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Interdisciplinary Secondary-School
Workshop: Physics and Statistics
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Abstract. The paper describes a teaching unit of four hours with talented students aged
15-18. The workshop was designed as a problem-based sequence of tasks and was in-
tended to deal with judging dice whether they are regular or loaded. We first introduced
the students to the physics of free rotations of rigid bodies to develop the physics back-
ground of rolling dice. The highlight of this part was to recognise that cubes made
from homogeneous material are the optimal form for six-sided objects leading to equal
probabilities of the single faces. Experiments with all five regular bodies would lead
to similar results; nevertheless, in our experiments we focused on regular cubes. This
reinsures that the participants have their own experience with the context. Then, we
studied rolling dice from the probabilistic point of view and–step-by-step–by extending
tasks and simulations, we introduced the idea of the chi-squared test interactively with
the students. The physics and the statistics part of the paper are largely independent
and can be also be read separately. The success of the statistics part is best described
by the fact that the students recognised that in some cases of loaded dice, it is easier to
detect that property and in other cases one would need many data to make a decision
with small error probabilities. A physical examination of the dice under inspection can
lead to a quick and correct decision. Yet, such a physical check may fail for some rea-
son. However, a statistical test will always lead to reasonable decision, but may require
a large database. Furthermore, especially for smaller datasets, balancing the risk of dif-
ferent types of errors remains a key issue, which is a characteristic feature of statistical
testing.
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Introduction

The general debate about statistical inference in statistics education

Statistical inference is known to be difficult. It goes back to the seminal

work of R. A. Fisher (Fisher, 1935/1971) and Jerzy Neyman and Egon Pearson

(Neyman, 1950, 1952).

Yet, as the curriculum in probability and descriptive statistics would miss the

final purpose of the methods developed and thus the students would get a biased

perception of probability, some argue that statistical inference should be taught

and the research should focus on simplified learning paths through the topic to

make sense of the methods in an understandable way.

Borovcnik (1996) proposes simulation, non-parametric methods, and resam-

pling methods for simplifying the teaching of methods and the logic of statistical

inference. This idea was also taken up by Cobb (2007), which led to a new strand

of research in statistics education, which may be called ”Informal Inference”.

Biehler (2014) discussed the difficulty of informal ways of teaching statistical in-

ference as there are distinct schools of statistical inference and they are related

to diverging interpretations of probability. Borovcnik (2017) reminded the com-

munity to reconsider some drawbacks of a pure informal inference approach as

it is advocated, e.g., in Garfield and Ben-Zvi (2008), or Harradine et al. (2011).

Burrill and Biehler (2011) summarise fundamental statistical ideas in the school

curriculum but miss all considerations about the so-called Bayesian controversy

(Barnard, 1967) on statistical inference. There has been a great and fierce debate

on teaching statistical inference around the late 1990’s. Moore (1997a, 1997b)

made a plea for teaching the significance test (according to R. A. Fisher) while

Lindley (1997) and Albert (1997a, 1997b) pleaded for including Bayesian ele-

ments. In this line of educational debate, Vancsó (2009; 2013) developed ideas

for a parallel approach of both schools of statistical inference in order to make

the restriction of each more clearly visible.

Batanero and Borovcnik (2016) describe in details examples of an informal

approach towards statistical inference, which resume both Fisher’s significance

test and the test policy of Neyman and Pearson (and introduce also Bayesian

ideas).

The way, statistical tests are introduced here, orientates on the significance

test and approaches such as Borovcnik (2014) but at the same time develop the

situation towards the Neyman-and-Pearson test policy with considerations of sta-

tistical errors of two types (see also Borovcnik, 2015). The approach is similarly
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decision oriented as suggestions that go back to Riemer (1991) who experimented

with a variety of dice that are visibly distinct from the usual cubic form.

The design of the workshop

Inferential statistics is not part of the secondary-school curriculum in Hun-

gary. Present plans to reform the national curriculum include the introduction

of basic inferential statistics. Yet, these plans are directed only to those students

who aim to achieve an advanced level graduation in Mathematics. Currently, a

Working Group of the Hungarian Academy of Sciences (HAS) is exploring the

possibilities of such a reform with the additional aim to design feasible learning

paths and tasks. One of the main obstacles of introducing inferential statistics to

high-school students is that inferential statistics has been part of teachers’ edu-

cation at university level only for around a decade; before that, students met this

topic very briefly along their studies. Teachers study probability at the university

since 1959, a minor part of which addresses issues on hypothesis testing. De-

scriptive statistics is included in the pre-service education since the early 2000’s

though rather from a didactic than from a mathematical point of view. Also,

since the topic is not part of the high-school curricula, teachers generally lack

experience in actually teaching it.

