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Balanced areas in quadrilaterals –
Anne’s Theorem and its unknown
origin

Hans Humenberger and Berthold Schuppar

Abstract. There are elegant and short ways to prove Anne’s Theorem using analytical
geometry. We found also geometrical proofs for one direction of the theorem. We do not
know, how Anne came to his theorem and how he proved it (probably not analytically),
it would be interesting to know. We give a geometric proof (both directions), mention
some possibilities – in more details described in another paper – for using this topic
in teaching situations, and mention some phenomena and theorems closely related to
Anne’s Theorem.
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Introduction

When generalizing a problem of elementary geometry some interesting ques-

tions appeared which led us – this emerged by investigations after finishing our

work – to the so called Anne’s Theorem. This is a fairly unknown theorem con-

cerning convex quadrilaterals which seems to go back to the French mathematician

Pierre-Leon Anne (1806 – 1850). We neither know how Anne has proven ”his” the-

orem at his time nor how he discovered it1, but the proof in Alsina, Nelsen (2010,

p. 116f), Honsberger (1991, p. 174f) is not a proof using arguments of elementary

1Our investigations to this topic (also asking competent experts) were not successful. None of

the asked colleagues even knew the theorem – also we did not know it up to a short time ago.
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geometry, and we assume that this idea was not the ”original” one of Anne. Fol-

lowing Honsberger the idea of this proof goes back to the Australian mathemati-

cian Basil Rennie (1920 – 1996), it uses an argument of linearity in a very smart

way involving ”calculations with coordinates” (analytical geometry). In several

publications that use geometry for dealing with the theorem only one direction of

Anne’s Theorem is proven, the easier one (Jobbings (2013), or https://www.cut-

the-knot.org/Curriculum/Geometry/NewtonTheorem.shtml). We did not find

references which use only elementary geometry and treat both directions of Anne’s

Theorem. Our proof is of that kind, and maybe also Anne’s thoughts were some-

how similar? It would be very interesting for us to know. There is also a theorem

called Newton’s Theorem (concerning quadrilaterals having an incircle) which is

a direct corollary of Anne’s Theorem. But also in this case we have no idea how

Newton came to this theorem and how he has proven it. Was this theorem really

discovered and proven by Newton? Or did somebody else (many years after New-

ton) ascribe this theorem to Newton? How had it been proven before the times

of Anne’s theorem (in case it existed already)? Many interesting questions in

the field of the history of mathematics arise. We don’t know the answers but we

would be highly interested in them. Due to this not clear connection to Newton

a special straight line that plays a very important role in the following sections is

also called ”Newton line” (up to a short time ago also this ”name” was unknown

to us).

The initial problem

Problem: In a square an arbitrary point I is connected with the vertices,

the resulting triangles are colored alternately gray and white (opposite triangles

have the same color). Then the area sum of the gray triangles equals the area

sum of the white ones (Figure 1).

Here on the one hand DGS (Dynamic Geometry Software) experiments are

easy to do and on the other hand the corresponding proof is easy to give. Very

similar is the question if one takes parallelograms instead of squares (first step of

generalizing). In a second step of generalizing one can examine the situation when

taking trapezoids or kites instead. The result will be: Here the point I cannot

be moved arbitrarily in the interior if it should lead to balanced areas. But at

least the points of some special lines seem to have the area balance property (the

midsegment of the trapezoid, the diagonal of symmetry of a kite). For details
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Figure 1. Square

concerning this topic in possible teaching situations (mathematics as a process,

problem solving, etc.) see Humenberger (2018).

These results fit well to Anne’s Theorem which deals with that problem in

the general case of convex quadrilaterals.

Anne’s Theorem

Anne’s Theorem: Let ABCD be a convex quadrilateral which is not a

parallelogram. Then all points I with the area balance property (between the

gray and white triangles) lie on the line g = MN through the midpoints of the

two diagonals.

One can see immediately that M and N have this property. (But: If these

two special points were not mentioned in the theorem it would be not so easy

to discover their special role in this problem; one would have to use heuristic

strategies.) Exploring the situation with DGS: One can construct with DGS the

straight line g := MN and fix the point I to g (see Figure 2); then one can observe

that the white and gray triangles have exactly equal area sums; if one ”releases”

I from g then the result will be: for I 6∈ g the area sums are different. This is an

impressive experimental confirmation of the theorem by using DGS, something

impossible up to some 20 years ago. Throughout this article we restrict ourselves

to interior points of the quadrilateral.

