4

and 12 clearly indicates that the implementation is faulty.

Test generation algorithms

Many methods have been introduced to create a test set from an FSM model

(Yannakakis & Lee, 1995; Lee & Yannakakis, 1996; Broy et al., 2005). These

algorithms can be divided into the following two subclasses:

• Algorithms that fundamentally consist of one stage, which checks all the

transitions of the given implementation machine Impl.

• Algorithms that fundamentally consist of two stages. The first stage (state

identification) checks for each state of the specification whether it exists in

the implementation as well. The second stage (transition testing) checks all

remaining transitions of the implementation by observing whether the output

and the next state conform to the specification.

The methods also differ in the way they check whether the machine is in the

expected state. The following preset sequences exists for state verification:

• Separating family of sequences. A separating family of sequences

(Yannakakis & Lee, 1995) or family of Harmonized State Identifiers (HSI)

(Petrenko, Yevtushenko, Lebedev, & Das, 1994)) of FSM M is a collection

of sets Zi, i = 1, . . . , n of sequences (one set for each state), which satisfies

the following two conditions: for every non-identical pair of states si, sj :

10 Gábor Árpád Németh

(I) there exists an input sequence x that separates them, i.e. ∃x ∈ I∗,

λ(si, x) 6= λ(sj , x); (II) x is a prefix of some sequence in Zi and some se-

quence in Zj . Such a family may be constructed for every deterministic,

reduced FSM: for any pair of states si, sj a sequence zij is generated that

separates them using a minimization method (Gill, 1962) for example. Then

the separating sets are defined as Zi = {zij}, j = 1 . . . n for each state si.

• Characterizing set. A Characterizing Set (CS) W of FSM M is a set

of input sequences such that every non-identical pair of states sl, sx can be

distinguished by at least one member of W , i.e. ∀sl, sx ∈ S, l 6= x : ∃wq ∈
W : λ(sl, wq) 6= λ(sx, wq). The CS is a special case of the separating fam-

ily of sequences: the sets Zi are identical. For every completely specified,

deterministic, reduced FSM, a CS can be generated (Gill, 1962).

• UIO sequence. A Unique Input Output (UIO) sequence ul for state sl of

machine M is a sequence that verifies the given state sl of M , i.e. λ(sl, ul) 6=
λ(sx, ul), ∀sx ∈ S, l 6= x. Only completely specified, deterministic reduced

FSMs may have UIO sequences for all states, but not all of them do (Broy et

al., 2005).

• Distinguishing Sequence. A Distinguishing Sequence (DS) of machine M

is an input sequence d that gives different output for every state of FSM M ,

i.e. ∀sj , sl ∈ S, j 6= l : λ(sj , d) 6= λ(sl, d). Thus, a DS of FSM M is able

to identify any state of M . Only completely specified, deterministic reduced

FSMs may have DS, however, very few real specification FSMs have DS (Ural,

1992).

If the output observed by the implementation machine can be looped back

to the test cases, it is possible to use adaptive state verification sequences and

sets. In this case the extra information – the observed output of the FSM – may

result in a shorter state verification process. Note that the preset/adaptive test

path generation is referred to as offline/online MBT in industry.

Teaching model-based testing 11

The most important test generation algorithms are summarized in Table 4.

Method Structure Required
assump-
tions

State Identifi-
cation

Complexity
of test
generation

Length
of test

Comments

TT 1 stage 2, 3, 5, 6 - O(n3 + m) O(m) Guarantees to find out-
put faults only

D 2 stages 1-6, DS ex-
ists

DS PSPACE Exp. Applicable only if DS
exists (it rarely exists)

UIOv 2 stages 1-7, UIO
seqs. exists

UIO seq. PSPACE Exp. Applicable only if UIO
sequences exists for
each state

W 1 stage 1-7 CS O(p · n3) O(p ·n3) -

Wp 2 stages 1-7 CS O(p · n3) O(p ·n3) Improved version of W

HSI 2 stages 2-7 sep. family of
seqs.