Because of teachers’ background, the aim of the present HAS project is to de-

sign a way of introducing inferential statistics in high-school curricula acceptable

both for students and their teachers. However, according to preliminary, informal

inquiries, teachers can be expected to have a highly dismissive attitude towards

the introduction of the new material only because they are unfamiliar with the

topic (not counting the beliefs about the mathematical adequacies or difficulties

of the field). This also makes it clear that one of the main issues will be in-service

training of teachers.

One of the first steps in designing new material was a workshop held for

students from age 15 to 18, to investigate how difficult it is for them to understand

the basics of hypothesis testing. This workshop was an afternoon course for

secondary-school students and teachers interested in the topic; participation was

on a voluntary basis (Vankó, 2004). The workshop was jointly held by a physics

and mathematics teacher. Both parts of the workshop had the same significance.

The interaction of the two parts is very important, even though the presented

physical description can not explain all the details of the statistical behaviour.

With the interdisciplinarity of the workshop we also tried to attract students who
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were interested only in one of these subjects and make them interested in the

other one as well.

During the workshop a key problem on identifying irregular dice was intro-

duced and discussed. We chose this problem as it can be approached from a

physical as well a statistical point of view. We used regular and loaded dice

where the physical aspect was the investigation of the movement of the die while

the statistical aspect was how one can decide whether the die under scrutiny is

regular or loaded - a well-known problem in statistics. Neither the physics nor the

statistical aspects are part of the curriculum. The dice used in the course were

fabricated by a 3D printer. The graphs, statistical calculations, and simulations

were performed by Excel. The issues were first discussed from the point of view

of physics, then from that of mathematics.

A great advantage of a workshop of this type is that it provides enough time

to learn about the theoretical background; it also leaves space to perform several

experiments and software simulations. In this paper, we discuss the experiences

of the workshop.

Physical background: Rotating rigid bodies

The roll of dice is a sophisticated motion: free rotation in the air, then partly

flexible collisions, and landing and rolling on the ground before it stops with

one side face up. In case of regular dice, this complex motion guarantees that –

independently of how it was rolled – every side should turn face up with the same

probability. But in case of loaded dice, the motion is influenced by the physical

properties of the dice and the different sides attain different probabilities face up.

We might have the feeling that the easiest way to load dice is to make one side

heavier: then the opposite side will be face up with higher probability. But there

are some more sophisticated ways to load dice: for example, one can influence

the free rotation of the roll, too. In the workshop, the question “why a cube is

used?” was answered by an investigation of free rotation of rigid bodies.

To understand the free rotation of a rigid body first let us see a body rotating

around a fixed axis. On the left side of Figure 1, we can see the simplest model of

a statically unbalanced body. The center of mass makes a circular motion and the

counterforce pushes both bearings (b1 and b2) in one direction. On the right side

of Figure 1, the center of mass of the rotating body does not move; the resultant

force is zero. But the couple has a torque, which pushes the bearings b1 and b2

in opposite directions. This is the model of a so-called dynamically unbalanced
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Figure 1. Rotating around a fixed axis

body. (If a wheel of a car was either statically or dynamically unbalanced, the

bearings would be ruined, so the wheels have to be balanced with small lead pieces

on the rim.) Naturally, such an unbalanced body could not rotate around this

axis freely, i.e., without the bearings.

If we see a general rigid body rotating around an axis, the angular momen-

tum L of the body can be determined by summarizing the angular momentum

contributions ∆Li of every small ∆mi part of the body, as it is shown on the left

side of Figure 2.
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ω
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ΔLi
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Figure 2. Angular moment of a general rigid body

∆Li = ∆miri × vi = ∆miri × (ω × ri) , L =
∑

∆Li

For a general rigid body, the angular momentum vector is usually not par-

allel to the angular velocity vector; this is shown on the right side of Figure 2.
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The angular momentum vector rotates together with the body around the axis,

which implies forces in the bearings. So this body, similarly to the simple dynam-

ically unbalanced model, could not rotate around this axis freely, i.e., without the

bearings.

