
17/2 (2019), 213–241
DOI: 10.5485/TMCS.2019.0466

Programming Theorems and Their
Applications

István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and
Anna Veszprémi

Abstract. One of the effective methodological approaches in programming that supports
the design and development of reliable software is analogy-based programming. Within
this framework, the method of problem reduction plays a key role. Reducing a given
problem to another one whose solving algorithm is already known can be made more
efficient by the application of programming theorems. These represent proven, abstract
solutions – in a general form – to some of the most common problems in programming. In
this article, we present six fundamental programming theorems as well as pose five sam-
ple problems. In solving these problems, all six programming theorems will be applied.
In the process of reduction, we will employ a concise specification language. Program-
ming theorems and solutions to the problems will be given using the structogram form.
However, we will use pseudocodes as descriptions of algorithms resembling their actual
implementation in Python. A functional style solution to one of the problems will also
be presented, which is to illustrate that for the implementation in Python, it is sufficient
to give the specification of the problem for the design of the solution. The content of the
article essentially corresponds to that of the introductory lectures of a course we offered
to students enrolled in the Applied Mathematics specialization.

Key words and phrases: programming by analogy, problem reduction, programming
theorems, program structure, abstract data structure, Python programming, functional
style.

ZDM Subject Classification: D40.

The research has been supported by the European Union, co-financed by the European Social

Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding

Innovation in Informatics and Infocommunications).

Copyright c© 2019 by University of Debrecen

214 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

1. Introduction

This article has been motivated by a university course entitled “Algorithms in

Python”. This is a relatively new, elective course in the curriculum of the Applied

Mathematics specialization. It has been offered three times as yet, always with

a great deal of interest. In the introductory lectures of the course, we provide

a comprehensive overview of the theoretical programming methodology that is

studied by Computer Science majors more extensively, in numerous courses.

The core of this introductory material centers on programming theorems and

their applications. The overview of the theoretical background of the program-

ming methodology is detailed in this Section of the article. Presentation of some

the most important programming theorems (which are, in brief, general-purpose,

abstract algorithmic patterns) is contained in Section 2. Their methodological

overview, however, can be found in this current Section.

To illustrate the applicability of programming theorems, we have compiled

a problem set of pedagogically motivated problems that build on one another.

These problems, together with their solutions, will be presented in Sections 3, 4

and 5. Moreover, solutions will be implemented in Python. More details on the

implementation can be found in Section 6.

One of the keys to professional software development might be to build our

programs from reliable components and with a systematic approach. Among these

components are the so-called programming theorems, which can be effectively

used within the framework of structured programming, applying the principle of

analogy-based problem reductions.

In this article, we focus on programming theorems and their applications us-

ing numerous examples. In our discussion, we draw on our teaching experience

and the course materials developed at Eötvös Loránd University (ELTE). In ad-

dition, we refer to several research findings, which are believed to be beneficial

when it comes to training professional software developers.

One of the most influential sources of research-based programming method-

ology was the seminal book (Dijkstra, 1976). Programming education at ELTE is

heavily influenced by the comprehensive university textbook (Fóthi, 2005), which

is based on the Author’s early lecture notes (Fóthi, 1983), and his and his fellow

instructors’ teaching experience (Fóthi & workgroup, 1995).

Programming Theorems and Their Applications 215

The current philosophy and detailed content of programming courses offered

to Computer Science students at ELTE can be accessed in the two-volume text-

book (Gregorics, 2013). The Author presents a unified approach to programming

methodologies in accordance with current research results.

The core content of teacher education in Informatics, including best prac-

tices in talent management, is contained in the series titled Mikrológia (Szlávi

& Zsakó, 2004). An introduction to programming theorems forms a central part

of this series. On the “Mester” portal (Horváth & Zsakó, 2013-), the Authors

provide a great number of further problems, along with their solutions in which

programming theorems are applied.

In proceeding to a high-level overview of the methodology, we assume that the

Reader is familiar with the following terms and theoretical concepts: state space,

programming problem, (abstract) program, program function, solution, semantics

of program constructions as well as constructions of data types. Similarly, proofs

of program correctness fall beyond the scope of this article.

In the process of software design, our starting point is the program specifica-

tion. Then, through a gradual series of steps, we arrive at an abstract program,

which can be easily implemented in a programming language of our choice. During

this process, we introduce several proven correct sub-components, which retain

the validity of the corresponding parts in the specification.

In more detail, in the design phase, we follow the principle of programming

by analogy. The essence of this principle is that we try to provide a solution to

the given specification with the help of a program that solves another, similar

problem. Finding analogies can be made more efficient if we have a collection of

general yet readily applicable programs at our disposal.

A carefully selected collection of general abstract program patterns can be

called programming theorems, and the process of their application to a given

problem is called problem reduction. In other words, programming theorems are

general-purpose algorithmic templates formulated at an abstract level. We note

that, according to experienced developers, programming theorems are important

elementary building blocks of problem solving and software development.

One could characterize these algorithmic patterns as correct and abstract so-

lutions to general problems. The problems and solutions are abstract and general,

because in their description we use the following concepts and notations: f is a

function and β is a property whose domain is a closed interval of integers denoted

by [m..n].

216 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

The problem is often expressed in terms of the array A[1..n]. Then, the

range of indices, denoted by [1..n], corresponds to the interval as found in the

programming theorem. Also, the function values f(i) are accessible through the

elements of the array, which we denote by A[i]. We note that the variants of

programming theorems with arrays will not form separate theorems, since these

can be easily derived from the original ones with little modification.