O(p · n3) O(p ·n3) Similar to Wp

H 2 stages 2-7 adaptive selec-
tion from sep.
family of seqs.

no preset
test

O(p ·n3) Adaptive version of HSI

Table 4. The differences between FSM-based test generation algorithms

Note that the Transition Tour (TT) method (Naito & Tsunoyama, 1981)

generates the shortest possible test sequence, which provides 100% transition and

100% state coverage. The TT is equivalent to the Directed Chinese Postman

Problem mathematical problem (Edmonds & Johnson, 1973) with unit costs for

each edge. The TT-method has the least assumptions about specification and

implementation FSMs, but it only guarantees to find output faults. For continu-

ously evolving FSMs, the incremental TT-method is proposed in (Németh & Pap,

2014) that updates the TT test sequence after changes applied to the model.

Although both the D-method (Hennine, 1964) and the UIOv-method (Vuong,

Chan, & Ito, 1989) guarantee to show the existence of all output and transition

faults, their applications are very limited: DS and UIO sequence may not exist

for all machines.

The very similar W(Chow, 1978)/Wp(Fujiwara, v. Bochmann, Khendec,

Amalou, & Ghedamsi, 1991)/HSI(Yannakakis & Lee, 1995; Petrenko et al., 1994)-

methods guarantee to find all output and transfer faults. The most general ap-

proach of this triple is the HSI method that can be used for partially specified

FSMs also. For continuously evolving FSMs, the incremental HSI-method is

proposed in (Pap, Subramaniam, Kovács, & Németh, 2007), which identifies the

effects of changes in the test suite and only updates those parts that are necessary.

The state verification process of the HSI-method can be shortened with

its adaptive version called the H-method (Dorofeeva, El-Fakih, & Yevtushenko,

2005).

12 Gábor Árpád Németh

Testing with GraphWalker

For the course, GraphWalker4 was selected to illustrate MBT, because it is a

documented, well supported, easy-to-use, free and open source tool.

The working process of GraphWalker consists of the following steps:

1. Creating an (E)FSM model.

2. Creating the adaptation code (in C#, python or perl) related to the graph

that interacts with the SUT.

3. Executing the test sequences. Test sequences are generated mainly with dif-

ferent random walks and with different stopping conditions.

Figure 4. EFSM of the battery-operated signal in GW studio

The FSM can be edited in a GUI (graphical user interface) with GraphWalker

studio. During the course, the model of the battery-operated signal is built step-

by-step starting from a simple FSM model (introduced in Figure 1) and finished

with its EFSM extension (introduced in Figure 2), which contains variables and

guard conditions. The final version edited in GW studio is shown in Figure 4.

The different generators and stopping conditions can also be set via GUI:

• random path generator always selects a transition originating from a state by

random, and repeats this process in the next state till the stopping condition

is fullfilled. This may result in a large test sequence even in small models. For

4GraphWalker. Model-based testing tool, https://graphwalker.github.io/. Accessed: 2019-

11-27

Teaching model-based testing 13

example for our FSM model (Figure 1), this path generator with 100% edge

coverage stopping condition resulted in 10, 21, 22, 22 and 34 edge traversals

in our 5 conducted experiments, while the optimal solution generated by

the TT-method (Naito & Tsunoyama, 1981) required only 9 edge traversals.

The 100% edge coverage stopping condition for the EFSM extension (Figure

2) resulted in 54, 73, 113, 116 and 275 edge traversals in our 5 conducted

experiments, while the optimal solution (presented previously in transition

coverage) required 13 only edge traversals.

• quick random path generator is capable of generating a relative short path

(by always selecting a previously non-visited edge by random, and finding the

shortest path to that edge using Dijkstra’s algorithm (Dijkstra, 1959)), but

it does not deal with guarding conditions, i.e. it selects a new edge despite of

these conditions. For our FSM model (Figure 1) this path generator traversed

9, 9, 11, 11 and 12 edges in our 5 conducted experiments, respectively, to fulfill

100% edge cover condition, but it can not be used for our EFSM model.

• weighted random path generator works similarly as random, but it uses edge

weights, which represent the probability of an edge getting chosen. For our

EFSM example (Figure 2) we set edge weights for transitions originating from

states sred and sgreen. Input symbols button, timeout, switch off get 0.6, 0.3

and 0.1 weights, respectively. The relative high weight of button compared

to the relative low weight of switch off provides enough probability to reach

guard condition counter == 2 and thus the traversals of t8 and t9 edges.

This path generator with 100% edge coverage stopping condition resulted 21,

45, 48, 70, 97 edge traversals in our 5 conducted experiments.