The angular momentum vector of the body can be written in the following

form:

L = Iω ,

where I is the inertia tensor, which is determined by the mass distribution of the

body:

I =

∣∣∣∣∣∣∣∣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

∣∣∣∣∣∣∣∣ .
It can be shown that for every body, there exists a co-ordinate system where

the inertia tensor is diagonal :

I =

∣∣∣∣∣∣∣∣
I1 0 0

0 I2 0

0 0 I3

∣∣∣∣∣∣∣∣ .
The axes of this co-ordinate system are the principal axes of the body, and

I1, I2 and I3 are the principal moments of inertia. If the body rotates around one

of these axes, the angular momentum vector is parallel to the angular velocity

vector, so it could be a free rotation. But from stability reasons, the free rotation

is possible only around the axes with the largest (more stable) and the smallest

(less stable) principal moments of inertia (and is not possible around the axis

with the medium principal moment of inertia).

In the workshop we demonstrated two simple experiments to show that ro-

tating bodies (a rod and a chain) ”chose” the axis with largest moment of iner-

tia (Härtlein, 2011a, 2011b).

The principal axes and the principal moments of inertia determine the inertial

ellipsoid of the body. The semi-principal axes of the ellipsoid are:

a =
1√
I1
, b =

1√
I2
, c =

1√
I3
.

The moment of inertia I around a general axis is determined by the ellipsoid:

r =
1√
I
,
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where r is the distance of the surface of the ellipsoid from its center along the

direction of the axis.

Let us investigate a die, which has the shape of a cube! It is relatively easy

to calculate the moments of inertia around the axes through the face centres. For

symmetry reasons they are equivalent: I1 = I2 = I3 = 1
6ma

2 (where m is the

mass of the cube and a is the edge length). It means that the inertial ellipsoid of

a cube is a sphere, and thus the moments of inertia around all axes (through the

center of the cube) are equivalent. The moment of inertia of a cube has spherical

symmetry, and so the cube can rotate freely around any axis through the center

of mass.

Therefore, a regular cube is an optimal dice: it rotates randomly around

every axis, there are no preferred rotations. In contrast, a cuboid, for example,

has a preferred rotation axis (where the moment of inertia is the largest), which

influences how the cuboid lands. Similarly, a weighted die has preferred axes, too,

and so the different sides will be face up with different probability.

Hypothesis testing: Are these dice regular?

As the participating students have never learnt about hypothesis testing be-

fore, we provided a general introduction about what hypothesis testing can be

used for. Agriculture, quality control, pharmaceutical, and sociological research,

for example, in all these fields hypothesis testing is used regularly. By examples

from different professional fields, student realise that this is something that they

probably will use later on in their profession.

We chose to use the goodness-of-fit test (chi-squared test) to show how hy-

pothesis testing works. This is a well-known test that is easy to understand,

and as such is taught at secondary-school level in countries including inferential

statistics in their high-school curriculum. Also, it fits to our task very well: it is

easy to experiment with loaded dice even in a classroom and it is easy to simulate

such experiments on a computer. We started by explaining the basics of hypoth-

esis testing using the problem of identifying the regularity of dice. We explained

how one can make correct or incorrect decisions and demonstrated the difference

between type-I and type-II errors (see Table 1 ).
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Our decision

We say We say

“Die is regular” “Die is loaded”

Null Type-I error (α),

Real hypothesis: Correct decision we incorrectly reject

world Die is regular the null hypothesis

(truth) Alternative Type-II error (β),

hypothesis: we incorrectly stay Correct decision

Die is loaded with the null hypothesis

Table 1. Classification of decisions in hypothesis testing

In Table 1, α and β are the conditional probabilities of type-I and type-II

errors:

α = P (type-I error) = P (we say “The die is loaded” | it is a regular die)

β = P (type-II error) = P (we say “The die is regular” | it is a loaded die)

To start with the goodness-of-fit test, we discuss the implication of the as-

sumption that it is a regular die (null hypothesis); we would expect equal fre-

quencies for each of the faces. Yet, we observe frequencies fi, which are different

from expectation. In the class, two different experiments were discussed whether

the die under inspection is regular or loaded; the results are in Table 2.

1 2 3 4 5 6

expected frequency 200 200 200 200 200 200

observed frequency 1 195 210 190 204 205 196

observed frequency 2 170 210 176 202 220 222

Table 2. Frequency table with data discussed

If the expected frequencies are very different from the observed frequencies,

we should suspect that the die is regular. The question we have to deal with is

“what does very different mean?” This question was raised by students, and that

made it very convenient to start to talk about the goodness-of-fit test.
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Before we presented the χ2-criterion, we illustrated the situation by a generic

table of observed and expected frequencies (see Table 3 ); note that for the null

hypothesis all probabilities are equal, i.e., pi = 1/6.