Proof: At first we prove the following statement by means of elementary

geometry: When moving the point I on g then the area sums of the gray and

white triangles do not change. As we know that the points M,N have the area



96 Hans Humenberger and Berthold Schuppar

Figure 2. The line g = MN

balance property we then will know that all points of g have this property, too. Let

I,K be two different points of g; we will show first that the two ”arrows” AIBK

and CIDK (see Figure 3: dotted and dashed) have the same area. Because M lies

on g the points A and C have the same distance h1 from g; analogously B,D have

the same distance h2 from g because also N lies on g. Both arrows consist of two

triangles with the same side IK; one of the triangles has the altitude h1 the other

one the altitude h2. Therefore, both arrows have the same area 1
2 · |IK| ·(h1+h2).

Figure 3. Two ”arrows” with equal area
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When we move point I to K then we can establish the following considerations

of ”increasing and decreasing” for the gray and white areas (see Figure 4a before

the motion, 4b afterwards; the color of triangles like ∆ARD or ∆AIB does not

change):

(1) The quadrilateral IRKS (overlapping of the arrows) was gray and stays gray.

(2) The triangles RKD and SKC change their color from gray to white.

(3) The triangles RIA and SIB change their color from white to gray.

Because the arrows have equal areas also the area sums of the remaining triangles

in (2) and (3) resp. are equal.

Figure 4. The gray area when moving the point I to K: before and
afterwards

For this first part of the proof one can find references that deal with the

same question (Jobbings (2013) or https://www.cut-the-knot.org/Curriculum/

Geometry/NewtonTheorem.shtml). But it remains to check: What happens for

points I 6∈ g?

As said above the area sums can easily be calculated if I moves on a diagonal;

this we can use – mutatis mutandis – also here. For I = M the area sums are

equal; moving I away from M on the diagonal AC the area sums will usually

change (see Figure 5). Because the triangle MID changes to gray, the triangle

MIB changes to white; the triangles usually have different areas because the

altitudes from B and D to MI and AC are different (except it happens that N

lies on AC; in this case we would take the other diagonal BD for the described

operation).
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Figure 5. Moving the point I away from M on the diagonal AC

The rest of the argumentation relies on an observation which is based on a

more general question: For which points I is the area sum of equally colored tri-

angles constant (not necessarily the half of the quadrilateral area)? The following

conjecture seems likely (it can easily be confirmed by DGS experiments): This

is the case when I moves on a line p which is parallel to g. The above proof for

I ∈ g holds also in this case if one considers the following (see Figure 3; one has

to interpret the figure dynamically): When moving the diagonal IK of an arrow

(”base side” of ”its” triangles) on a line which is parallel to g then the altitude

of the one triangle will increase the altitude of the other triangle will decrease by

the same amount. Thus, the sum of the altitudes and the area of the arrow will

not change. Both arrows (the not moved and the moved one) have the same area
1
2 · |IK| · (h1 + h2).

Result: If I does not lie on g then move I parallel to g onto a diagonal (the

area sums do not change); for I on a diagonal (say AC) we know (see above,

Figure 5): the area sums for I = M and I 6= M resp. are different! This

completes the proof.

Let us formulate the used and proven phenomenon in an own Theorem

(we did not find any references for it): Let ABCD be a convex quadrilateral

which is not a parallelogram and the line g = MN the straight line through the

midpoints M,N of the two diagonals. Then the loci of all points I with the

property |∆ABI|+ |∆CDI| = constant are the parallels to g.
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Other Theorems and phenomena connected to Anne’s Theorem

We would like to mention further observations from the DGS experiments

(easy to show if wanted) which we did not use in the proof above:

(1) The intersection points of g and the sides of the quadrilateral divide these

sides in the same ratio.

(2) The midpoint of the segment MN is the center of the quadrilateral (paral-

lelogram) built by the midpoints of the given quadrilateral’s sides.

(3) It can be an interesting problem of elementary geometry to show in a different

way that the midpoint mentioned in (2) has the balanced area property.

In most cases Anne’s Theorem is mentioned together with Newton’s The-

orem (see Figure 6): In a quadrilateral that has an incircle the center of the

incircle lies on the straight line through the midpoints M,N of the diagonals.

Figure 6. Newton’s Theorem

Taking into account the characteristic property of such quadrilaterals that

the sum of the lengths of opposite sides is equal, this theorem is a direct corollary

of Anne’s Theorem. But: How has Newton’s Theorem been proven before Anne’s

Theorem existed? Did it actually exist before? Here interesting questions arise

concerning the history of mathematics. But unfortunately, we do not have an

answer.

Due to this connection the straight line MN is often called Newton line.