It is important to highlight that the form of the programming theorems has

not changed significantly to this day. Compared to their earlier versions, the only

modifications that happened to the programming theorems are as follows. First,

the parameters of the problems are given in a different way, which has resulted

in a change in the problem specification. Second, the way loops are constructed

has also changed. Previously, loop variables started out from the outside of the

interval, while currently they start from the left endpoint. This has caused a

change in the terminating conditions of loops, which will be observable in the two

programming theorems concerning sequential search methods.

Next, still during the design phase, we use so-called structograms to graph-

ically present abstract solutions in this article. Due to their abstract nature,

however, it is possible to express solutions in different forms, such as pseudocode.

Furthermore, solutions contain no prescriptions for the coding phase, which makes

writing the program code a separate (partially, at least) creative process.

In this article, we describe abstract solutions using the structogram form as

part of the design phase. The intricacies of structograms can be found in (Fóthi,

2005) and (Gregorics, 2013). We will also provide an example of the application

of the pseudocode form in Section 6. Using either of these two descriptive forms,

we regard solutions obtained by applying programming theorems only as abstract

algorithms that contain no prescription for coding. Creating the program code

is always a separate creative phase in its own right, which is partly independent

of the abstract solution. Pseudocodes are naturally closer to program codes,

therefore their direct application or ”bridging” role can be recommended.

When the program design is implemented in Python, then the description

of the problem in a specification language results exactly in the Python code in

many cases. In the next section, we introduce such a concise description of the

specification. In this case, the problem description in the specification language

corresponds to the design of the solution; thus, detailing and algorithmizing it

any further can be omitted.

The programming theorems are usually incorporated into the abstract pro-

grams by that they are used, most often in the case of smaller sized problems.

Programming Theorems and Their Applications 217

In other cases, they may form separate building blocks which can be considered

“abstract submodules”. From other points of the programs they can be executed

by “abstract call” statements, that is, by references to the headlines appended to

the individual structograms.

2. Programming theorems

First of all, the number of programming theorems, as we shall see, is not

fixed. The following six general templates represent such a minimal subset of all

possible programming theorems that it provides a toolbox for tackling a consider-

able amount of problems. Secondly, in each of the theorems, the goal is to process

the values of some functions and conditions whose domain is a subset of integers.

This subset is generally a closed interval. For this reason, the theorems are often

called programming theorems on intervals.

After expressing them in words, problems will also be specified formally. The

following information will be contained in the specifications:

• The state space; that is, the sets of data type values, together with the

variable names corresponding to the respective pieces of data.

• The precondition, which encodes the arbitrary (and still valid) initial values

of input variables. (Variable names with the prime symbol will denote the

initial values.)

• The postcondition, which provides the set of goal states corresponding to the

respective initial states in the form of logic statements.

Among the variables occurring in the state space of a problem, it is the input

variables to which the precondition of the problem assigns an initial value. Among

the variables occurring in the postcondition, the output variables are those for

which it is not prescribed that their value must agree with their initial value

specified in the precondition. Notice that the same variable can equally be an

input variable and an output variable at the same time.

We also note that the logical language used in the specification is not exactly

that same as the language of the first order logic. Instead, for the sake of ade-

quate expressive power, we use its extended “dialect”, which need not be defined

precisely as it is hoped that its meaning is unambiguous for specialists.

We propose a specification language in which keywords refer to specific pro-

gramming theorems; for example, SUM to summation. Besides these keywords,

218 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

limits of ranges and parameters also occur in this language. Applying the specifi-

cation language clarifies to which programming theorem(s) the solution is reduced.

Another advantage of this system of notations is that it makes the implementation

using the functional paradigm easier, which is also well supported by the vari-

ous language elements and the infrastructure of Python. (Specification languages

are increasingly used by systems that support automatic program generation, see

Summary.)

As solutions to the specified problems, algorithms will be presented in the

form of abstract programs. As mentioned above, we will use structograms to rep-

resent algorithms. They are composed of the three fundamental control structures

(i.e., sequences, conditional statements, loops), which can be embedded inside one

another.

The elementary programs in the boxes of structograms are the assignment,

the empty statement (i.e., SKIP) and the reference to another structogram (which

can be regarded as an “abstract call”).

The following notations are used for the type of variables: N and Z denote

the set of natural numbers and integers, respectively. The set L contains the two

logical (Boolean) values: L = {true, false}.

2.1. Counting

Problem:

Let an interval of integers [m..n] and a condition β : [m..n] → L be given. De-

termine the number of times β attains the “true” value on [m..n]. In the case of

the empty interval (i.e., if m > n), the value returned must be 0.

Specification:

A = (m : Z, n : Z, c : N)

Pre = (m = m′ ∧ n = n′)

Post = (Pre ∧ c =
n∑

i=m
β(i)

1)

Initially, the counter is set to 0. At each point of [m..n] that satisfies β, the

counter is increased by 1. Two versions of the algorithm are provided, as seen in

Figure 1 and 2. The second version presents the common technique of introducing

a logical variable.

If the programming theorem of counting is used in the solution to a given

problem, then the following formula can be applied in the appropriate part of

specification with the actual parameters: c = COUNT n
i=m β(i).

Programming Theorems and Their Applications 219

Algorithm:

c, i := 0,m

i ≤ n

AA
β(i)

��

c := c+ 1 SKIP

i := i+ 1

Figure 1. Counting. The base version.

c, i := 0,m

i ≤ n

l := β(i)

AA
l

��

c := c+ 1 SKIP

i := i+ 1

Figure 2. Counting with a logical variable

2.2. Summations

Problem:

There are two common wordings of the problem of summation. Let an interval

of integers [m..n] and a function f : [m..n] → H be given. Let us suppose that

the addition operation is defined on the elements of H.