During the curse, different stopping conditions are also investigated such as

relaxing the edge coverage to 50% (edge coverage (50)), 100% state coverage (ver-

tex coverage(100)), reaching a given state (reached vertex(v red)), 10 second time

duration (time duration(10)), 70% requirement coverage (requirement coverage

(70))...etc.

Note that most of the MBT tools generate test codes only for symbolic ex-

ecution, which run on implementation models rather than on actual implemen-

tations. GraphWalker does the same. Thus, a glue code or adaptation code is

required to ”adapt” the MBT generated test case to the SUT to be executable.

GraphWalker documentation gives few example projects (like PetClinic, Amazon

Shopping Cart...etc.) that show, how this adaptation code can be made for ex-

ample to test a web page using Selenium, but this is beyond the scope of this

article.

14 Gábor Árpád Németh

The path generators of GraphWalker create random sequences5, thus the tests

are not repeatable. For this reason, it is not suitable for regression testing, i.e.

to retest a code after a bugfix. GraphWalker is however suitable to exploratory

testing, or to check the strength of a given coverage by executing random walks.

Didactic of teaching model-based testing

During the course, theoretical information is accompanied by slides to help

comprehension; the algorithms are explained through step-by-step animation ex-

amples, the references for the most important state-of-the-art research papers and

books are given. The students work in groups or individually to solve some simple

real-life problems (like the presented toy signal, some basic functionalities of the

SIP (Session Initiation Protocol) (RFC 3261) telecommunication protocol...etc.).

These tasks help to ensure that the students have understood how models are

created and tests generated. Invited guests from diverse domains of the industry

show how the actual testing process is done in practice; what the typical problems

are and which toolchains can be used. Note that besides functional testing we

also discuss how some type of models can be used in performance testing.

During the term, the performance of the students is evaluated with project

home works. First, they create requirements for a selected problem, then they

create and refine an EFSM specification model step-by-step based on the require-

ments. The requirement engineering and modeling process involves close commu-

nication with the stakeholder (consultations with the lecturer in our case), to have

a common understanding of the problem, to identify misunderstandings and to

avoid defects (such as incomplete, inconsistent and unclear requirements) at early

stages. This part also helps them to focus their attention on typical problems of

modelling process and to cope with them (such as selecting the appropriate level

of details for the model). If an easier problem is selected as a project (like testing

a simple webportal or testing the main functionalities of a route planning applica-

tion), then the students also create an adaptation code for the model, to be able

to test an actual implementation. If a more complicated problem is selected (for

example controlling the measurements of a big telescope depending on weather

conditions, conference call functionality of SIP (RFC 4579)...etc.), then they will

create a dummy code for symbolic test execution. The students then generate

5Although a star generator creates paths systematically, it is only capable of finding the shortest

path to a given state/transition.

References 15

and execute tests with GraphWalker or with an other free MBT tool with various

coverage criteria. Finally they create a test report and conclude their findings in

a document.

Conclusion

Even for students with some testing experience it is difficult to switch from

the approach of designing test cases manually to the approach of creating a formal

model thoughtfully, understanding the advantages and disadvantages of different

coverage criteria and test generation algorithms to select the appropriate one

that will generate tests automatically. The different terminologies and focuses on

academia and industry makes it more difficult the enter the field of MBT.

During the course, the students learn the basics of MBT, the challenges and

possible approaches to solve these problems both from the academic and indus-

trial perspective. Given the syllabus of the course, the presented small scale real

examples and the practical experiences gained from the project home works, stu-

dents become capable of using MBT for the testing of simple applications at the

end of the term.

Acknowledgements

The project is supported by the Hungarian Government and co-financed by

the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00001: Talent Manage-

ment in Autonomous Vehicle Control Technologies).

References

Ammann, P., & Offutt, J. (2008). Introduction to Software Testing (1st ed.).

New York, NY, USA: Cambridge University Press.

Bochmann, G. v., Das, A., Dssouli, R., Dubuc, M., Ghedamsi, A., & Luo, G.

