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Abstract. In this paper we consider the combinatorial approach of the multi-angle for-
mulas sinnθ and cosnθ. We describe a simple ”drawing rule” for deriving the formulas
immediately. We recall some theoretical background, historical remarks, and show some
topics that is connected to this problem, as Chebyshev polynomials, matching polyno-
mials, Lucas polynomial sequences.
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Introduction

The funded knowledge of trigonometric functions are crucial in several stud-

ies. Moreover, for applications, the deep knowledge of properties, relations and

identities are important, since the students should also be able to prove given

identities, or eventually to derive new relations. In spite of their importance, the

practice shows that students often face difficulties during dealing with trigono-

metric functions. These functions are somehow foreign for many students and

find it hard to manipulate with them. It is a hard didactic question how to make

students familiar with trigonometric functions in order to deal with them with

facility. Here, in this work we make an attempt into this direction. We would like

to add at least one little piece to this serious problem, as we present a simple idea

how to ”draw” the formulas for the expressions sinnθ and cosnθ, with n ∈ N.
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We hope, such a simple way to obtain the result, domesticates these formulas and

helps to memorize them, or at least gives an easy tool how to derive them fast

whenever they are needed in calculations.

Another motivation of this paper is to point out the use of combinatorics as

a tool, as a help for other areas. Unfortunately, the teaching of combinatorics is

mostly isolated, and the students may have the impression that combinatorics has

to be learned for its own sake. In the practice - according to the students -, many

teachers themselves tend to neglect this discipline. Obviously, combinatorics is

also important for applications: the most obvious example is the probability

theory which in my opinion can not be understood without having a sense of

combinatorial thinking, and is today so fundamental in every science, that it

is part of the curriculum in almost all areas, not only in specific mathematical

studies.

The example we present should show the students that combinatorial thinking

can help, and can make things easier. Moreover, it can be used! Used, also in

areas, where we would not expect.

A third point, that motivated to write this article is that the mathematics

behind the simple ”drawing” is really beautiful, deep mathematics, that connect

trigonometry, graph theory, and enumerative combinatorics, which is worth to

present for a wider audience.

Finally, we think that this is a beautiful example for concepts, objects that

arise in different areas in mathematics showing the wealth of their nature.

We emphasize, that the background should not be told for all the students,

but it could wake up the interest, and of course in this case the explanation is

expected.

The aim of this article is to wake up the interest, to broaden the view. For

this reason, we give an exhaustive description of the connecting mathematical

theories and also highlight historical backgrounds and we let the reader to decide

for which part how deep he or she is interested.

The outline of the paper is as follows. First, we recall the elementary way

to derive the formulas for sinnθ and cosnθ, the way how it is taught in the high

school. Next, we present the derivation of the formulas using complex numbers

and de Moivre formulas. After all, we present the ”drawing” rule. The back-

ground of the drawing rule is explained in the next sections: in Section 3 we

consider the relations to Chebyshev polynomials, in Section 4 we present the

combinatorial approach, revealing the strong connections to matching polynomi-

als. Finally, in Section 5 we describe the connection to the family of polynomials
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involving Fibonacci polynomials and present a simple example of the use of the

combinatorial approach for proving further trigonometric identities.

Multiple-angle formulas

Elementary approach

In high school the calculation of sinnx and cosnx is based on the addition

formulas

Proposition 1.

sin(α+ β) = sinα cosβ + cosα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ

Proof. Let a and b be two vectors of length 1:

a = cosαi + sinαj;

b = cosβi + sinβj,

with α > β. The scalar product of the two vectors can be calculated in two

ways: product of the length of the vectors and the cosine of the angle between

the vectors and as the sum of the products of the coordinates, respectively.

ab = 1 · 1 · cos(α− β) = cosα cosβ + sinα sinβ. (1)

The expression for cos(α+β) follows from (1) by setting −β instead of β and

from the fact that cosx is an even function, i.e., cos(−α) = cosα. Similarly, the

addition formula for sin(α + β) follows from (1), by setting −β instead of β and
π
2 − α instead of α, using the relation sinα = cos(π2 − α) and the fact that sinx

is and odd function, i.e., sin(−α) = − sinα. �

Clearly, setting α = β we obtain:

sin 2α = 2 sinα cosα and

cos 2α = cos2 α− sin2 α.

In order to express cos 2α as a function of cosα, we set sin2 α = 1− cos2 α:

cos 2α = 2 cos2 α− 1.
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Similarly, with 3α = 2α+ α we obtain for cos 3α:

cos 3α = (cos2 α− sin2 α) cosα− 2 sin2 α cosα

= cos3 α− 3 sin2 α cosα = cos3 α− 3(1− cos2 α) cosα

= 4 cos3 α− 3 cosα.

For sin 3α we get:

sin 3α = sin(2α+ α) = sin 2α cosα+ cos 2α sinα

= 2 sinα cos2 α+ (cos2 α− sin2 α) sinα = 3 sinα cos2 α− sin3 α

= sinα(3 cos2 α− (1− cos2 α)) = sinα(4 cos2 α− 1).