(1) Determine the sum of the values that f takes on the interval [m..n]. (In the

case of the empty interval, the value of the sum is 0 by definition.)

(2) Let us now introduce the following condition: β : [m..n]→ L. Determine the

sum of those values of f that are attained in such points of [m..n] that satisfy

the property β.

Specification:

A = (m : Z, n : Z, s : H)

220 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

Pre = (m = m′ ∧ n = n′)

Post = (Pre ∧ s =
n∑

i=m

f(i))

In the case of summation restricted by a condition:

Post = (Pre ∧ s =
n∑

i=m
β(i)

f(i))

Algorithms:

s, i := 0,m

i ≤ n

s := s+ f(i)

i := i+ 1

Figure 3. Summation on the whole interval

s, i := 0,m

i ≤ n

AA
β(i)

��

s := s+ f(i) SKIP

i := i+ 1

Figure 4. Summation in the points satisfying β

The structograms of the solutions to both versions of the summation problem

can be seen in Figure 3 and 4.

The algorithm of the second version can be modified by introducing a logical

variable that contains the value of β(i), as we have done it in Figure 2.

Summation in general, or reference to the theorem of summing elements with

a given property can be concisely given in the specification of the problem by the

following formulas: s = SUM n
i=m f(i) and s = SUM

β(i)

n
i=m f(i).

Programming Theorems and Their Applications 221

2.3. Maximum selection

Problem:

Let a non-empty interval of integers [m..n] and a function f : [m..n]→ H be given.

Let us suppose that a total order is defined on the elements of H. Determine the

point at which f attains its maximum value over the interval [m..n], and calculate

this value too. (If there is more than one maximum point, any of them can be

selected.)

Specification:

A = (m : Z, n : Z, ind : Z,max : H)

Pre = (m = m′ ∧ n = n′ ∧ n ≥ m)

Post = (Pre ∧ ind ∈ [m..n] ∧max = f(ind) ∧ ∀i ∈ [m..n] : max ≥ f(i))

Algorithm:

max, ind, i := f(m),m,m+ 1

i ≤ n

AA
max < f(i)

��

max, ind := f(i), i SKIP

i := i+ 1

Figure 5. Maximum selection

As seen in Figure 5, the two values we are interested in finding are initialized

at the left endpoint of [m..n], and they get modified if and only if we arrive at a

larger value of f at other points of the interval (going from left to right). In the

case of more than one maximum point, the leftmost will be selected.

The theorem of maximum selection can be referred to in the specification

language as follows: (max, ind) = MAX n
i=m f(i). If we are only interested in

the maximum value or its corresponding point, then the MAX function becomes

single-valued.

The six programming theorems are viewed as parts of programming method-

ology. However, the other significant chapter of computer science is the theory of

algorithms and data structures. That discipline thinks of one of the programming

theorems, the maximum selection as its own part, because of being a building

block of several algorithms.

222 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

2.4. Conditional maximum search

Problem:

Let an interval of integers [m..n], a function f : [m..n] → H and a condition

β : [m..n] → L be given. Let us suppose that a total order is defined on the

elements of H. Determine the point at which f attains its maximum value over

those points of [m..n] that satisfy β. As above, calculate this value too. (Note

that there might not be any points satisfying β in [m..n], which is inherently the

case if m > n.)

Specification:

A = (m : Z, n : Z, l : L, ind : Z,max : H)

Pre = (m = m′ ∧ n = n′)

Post = (Pre ∧ (l = ∃i ∈ [m..n] : β(i)) ∧ (l → ind ∈ [m..n] ∧max = f(ind) ∧
β(ind) ∧ (∀i ∈ [m..n] : β(i)→ max ≥ f(i))))

Algorithm:

l, i := false,m

i ≤ n

AA
¬β(i)

SKIP

AA
l ∧ β(i)

AA
max < f(i)

��

max, ind :=

f(i), i
SKIP

AA
¬l ∧ β(i)

l,max, ind :=

true, f(i), i

i := i+ 1

Figure 6. Conditional maximum search

The algorithm in Figure 6 uses the logical variable l to identify the first point

satisfying β. At that point, the output variables get initialized. Next, at other

points satisfying β, the algorithm works in a similar way as the algorithm of

maximum selection. Points where β is false are skipped.

The specification of conditional maximum search can be given by the following

concise formula, where the MAX function can be single- or double-valued, but

the logical variable l has to be provided: (l,max, ind) = MAX
β(i)

n
i=m f(i).

Programming Theorems and Their Applications 223

2.5. Sequential selection

Problem:

Let an integer m and a condition β : Z → L be given. Determine the leftmost

point starting with m that satisfies β, if we know that such point definitely exists.

Specification:

A = (m : Z, ind : Z)

Pre = (m = m′ ∧ ∃i ≥ m : β(i))

Post = (Pre ∧ ind ≥ m ∧ β(ind) ∧ ∀i ∈ [m..ind− 1] : ¬β(i))

Algorithm:

ind := m

¬β(i)

ind := ind+ 1

Figure 7. Sequential selection

Figure 7 shows an algorithm whose loop variable guarantees termination due

to the existence of a point that satisfies β. (We note that a logical variable can

be introduced here as well.)

The concise form of the specification of sequential selection is the following:

ind = SELECT ind≥m β(ind).

2.6. Sequential search

Problem:

Let an interval of integers [m..n] and a condition β : [m..n]→ L be given. First,

decide whether [m..n] contains a point that satisfies β. If so, then determine the

first such point in [m..n] starting from the left endpoint. (The empty interval is

an equivalent of β evaluating to False on the whole interval.)