It would be very interesting to find out in which context Newton came to this

theorem because usually such results do not arise without contexts. But such

information is hard to get. Even our oldest reference Serret (1855) says nothing



100 Hans Humenberger and Berthold Schuppar

about historical connections2. Possibly Newton himself never formulated this

theorem and somebody else (who? why?) ascribed this theorem to Newton many

years (decades? centuries?) later. A small hint is given by the following footnote

in Hofmann (1958, p. 200), originally in German, translated by the authors):

”The problem should be related to the determination of the locus of all centers

of ellipses inscribed a convex quadrilateral. I could not find such considerations

in the works of Newton.”

Figure 7. Inscribed ellipse

Indeed: When one inscribes an ellipse into a convex quadrilateral then its

center lies on the Newton line (see Figure 7; there are many ellipses inscribed a

convex quadrilateral; we do not deal with the question how to construct them).

It is possible to use Newton’s Theorem for a proof: ”compressing” the quadri-

lateral in the direction of the major axis (i.e. using a special axial affinity with

factor < 1; axis = minor axis) makes a circle out of the ellipse, the result is a

quadrilateral with an incircle; the involved properties are preserved in this pro-

cess, i.e. the center of the ellipse ”maps to” the center of the incircle and the

compressed Newton line of the quadrilateral is the Newton line of the compressed

quadrilateral. It is well possible that Newton reduced the problem of finding the

locus of the centers of inscribed ellipses in this way to dealing with quadrilater-

als that have an incircle. The ”core” of this ”solution” then may have become

independent in some way as ”Newton’s Theorem” and this in turn eventually

has become a corollary of Anne’s Theorem? We can observe this phenomenon in

mathematics quite often: When a problem is solved a crucial part of the solution

becomes independent of the initial context and ”starts a new life”; it can generate

2It is also possible that there is no ”original paper” of Anne in which he published ”his” theorem

including a proof. Maybe he had only some notices written by hand or only told orally his

”discovery” to some colleagues who published papers to this topic referring in the theorem the

name Anne (e.g. Serret (1855))?
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new terms and perceptions and even may become the core of a new theory (of

course, the famous examples are more substantial than this little one). In such

cases it is usually not easy to reconstruct the origins.

The high quality of geometrical problems often corresponds to the amount

in which they have close connections to other topics. This applies also to Anne’s

Theorem as shown by the following further properties of the diagonals’ midpoints

and the Newton line.

The straight line MN sometimes is also called ”Gauss line” because of Gauss’

Theorem: If the quadrilateral ABCD is no trapezoid then we consider the

intersection points E and F of the pairs of opposite sides (straight lines) AB,CD

and AD,BC resp.; let O be the midpoint of the line segment EF . Then the

points M,N,O lie on a common straight line.

Furthermore we want to mention Euler’s Theorem: In an arbitrary quadri-

lateral let e := |AC|, f := |BD|, g := |MN |; then the following relation holds:

a2 + b2 + c2 + d2 = e2 + f2 + 4 · g2 (see Figure 8)

Figure 8. Euler’s Theorem

Here we want to give ideas for a possible proof which is charming primarily

because of its structure: The general case is reduced by clever calculations to a

special case which is easy to prove (please consider missing details by your own).
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a) For parallelograms we have M = N , therefore g = 0; further a = c and b = d,

and the theorem reduces to 2 · (a2 + b2) = e2 + f2; this is easy to prove by

using Pythagoras’ Theorem.

b) Transferred to a triangle (half a parallelogram) the theorem of a) looks like

(in order not to destroy the notations of the quadrilateral we denote the

sides of the triangle with x, y, z; the median line to x is denoted by mx):

y2 + z2 = x2

2 + 2 ·m2
x.

c) For the general quadrilateral we apply b) three times: In ∆ABC and ∆ACD

resp. we have a2 + b2 = e2

2 + 2 · |BM |2 and c2 + d2 = e2

2 + 2 · |DM |2 resp.;

in ∆BDM we get |BM |2 + |DM |2 = f2

2 + 2 · g2. Addition of the first two

equations and inserting the third one immediately yields the theorem.

Concluding we mention an interesting problem connected to the midpoints of

diagonals in a quadrilateral (cf. Simon (1906, p. 156); see Figure 9a; for an older

reference cf. Brune (1841)): Draw a parallel line to the diagonal AC through N

and a parallel line to BD through M ; they intersect in E. Joining E with the

midpoints of the sides gives four sections with equal area!

Figure 9. Further interesting problems connected to Anne’s Theorem

A variation directly results in another problem: When joining E with the

vertices of the quadrilateral then not all parts have same area but still both pairs

of opposite triangles do have this property (see Figure 9b). This figure is built

up similarly to the initial problem concerning Anne’s Theorem but the question

is a different one. One could generalize in the following way: For which points I

is there a single pair of opposite triangles with equal area? Maybe the result is
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again a straight line and intersecting the two straight lines corresponding to both

possible pairs of opposite triangles one gets the point E?
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