1 2 3 4 5 6

expected frequency np1 np2 np3 np4 np5 np6

observed frequency f1 f2 f3 f4 f5 f6

Table 3. Generic frequency table

The discrepancy measure of observed frequencies from expected ones under

the null hypothesis is:

χ2
observed =

r∑
i=1

(fi − npi)2

npi
.

This measure was motivated by a reference to squared distances, which are

often used in statistics; only here the denominator is modified and reflects some-

how a relative deviation. We can explain to students who are more proficient

in mathematics that χ2
observed is a value of a random variable with a sampling

distribution approximated by the chi-squared distribution with r − 1 degrees of

freedom. However, most students do not have the necessary background to un-

derstand what a random variable or a distribution function is. Such gaps in the

mathematical representation are very frequent in statistics as the mathematical

relations are complex.

In such cases, in teaching we have to fill the gaps by analogy or refer to

the phrase: “mathematicians can prove that”. This type of “argument” is often

used in countries where the goodness-of-fit test is part of the secondary-school

curriculum (Blythe et al., 2012, p. 233) and even in higher-education textbooks it

is unusual to go deeper into the mathematical background (Walpole et al., 2012,

p. 372) – usually, it is only taught how you can make a decision after obtaining

the chi-squared value.

As we had motivated and well-equipped students in the workshop, we dis-

cussed a little about distributions in general and we explained that if the die is

regular (null hypothesis, H0 is true), then χ2
observed is a value of a random variable,

which can be approximated very closely by the chi-squared distribution with a 5

degrees of freedom (Figure 3 ).
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Figure 3. χ2 distribution with 5 degrees of freedom

α χ2
critical

0.100 9.2

0.050 11.1

0.010 15.1

0.001 20.5

Table 4. Critical values for χ2-test with 5 degrees of freedom

At the end of this session, we explained (and showed on the graph of the

chi-squared distribution) how unlikely it is that χ2
observed is greater than a certain

critical number (which depends on the probability of Type I error α), which is

based on the null hypothesis H0 being true (in Table 4 various α are shown with

the critical value related to it for 5 degrees of freedom).

Thus, making a decision is quite easy:

• We accept the null hypothesis H0 if χ2
observed ≤ χ2

critical; in this case we say

that the data complies with the assumption of the regularity of the die.

• We reject the null hypothesis H0 and accept the alternative hypothesis H1 if

χ2
observed > χ2

critical. this does not mean that we have proven that the die is

irregular; in this case, we just know that if the die is regular, the probability

of getting such a high value for χ2 is very small (it is less then α).

It is necessary to point out that in both cases there is a risk (chance) of

making a wrong decision. In the first case, when we accept the null hypothesis

(H0) but in fact the alternative hypothesis (H1) applies, we commit a type-II
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error; however as we do not know, which specific distribution applies for the die

under scrutiny, we can not calculate what the probability of that is. In the second

case, when we reject the null hypothesis H0, we do know what the probability of

making a type-I error is, as we have preselected α for our decision rule. This is

how hypothesis testing works.

After providing this theoretical background, we actually played with dice

that were either loaded or not. We formed eight groups (pairs of students). The

aim of the game was to ground the basic concepts and to experience the notions,

the logic, and the method of hypothesis testing by practical activities. Though

this method was introduced earlier (Lawton, 2009; Dambolena et al., 2009), our

approach places greater emphasis on the hands-on in-class experiment.

Each of the groups should find out whether their die was regular. Initially,

there was a fierce discussion about how many times the die should be thrown

in order to obtain sufficient evidence for the decision. After a while, there was

a compromise of 200 throws as it seemed convenient to have the same number

of throws in each group to facilitate the comparison of the results between the

groups. Each group recorded the results in a frequency table and later the data

sets were represented by bar charts.

Based solely on their data, they should decide whether their die is regular

or not. After each group had made their decision, they exchanged data and

decisions with the other groups. A class discussion followed about the quality

of their decision. The decision led to two groups changing their prior decision.

Finally, they were asked to perform the chi-squared test on their data. One further

decision (rejection) was not “confirmed” by the chi-squared result, so it had to be

changed. Remarkably, only one group had a significant chi-squared test rejecting

the null hypothesis of the regularity of the die. When the students reflected

whether they should change their decision in the light of the information of the

other groups, the discussion about the types of errors that can be committed was

revisited.