Specification:

A = (m : Z, n : Z, l : L, ind : Z)

Pre = (m = m′ ∧ n = n′)

Post = (Pre ∧ (l = ∃i ∈ [m..n] : β(i)) ∧ (l → ind ∈ [m..n] ∧ β(ind) ∧ ∀i ∈
[m..ind− 1] : ¬β(i)))

224 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

Algorithm:

l, i := false,m

¬l ∧ i ≤ n

l, ind := β(i), i

i := i+ 1

Figure 8. Sequential search

The answer to the yes/no question specified in the problem description is

contained in the logical variable l (see Figure 8). If the value of l is true, then

the first number satisfying β will get stored in the variable ind.

The specification of sequential search can be concisely described with a single-

or double-valued function, where the logical variable l cannot be omitted:

(l, ind) = SEARCH n
i=m β(i).

3. Three problems related to prime numbers

In this section, we present three problems that are connected to the notion

of prime numbers. The algorithms that solve these problems can be derived by

reduction to programming theorems, thus providing examples of the applicability

of the theorems. Moreover, beyond sharing a common theme, the problems build

on each other. Specifically, the algorithm to the first example will be used to

solve the other two problems.

3.1. Primality test

Our introductory example, which is about deciding whether a positive integer

is prime, will be solved with the technique of problem reduction. However, a

separate step will also be necessary in the solution process.

Problem 1. Decide whether a natural number n ≥ 1 is prime.

According to the most commonly used definition of prime numbers, n ≥ 2 is

prime exactly when it has no non-trivial divisors. In other words, there is no k

dividing n such that 2 ≤ k ≤ n− 1.

Programming Theorems and Their Applications 225

As is known, it suffices to check whether n is a multiple of any integer up to

b
√
nc. Notice that this step does not restrict the validity of the definition – in

the cases of n = 2 and n = 3, the interval [2..b
√
nc] is empty, thus it does not

contain any divisors, which is in line with the fact that 2 and 3 are primes.

The above definition of prime numbers cannot be applied, however, in the

n = 1 case, but by definition, 1 is not a prime. What is important to note is

that we need to separate this case (i.e., if n = 1) in the algorithm, and a negative

answer must be given in this branch.

Let us formalize the above definition for integers n ≥ 2 using negation:

the integer n ≥ 2 is not a prime ⇐⇒ ∃k (2 ≤ k ≤ b
√
nc) : k|n

The description of the searching problem using the specification language

introduced in the previous section is as follows:

l = SEARCH
b
√
nc

k=2 k|n

In order to decide the validity of the statement, we use the programming

theorem of sequential search. The interval as specified in the theorem will be

[2..b
√
nc] in this case, and the condition β will correspond to the relation k | n.

We note that the ind variable will not be needed from the theorem, since if n is

not a prime, then there is no need to know which number is its smallest non-trivial

divisor.

The result of the primality test can be obtained by negating the value of the

logical variable in the sequential search algorithm. Notice that in that algorithm,

the logical variable l can already be used in a negated form. In this case, its

meaning is not that we have not found a divisor yet, but that there is no proof to

reject the assumption about the primality of n as yet. The algorithm of primality

test is given in Figure 9 as a structogram.�� �l := IsPrime(n)

AA
n = 1

��

l := false

l, k := true, 2

l ∧ k ≤ b
√
nc

l := k - n

k := k + 1

Figure 9. Primality test

226 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

3.2. First prime after a given number

Suppose we are interested in the first prime number that is greater than, say,

1000. Instead of providing an answer to this specific question, we can design an

algorithm that tackles this problem in its general form.

Problem 2. Determine the first prime number that is greater than a given

integer m ∈ Z.

Notice that for all integers m, there is a prime that is greater than m, because

there are infinitely many prime numbers. Given this fact, the condition of the

sequential selection algorithm is satisfied if we start searching for the first prime

number among the integers starting with m+1. Using the specification language,

we arrive at the following postcondition:

ind = SELECT ind≥m+1IsPrime(ind)

The solution, as seen in Figure 10, can be derived using the programming

theorem in Section 2.5. To test primality, we make use of our previous algorithm,

which is referred to when we assign a value to the logical variable l.

ind := m+ 1

l := IsPrime(ind)

¬l

ind := ind+ 1

l := IsPrime(ind)

Figure 10. First prime after a given number

3.3. The number of primes in a given interval

Similarly, instead determining how many prime numbers are between 1 and

1000, it might be preferable to solve a more general problem.

Problem 3. Determine the number of prime numbers in the interval of integers

[m..n].

Programming Theorems and Their Applications 227

The specification of the problem can be concisely formulated as follows:

c = COUNT n
i=mIsPrime(i)

We reduce this problem to the programming theorem of counting, which

we detailed in Section 2.1. Again, for the primality test, we use the algorithm

developed in Section 3.1. The final solution to the problem is shown in Figure 11.

c, i := 0,m

i ≤ n

l := IsPrime(i)

AA
l

��

c := c+ 1 SKIP

i := i+ 1

Figure 11. Number of primes in an interval

4. Embedding programming theorems

In this section, we pose a somewhat more complex problem than the previous

ones.

Problem 4. Let a maixtrix of integers with m rows and n columns (A[1..m, 1..n])

be given, where m,n ≥ 1. Determine the row in which the sum of prime numbers

is the largest.