(1992). Fault Models in Testing. In Proceedings of the IFIP TC6/WG6.1

fourth international workshop on protocol test systems iv (pp. 17–30). Am-

sterdam, The Netherlands: North-Holland Publishing Co. Retrieved from

http://dl.acm.org/citation.cfm?id=648126.747577

16 References

Bringmann, E., & Krämer, A. (2008). Model-based testing of automotive sys-

tems. In Proceedings of the 2008 international conference on software test-

ing, verification, and validation (pp. 485–493). Washington, DC, USA:

IEEE Computer Society. doi: 10.1109/ICST.2008.45

Broy, M., Jonsson, B., Katoen, J. P., Leucker, M., & Pretschner, A. (2005).

Model-Based Testing of Reactive Systems. Springer.

Chow, T. (1978, May). Testing software design modelled by finite-state machines.

IEEE Transactions on Software Engineering , 4 (3), 178–187.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs.

Numerische Mathematik , 1 (1), 269–271.

Dorofeeva, R., El-Fakih, K., & Yevtushenko, N. (2005). An Improved Con-

formance Testing Method. In F. Wang (Ed.), Formal techniques for

networked and distributed systems – forte 2005 (Vol. 3731, pp. 204–

218). Springer, Berlin, Heidelberg. Retrieved from http://dx.doi.org/

10.1007/11562436 16 doi: 10.1007/11562436 16

Edmonds, J., & Johnson, E. L. (1973). Matching, Euler tours and the Chinese

postman. Mathematical Programming , 5 (1), 88–124.

Fujiwara, S., v. Bochmann, G., Khendec, F., Amalou, M., & Ghedamsi, A. (1991).

Test selection based on finite state model. IEEE Transactions on Software

Engineering , 17 (6), 591–603. doi: 10.1109/32.87284

Gill, A. (1962). Introduction to the theory of finite-state machines. McGraw-Hill.

Retrieved from http://books.google.hu/books?id=2IzQAAAAMAAJ

Hennine, F. C. (1964). Fault detecting experiments for sequential circuits. In

Proceedings of the fifth annual symposium on switching circuit theory and

logical design (pp. 95–110). Los Alamitos, CA, USA: IEEE Computer So-

ciety. doi: http://doi.ieeecomputersociety.org/10.1109/SWCT.1964.8

Holzmann, G. J. (1990). Design and Validation of Protocols. Prentice-Hall.

Lee, D., & Yannakakis, M. (1996). Principles and Methods of Testing Finite

State Machines – A Survey. Proceedings of the IEEE , 84 (8), 1090–1123.

Naito, S., & Tsunoyama, M. (1981). Fault detection for sequential machines by

transition-tours. In Proceedings of the 11th IEEE Fault-Tolerant Computing

Conference (FTCS 1981) (pp. 238–243). IEEE Computer Society Press.

Németh, G. A., & Pap, Z. (2014, July). The Incremental Maintenance of Tran-

sition Tour. Fundam. Inf., 129 (3), 279–300. doi: 10.3233/FI-2014-972

Pap, Z., Subramaniam, M., Kovács, G., & Németh, G. A. (2007). A Bounded

Incremental Test Generation Algorithm for Finite State Machines. In Pro-

ceedings of the 19th IFIP TC6/WG6.1 International Conference, and 7th

References 17

International Conference on Testing of Software and Communicating Sys-

tems (pp. 244–259). Berlin, Heidelberg: Springer-Verlag.

Petrenko, A., Yevtushenko, N., Lebedev, A., & Das, A. (1994). Nondeterministic

State Machines in Protocol Conformance Testing. In Proceedings of the

IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test systems

VI (pp. 363–378).

Ural, H. (1992). Formal methods for test sequence generation. Com-

puter Communications, 15 (5), 311–325. Retrieved from http://www

.sciencedirect.com/science/article/pii/014036649290092S doi: 10

.1016/0140-3664(92)90092-S

Vuong, S. T., Chan, W. W. L., & Ito, M. R. (1989). The UIOv-Method for Pro-

tocol Test Sequence Generation. In J. de Meer, L. Machert, W. Effelsberg,

& North-Holland (Eds.), Proceedings of the IFIP TC6 2nd International

Workshop Protocol Test Systems (pp. 161–175).

Yannakakis, M., & Lee, D. (1995). Testing finite state machines: fault detection.

In Selected papers of the 23rd annual acm symposium on theory of computing

(pp. 209–227).

GÁBOR ÁRPÁD NÉMETH

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, DEPT. OF COMPUTERALGEBRA

H-1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/C.

E-mail: nga@inf.elte.hu

(Received November, 2019)