In the next unit, we used Excel with its random number generator to simulate

the scenario under the null hypothesis of a regular die. The software is more

flexible as it allows generating larger datasets. The impact of increasing sample

size was investigated. The students should experience that the pattern of the

observed frequencies (relative frequencies) stabilises with larger sample size but

can be erratic with smaller sample size. This general pattern can be illustrated

best by repeating the whole scenario of simulation looking on the corresponding

bar charts like one would look on an animated film.
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Some examples, which we generated in the workshop with a random number

generator assuming a regular die, are shown in Figure 4.

Figure 4. Histogram of a regular die rolled 60, 600 and 6000 times

With 60 rolls of a regular die, the histogram does not resemble a uniform

distribution (Figure 4, left); even in case of 600 rolls it looked uneven (middle).

However, rolling 6000 times seemed to reproduce the expected results (right).

Repetition of the scenario showed that the pattern is stable.

We also used simulation of various differently loaded dice. It was interesting

to examine, which histogram helped to make good decisions (Figure 5 ).

Figure 5. Histogram of differently loaded dice rolled 60 times

A heavily loaded die may easily be identified already after 60 rolls (Figure

5, left). On the other hand, neither a lightly loaded, nor a regular die can be

recognised so easily (middle and right). Based merely on this data, we easily

could come to a wrong decision about regular or slightly loaded die: for the

regular die, we may wrongly conclude that we are dealing with a loaded die

(type-I error) while for a slightly loaded die, we may wrongly conclude that the

die is regular (type-II error). It seemed very helpful, to run a lot of simulations

and make the students guess whether the simulated die is regular or not. In this

way the students could understand easily when they made a type-I or a type-II

error.
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Conclusion

In the early phases of the workshop, the students decided about the sample

size of 200 in order to judge whether the inspected die is regular or not. This

decision has been made with quite a fierce dispute between the students. From

the simulation scenarios later in the workshop, they learned that even samples of

600 throws of a regular or a loaded die could easily result in observed frequencies,

that lead to a wrong decision (based on the visual expression of the bar chart

or the formal chi-squared test). This experience helped the students to recognise

that in our case, with moderately weighted dice, the initial decision for 200 as

sample size was unsatisfactory: 200 is simply not enough for a proper decision

for a small type-I error (less than 0.05) to guarantee a reasonable type-II error

to recognise that the die is loaded. As we have demonstrated in our simulations,

a heavily loaded die reveals its properties already in a much shorter sequence of

rolls and can thus easily be detected by inspecting the relative frequencies.

The various scenarios of loaded dice, which we investigated by simulation, let

the students recognise that some cases of a loaded die are easy to detect (which

leads to the rejection of the null hypothesis). However, the question how to find

a suitable measure how far the distribution of a loaded die is from the uniform

distribution of a regular die was not easy for them to answer. Even if they could

refer to a chi-squared criterion (which was used earlier for a different purpose of

course), they judged the difference of two distributions by the maximum difference

of one face. Still we regard it as a positive result of the workshop that the students

explicitly referred to the fact that in some cases it is easier to decide whether the

die is loaded or not, and in other cases it is more complicated.

One great advantage of the workshop is that the students recognised that in

these cases it is much better to have more data to base the decision on. In this

way, the students became also aware of the fact that it is possible to decrease the

second error for a fixed level of the first error by increasing the database (i.e., by

increasing the sample size).

The class discussion touched also the issue that the types of error are antag-

onistic. That means that making the type-I error smaller causes the type-II error

to get larger. Or, being prepared to have a larger type-I error for the decision

rule makes the type-II error smaller.

Interestingly, only by the end of the classroom discussion, the students went

back to the physics part of the workshop. In the concluding unit, students started

to discuss whether there are physical experiments to check if whether the die is
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loaded or not. That led to the discussion of a ”floating” experiment, which gives

yields much faster answers for a specific loaded die than with data analysis could

provide but this way of inspection might fail for other types of loaded dice.

In this way, the study of the physics of rigid bodies clarifies that the homo-

geneous cubic form is the only one that guarantees a uniform distribution for six

sides (because of the properties of dynamic rotations). Yet, physics does not pro-

vide a solution for detecting loaded dice at least as a simple method for all cases.

On the contrary, the method of data analysis neglecting physical interrelations

provides a clear decision with guaranteed probability for errors of both types if

only enough data is collected.
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