The wording of the problem is clearly indicative of the programming theorems

of maximum selection and conditional summation as well as the notion of prime

numbers. In solving the problem, we will apply these two theorems and use the

algorithm of primality test. This observation can be expressed with the following

specification:

(max, ind) = MAX m
i=1

IsPrime(A[i,j])

(SUM n
j=1A[i, j])

The matrix data structure is a well-known generalization of an array whose

elements are arrays themselves; in other words, it can be thought of as the column

228 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

vector of its rows. We note that the problems and solutions described in terms of

arrays are closely connected to the programming theorems on intervals, so much

so that they can be regarded as the immediate applications of these theorems. In

the following, we denote the i-th row of the matrix with A[i, 1..n].

From the three concepts in the problem description, the algorithm of maxi-

mum selection is the most important constituent of the program structure. Con-

ditional summation appears as the algorithm that generates the values to be

compared. Also, this is the procedure where the primality test takes place.

max := Sum-of-Primes(A[1, 1..n])

ind, i := 1, 2

i ≤ m

s := Sum-of-Primes(A[i, 1..n])

AA
max < s

��

max, ind := s, i SKIP

i := i+ 1

Figure 12. The row of the matrix with maximal sum of primes

�� �s := Sum-of-Primes(A[i, 1..n])

s, j := 0, 1

j ≤ n

l := IsPrime(A[i, j])

AA
l

��

s := s+A[i, j] SKIP

j := j + 1

Figure 13. Sum of primes in a row of the matrix

Programming Theorems and Their Applications 229

The top layer of the solution (see Figure 12) can be derived from the pro-

gramming theorem of maximum selection. Embedded in this theorem appears

the algorithm that is created using the theorem of conditional summation. This

algorithm is applied to the rows of the matrix to test the primality of their ele-

ments. This could be regarded as the second layer in the program structure (see

Figure 13).

In our experience, there is another design approach to solving this problem.

We could introduce an auxiliary array, denoted with B[1..m], and apply the two

programming theorems sequentially, one after the other. This solution would

first collect the sum of primes from the rows of the matrix and store them in B.

Then, it would perform a maximum selection on B. No matter how logical and

straightforward this solution may seem, our algorithm-based viewpoint cannot

possibly accept it, because of the redundancy of the linear-space auxiliary array.

Furthermore, this solution would be less time efficient as the original one.

For the sake of completeness, we note that using data-driven program design,

we could devise another abstract and well-structured program; however, this is

beyond the scope of this article. Nevertheless, without being skilled at program-

ming methodologies, solving problems of similar complexity can easily lead to

design-related difficulties. For example, in this problem, we were required to use

some guiding principles to coordinate the three concepts in the problem descrip-

tion so that the final solution could be clearly structured and easy to understand.

5. Dijkstra’s shortest path algorithm, array version

Our last problem is a well-known one – the single-source shortest paths prob-

lem for graphs with non-negative edge weights. The procedure that solves this

problem is Dijkstra’s algorithm (Cormen et al., 2003), (Fekete & Hunyadvári,

2016). In this section, we attempt to provide a new angle for the design phase

by reducing the iterative block of the algorithm (i.e., the selection of the mini-

mal cost open node) to the programming theorem of conditional maximum (here,

minimum) search.

Problem 5. Let G = (V,E) be an either directed or undirected graph with

non-negative edge weights. Let a node s ∈ V be fixed; this will be the source (or

initial) node. Determine the shortest (i.e., minimal cost) paths to all nodes of the

graph starting from s.

230 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

In Figure 14, there is an undirected graph with positive edge weights, in

which the source node is s = 1. The shortest paths form a (directed, in fact)

spanning tree in the graph, as can be observed in Figure 15 along with the costs

of reaching the respective nodes.

1

2

3 4

5

6

7

9

14

10
15

11

2

6

9

Figure 14. Dijkstra’s algorithm: the initial state of the graph

10

2

7

3

9

4 20

5

20

6

11

7

9

(14)

(10)
(15)

11

2

(6)
9

Figure 15. Dijkstra’s algorithm: the spanning tree of the minimal cost paths

The graph in Figure 14 and 15, in drawn form, corresponds to the notion

of abstract data structure. Dijkstra’s algorithm will be given at this level of

abstraction. Then, as a next step, the array or the adjacency list version of the

algorithm could be implemented with some coding skills.

Programming Theorems and Their Applications 231�� �Dijkstra(G, s)

d[s] := 0, π[s] := NIL, closed[s] := 0

for each u ∈ V \ {s}

d[u] :=∞; π[u] := NIL

closed[u] := 0

for i = 1 to |V |

u := MinCostOpenNode(d, closed)

closed[u] := 1

for each v ∈ Neighbors(u)

AA
closed[v] = 0

��

AA
d[u] + c(u, v) < d[v]

��

d[v] := d[u] + c(u, v)

π[v] := u
SKIP

SKIP

Figure 16. Dijkstra’s algorithm (high level)

It can be proven that the selected node can be closed after this step, because

no other path with a smaller cost can be found to this node. Since the algorithm

is greedy, every node is selected exactly once.

We emphasize that, in each iteration step, Dijsktra’s algorithm selects a node

u which is not closed yet (i.e., closed[u] = 0). Considering the still open nodes,

there is no cost that is smaller than the cost corresponding to node u (i.e., d[u]).

(Of course, if there is more than one node with a minimal cost, we can select any

of them.)

In this procedure, we can recognize the programming theorem of conditional

maximum search, as discussed in Section 2.4. In this case, it is in fact a minimum

selection, which necessitates flipping the inequality sign in only one instance. The

search interval in the theorem now becomes [1..|V |], the condition closed[i] = 1

corresponds to β(i), and the cost values, denoted with d[i], replace the function

values f(i). Our consideration leads to the following specification:

(found,min, ind) = MIN
closed[i]=0

|V |
i=1d[i]

232 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

The result of this problem reduction is the structogram in Figure 17.�� �u := MinCostOpen Node(d, closed)

found := false

for i = 1 to |V |

AA
closed[i] = 1

SKIP

AA
found ∧ closed[i] = 0

AA
min > d[i]

��

min, ind := d[i], i SKIP

AA
¬found ∧ closed[i] = 0

found,min, ind :=

true, d[i], i

Figure 17. Search for an open node with minimal cost

We call the attention to the fact that the algorithm which selects the minimal

cost open node is quite complex per se. By being able to find an analogy with

a programming theorem, not only have we simplified the process of program

development quite considerably, but we have also improved several safety aspects

in program design. Last but not least, the final form of the algorithm can be

comprehended more easily this way.

6. About the Python programming

As was mentioned in the Introduction, this article has been motivated by a

university course titled ”Algorithms in Python”. A general overview of the course

will be given below, which will then be followed by a short description of the first

topic of the lecture series. A more in-depth description of the entire course could

be the topic of a future article.

6.1. Introducing the Python course

A comprehensive description of the course can be accessed through the course

materials on the Lecturer’s website (Fekete, 2019). These materials include a

general description of the course, a brief summary of each topic, the program

codes in Python as presented in the lectures and a list of home assignments.

First of all, it should be noted that this is not a course focusing on teaching

the programming language in the classical sense. The emphasis is rather placed

on solving problems related to the world of algorithms and data structures with

Programming Theorems and Their Applications 233

the help of Python programs. The Python language is used on a basic level. That

is to say, programming the graphical interface is beyond the scope of the course,

but the functional properties of the language are used later in the course.

The course has four basic pillars. Firstly, the problems generally come from

Mathematics, secondly, more specifically, from the field of algorithms and data

structures, thirdly, Python is utilized in their solution, and fourthly, general re-

sults from programming methodology are applied during the designs of the pro-

grams.

Next, the general guiding principle of the lectures is the following. During

the first weeks, we use the language intuitively. A comprehensive overview of the

language-related elements always follow the applications in subsequent weeks as

well. This also means that only three lectures are allocated to the presentation of

a summary of the most important Pythonic elements, while the rest of the lectures

revolve around solving sample problems by writing programs interactively during

the lectures.

Some individual work is expected of students in order for them to acquire the

most basic elements of Python. To guide them in this process, we recommend

them several relevant resources in book form as well as from the Internet.

Among the books, the one that is the most relevant to our course in its

objectives and tone is the book (Goodrich et al., 2013). By being perhaps the first

of its kind, it presents a unique way of teaching algorithms using the basic data

structures of Python. In Python, arrays are replaced with indexable lists; there

are no pointers that are visible to and can be accessed by the programmer; and,

furthermore, the ordered list of n elements (i.e., the n-tuple) and the dictionary

(which is basically a hash-table) are among the simplest Pythonic data structures.

Each topic of the course is covered in one or two lectures. Among these top-

ics are programming theorems and their applications, the most typical algorithms

with different runtime complexities, problems that can be solved with backtrack-

ing, graph algorithms and designing intelligent input-output methods from the

console.

Finally, the course can be completed by submitting home assignments. It is

suggested that students work on these problems in pairs. Students also have to

present their solutions and programs to members of the course staff.

We also mention that the syllabus and some course materials of an extracur-

ricular course tailored to 12- to 18-year-old students (Princz, 2017) were presented

(and a paper submitted) in the international conference in commemoration of the

100th anniversary of the birth of Tamás Varga, held at ELTE in Nov 2019.

234 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

6.2. Presenting the introductory topic of the course

The first topic of the course ”Algorithms in Python” is about programming

theorems and their applications. Together with a brief summary of the basic

elements of the language, programming theorems are covered in three lectures.

Their presentation corresponds to the structure we described in Section 2. After-

wards, the five problems described above are posed, and their abstract, theoretical

solutions are provided subsequently, all in line with Sections 3, 4 and 5.

In the Introduction, the pedagogical merits of the problem set were taken into

account. From a Pythonic aspect, it should be added that the problems provide

ample opportunity for applying almost all fundamental elements of the language.

It should especially be highlighted that the solution to the 4th problem could be

made significantly shorter and more efficient by using two programming theorems

embedded in one another, which would be an example of functional programming

(cf. this Section). An interesting aspect of the 5th problem is that edge-weighted

graphs are represented with a dictionary whose keys are the nodes of the graph,

and the values are lists of ordered pairs (which represent the neighbors of the

nodes with the weights of the corresponding edges).

In the following, we provide an in-depth solution to one of the problems.

Later, when students become more skilled, solutions can be less detailed.

When implementing the solver algorithms, we break with the structogram

form that has been used so far. There is no one-to-one correspondence between

the clear and streamlined form of structograms and the coded versions of the

algorithms, because it would result in program codes that are pragmatically not

accepted by the programming profession. For this reason, we have redrafted the

abstract descriptions of the algorithms.

Pseudocodes are used for this purpose, which were originally introduced,

precisely defined and applied for describing algorithms in one of the most author-

itative books in the world of algorithms and data structures, that is (Cormen et

al., 2003).

The structogram in Figure 7, which depicts the algorithm solving the first

problem (that is, the primality test), can be rewritten using pseudocode as in

Figure 18. There is one new element in the algorithm, namely the fact that as

soon as the first divisor of the tested number is found, the execution breaks out

of the search loop and returns the value False.

Programming Theorems and Their Applications 235

IsPrime(n)

1 if n = 1 then

2 return false

3 else

4 k := 2

5 while k ≤ b
√
nc do

6 if k | n then

7 return false

8 k := k + 1

9 return true

Figure 18. Primality test, version 1, pseudocode

Additional modifications of the pseudocode can be seen in Figure 19. First, we

dropped the else branch of the conditional expression, and second, the while-loop

has been replaced with a for-loop. The corresponding Python code is provided in

Figure 20.

IsPrime(n)

1 if n = 1 then

2 return false

3 for k = 2 to b
√
nc do

4 if k | n then

5 return false

6 return true

Figure 19. Primality test, version 2, pseudocode

1 def i s p r i m e (n) :

2 i f n <= 1 :

3 return False

4 for k in range (2 , int (n∗∗0 .5)+1) :

5 i f n % k == 0 :

6 return False

7 return True

Figure 20. Primality test, version 2, Python code

236 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

Python as a multi-paradigm programming language supports the use of im-

perative, object-oriented as well as functional programming. From the latter, list

comprehension and lambda expressions are used explicitly in the course. Using

this approach, everything that is composed of a head element and the rest of the

list can be regarded as a list. Furthermore, lists represent a universal data struc-

ture that can be traversed with aggregator functions (e.g., max()), enumerators

and anonymous functions (i.e., lambda expressions), without using explicit while-

and for-loops.

1 def row prime sum (row) :

2 return sum(elem for elem in row i f i s p r i m e (elem))

3

4 max ind , max row = max(enumerate(A) ,

5 key=lambda ind row : row prime sum (ind row [1]))

6

7 max = row prime sum (max row)

Figure 21. The row of the matrix with maximal sum of primes, Python code

The Python program code snippet in Figure 21 demonstrates the change from

the imperative loops toward the modern functional programming. This program

code is the functional solution to the fourth problem, whose classical solution at

an abstract level was given in Section 4. The resulting program code is shorter

and more efficient than the one written using the imperative paradigm; however,

it can be less intuitive for programmers working with non-functional paradigms.

The Python programs presented above originate from working examples,

omitting the test data and the import of the is prime function on Figure 21.

7. Summary

In the following, we summarize the key points of the article and provide some

further considerations.

Programming theorems organically emerge in a professional environment,

which means that their number is not fixed from a theoretical perspective. Besides

the six fundamental theorems that we discussed in this article, there are more com-

plex programming theorems in use. Notable examples of more advanced theorems

Programming Theorems and Their Applications 237

include the binary search algorithm and the theorems of merging, assortment and

solving recurrence relations (Fóthi, 2005), (Gregorics, 2013), (Szlávi & Zsakó,

2004). The Authors provide ten programming theorems on the “Mester” portal

mentioned in the Introduction. There are an average of 30 problems belonging to

each of the theorems (Horváth & Zsakó, 2013-).

The presentation of programming theorems has been extended by introducing

elements of a specification language. Afterwards, five problems follow, building

on one another, which also provide an opportunity for applying each of the pro-

gramming theorems.

The first three problems were related to the notion of prime numbers. Testing

primality presented some interesting peculiarities. The case of n = 1, which is not

a prime, requires a unique treatment; since the application of the programming

theorem did not cover this case. In the case of n ≥ 2 (where n is an integer), the

programming theorem of sequential search could be applied.

The second and third problems could be solved by applying the programming

theorems of sequential selection and counting elements with given features. The

algorithm of testing primality was used in solving both problems, which was

indicated by a reference to the headline of the structogram (i.e., abstract function

call).

The next, more complex problem was described for arrays, and it turned out

to be fairly instructive for the following reason. Its wording contained three key

concepts whose handling required sufficient amount of methodological knowledge.

In line with the analogy-based approach we followed in the article, the problem

was solved by a conditional summation which used the algorithm of testing pri-

mality and was embedded in a maximum selection. It is worthwhile to consider

that the top layer of the algorithm operates on the matrix as a whole while lower

levels procedures work with the rows and the elements of the rows of the matrix.

An attractive application of the programming theorem of conditional maxi-

mum search could be found in designing the array version of Dijkstra’s algorithm.

The algorithm finds the minimal cost paths to all nodes starting from a given

source node by selecting a minimal cost open node in each step. Then, it tries

to improve the costs to reach all of its open neighbors. Afterwards, the selected

node becomes closed.

By recognizing the programming theorem of conditional maximum (here,

minimum) search in this procedure, we have simplified the design phase and

improved the reliability of the solution at the same time. Another important

aspect to consider is the enhanced readability of the resulting algorithm.

238 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

We have also provided a glimpse into how solutions to the problems can be

implemented in Python. The structograms showing the solver algorithms were

first converted to pseudocodes, which are closer to the implementation phase.

This step was illustrated by the algorithm of the primality test. A solution us-

ing the functional paradigm was also given to the more complex, matrix-related

problem.

We present some additional topics that are outside of the scope of this article,

but are doubtless linked to the broader topic area.

Although we have not dealt with proving the correctness of programming

theorems in detail, it might be worthwhile to provide a high-level overview of how

such proofs can be constructed. The pre- and postconditions in the specification

as well as the invariant statements in the abstract program mark the starting point

of the proof method. The key concept of the proof is the weakest precondition.

Given a program block and the postcondition to be satisfied, there exists a detailed

calculus to calculate the weakest precondition. The proof procedure is aligned

with the structure of the program. In each step, we prove that the known possible

initial states of given program blocks are in the largest set of possible initial states

that are calculated from their postcondition (in fact, this is expressed by the

weakest precondition) (Dijkstra, 1976), (Fóthi, 2005), (Gregorics, 2013).

In the examples of this article, programming theorems were applied to integer

intervals and arrays (namely, vectors and matrices). It is important to note,

however, that the theorems can be extended to such structures on which an

enumerator can be defined; that is, structures on which the functions First(),

Next(), Current() and End() can be constructed (Gregorics, 2013), (Gregorics,

2010), (Gregorics, 2012a).

The theory of programming and the theory of algorithms and data structures

have many points of contact. For example, the programming theorems of max-

imum selection and binary search can be considered to be part of the theory of

algorithms as well. Furthermore, a variant of coalescing appears in merge sort,

and solving recurrence relations is also a common algorithmic problem. These

examples show that the world of algorithms (e.g., the chapter of search and se-

lection) can offer a range of potential solutions, especially when a given step in

the design phase of a program requires an algorithmic background; this is called

the function-oriented design (Gregorics, 2013).

In other cases, the introduction and implementation of composite data types

could be necessary in the type-oriented design (Gregorics, 2013). The theory

of algorithms and data structures appears as a related field here, cf. the last

Programming Theorems and Their Applications 239

example. Fundamental data structures, such as arrays, stacks, queues, lists, trees

and heaps are part of both fields; consequently, they can be essential when it

comes to solving programming problems (Cormen et al., 2003), (Fekete et al.,

2001), (Fekete & Hunyadvári, 2016).

Constructing the most appropriate program structure is within the scope of

modular programming (Gregorics, 2013). In the case of smaller problems, this

is not a burning issue; however, it may be beneficial to consider the possibility

of structuring our programs already during the process of laying the theoretical

foundations. We mention that by modifying some of the fundamental notions

discussed in the article and by introducing the concepts of subspace and dynamic

programs, we can pave the theoretical way to modular programming (Gregorics,

2012c).

One of the research directions in the field of software technology attempts to

put the principle of executable specification into practice. (A good example of

this could be the queries in the well-known SQL language in database programs.)

Our research group has also reached some preliminary results. An automatic

program-generating system has been devised that produces programs based on

their specification (Csepregi et al., 2007). With a similar aim in mind, a library

of class templates has also been implemented from which, through inheritance

and instantiation, object-oriented solutions can be given to problems related to

programming theorems (Gregorics, 2012b).

These additional topics show that there are many other interesting questions

to be analyzed and discussed.

Acknowledgements

The authors gratefully thank Péter Princz for useful discussions, reviewing

the text and solving several hard typographical problems.

240 István Fekete, Tibor Gregorics, Kinga Kovácsné Pusztai and Anna Veszprémi

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2003). Új algoritmu-

sok. Scolar Kiadó.

Csepregi, S., Dezső, A., Gregorics, T., & Sike, S. (2007). Automatic implemen-

tation of service required by components. PROVEX’2007 Workshpop, ETH

Technical Report 567.

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, NJ,

Prentice-Hall.

Fekete, I. (2019). Python kurzus. http://ifekete.web.elte.hu. ELTE.

Fekete, I., Gregorics, T., & Hunyadvári, L. (2001). Abstraction levels of data

type. In E. Kovacs (Ed.), Proceedings of the 5th international conference of

applied informatics (p. 55-64). Eger, Hungary.

Fekete, I., & Hunyadvári, L. (2016). Algoritmusok és adatszerkezetek. Digitális

Tankönnyvtár.

Fóthi, Á. (1983). Bevezetés a programozáshoz. Tankönyvkiadó.

Fóthi, Á. (2005). Bevezetés a programozáshoz. ELTE Eötvös Kiadó.

Fóthi, Á., & workgroup. (1995). Some concepts of a relational model of program-

ming. In L. Varga (Ed.), Proceedings of the fourth symposium on program-

ming languages and software tools (p. 434-446). Visegrád, Hungary.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2013). Data structures

and algorithms in Python. John Wiley & Sons.

Gregorics, T. (2010). Programming theorems on enumerator. Teaching Mathe-

matics and Computer Science, Debrecen, 8 (1), 89-108.

Gregorics, T. (2012a). Abstract levels of programming theorems. Acta Universi-

tatis Sapientiae, Informatica, 4 (2), 247-259.

Gregorics, T. (2012b). Analogous programming with template class library.

Teaching Mathematics and Computer Science, Debrecen, 10 (1), 135-152.

Gregorics, T. (2012c). Concept of abstract program. Acta Universitatis Sapien-

tiae, Informatica, 4 (1), 7-16.

Gregorics, T. (2013). Programozás 1-2. ELTE Eötvös Kiadó.

Horváth, G., & Zsakó, L. (Eds.). (2013-). Mester online feladatbank.

http://mester.inf.elte.hu. ELTE IK, NJSzT.

Princz, P. (2017). A computer study group for 12-18 yrs.

https://gitlab.com/users/princzp/projects.

Szlávi, P., & Zsakó, L. (2004). Módszeres programozás 19. programozási tételek.

ELTE Mikrológia sorozat.

References 241

ISTVÁN FEKETE

ELTE FACULTY OF INFORMATICS

3IN RESEARCH GROUP, MARTONVÁSÁR, HUNGARY

E-mail: fekete.istvan@inf.elte.hu

TIBOR GREGORICS

ELTE FACULTY OF INFORMATICS

E-mail: gt@inf.elte.hu

KINGA KOVÁCSNÉ PUSZTAI

ELTE FACULTY OF INFORMATICS

E-mail: kinga@inf.elte.hu

ANNA VESZPRÉMI

ELTE FACULTY OF INFORMATICS

E-mail: veanna@inf.elte.hu

(Received September, 2019)