Continuing this way, with some calculations, we obtain for any n formulas for

cosnα and sinnα and it reveals that cosnα can be expressed as a polynom of

cosα and sinnα can be expressed as a product of sinα and a polynom of cosα.

In the next subsection we prove this fact using the de Moivre’s formula.

De Moivre’s formula

We switch to the in this context more usual notation for the angle θ, instead

of α. Recall that the Euler formula states

eiθ = cos θ + i sin θ, (2)

where i denotes the imaginarity unit with i2 = −1. The nth power of eiθ is the

de Moivre’s formula:

(eiθ)n = ei(nθ) = cosnθ + i sinnθ.

Otherwise, by the binomial theorem we have

(eiθ)n = (cos θ + i sin θ)n =

n∑
k=0

(
n

k

)
(i sin θ)k cosn−k θ.

(We use the notation bxc for the greatest integer that are less than x.) The real

parts of the two expressions are equal, hence, we have

cosnθ =

bn2 c∑
k=0

(−1)k
(
n

2k

)
cosn−2k θ sin2k θ. (3)
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We see, that in (3) only even powers of sin θ appear, which can be replaced by

even powers of cos θ:

sin2k θ = (1− cos2 θ)k =

k∑
j=0

(−1)j
(
k

j

)
cos2j θ. (4)

After subsitution and reindexing, we obtain

cosnθ =

bn2 c∑
j=0

(−1)j

bn2 c∑
k=j

(
n

2k

)(
k

j

) cosn−2j . (5)

shows that cosnθ is indeed a polynomial in cos θ. Similarly to (3),

sinnθ =

bn+1
2 c∑

k=1

(−1)k−1
(

n

2k − 1

)
cosn−(2k−1) θ sin2k−1 θ. (6)

Here, we see that the odd powers of sin θ appear. We need to separate the factor

sin θ before the substitution of (4).

sinnθ = sin θ

bn+1
2 c∑

k=1

(−1)k−1
(

n

2k − 1

)
cosn−2k+1

k−1∑
j=0

(−1)j
(
k − 1

j

)
cos2j

 .

(7)

The expression (7) implies that sinnθ
sin θ is also a polynom in cos θ. In the simpler

cases the de Moivre formula leads to a shorter calculation than the elementary

approach (using for instance the Pascal triangle for evaluating the binomial the-

orem).

e2iθ = (cos θ + i sin θ)2 = cos2 θ + 2i sin θ cos θ − sin2 θ

e3iθ = (cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

We have seen that the expressions cosnθ and sinnθ
sin θ are polynomials in cos θ.

These polynomials are the well-known and well-studied polynomials, the Cheby-

shev polynomials of the first and second kind. Section 3 is devoted to these

polynomials.

,,Drawing-rule”

Now we turn our attention to an easy and direct rule, how we can ”derive”

the formulas at once, using some simple pictures. The theoretical background of

the rule is described in Sections 3, 4, and 5.
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First, we consider the expressions for sinnθ. We take a path of length n and

list all matchings of the paths. We obtain a matching of a path if we select some

edges (denoted by bold and red in the figure (Figure 1)) such that two selected

edges do not share any endnodes. We associate to each isolated vertex (node that

is not attached to any selected edge) the weight 2 cos θ and for each selected edge

the weight −1. The weight of a path is the product of all the associated weights

(of all isolated vertices and selected edges.) Summing over all possibilities and

multiplying by sin θ we obtain the formula for sin(n+ 1)θ.

− −

−2cosθ cosθ

−12cosθ 2cosθ

−1 2cosθ 2cosθ

2cosθ 2cosθ 2cosθ 2cosθ

Figure 1. ,,Drawing” sin 5θ

For instance, for n = 4 we have five possibilities, see the following figure

(Figure 1). We have three possibilities: we do not select any edge, we select one

edge (that can be done three ways), or we select two neighboured edges. In the

first case, the associated weight is (2 cos θ)4, since all the four vertices are isolated.

As a next term, we obtain −3(2 cos θ)2, since one selected edge gives a factor −1,

while two isolated vertices give two 2 cos θ factors. Finally, in the case with two

selected edges, to each edge −1 is associated, hence, this matching has weight 1.

Hence, we have

sin 5θ = sin θ(16 cos4 θ − 12 cos2 θ + 1).

Our next ”drawing rule” determines a formula for cosnθ expressed as powers

of cos θ. Take a cycle of length n and list all matchings of the cycle. We associate

the weights similarly as in the case of a path. Finally, we sum all the possibilities
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Figure 2. ,,Drawing” cos 4θ

and divide by 2 to obtain the formula for cosnθ. The example in Figure 2 shows

how to get the formula for cos 4θ.

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1.

The formulas

In the previous subsections we have seen three methods to derive the expres-

sions for sinnθ and cosnθ, respectively. We can choose any method to obtain the

following results. We list here some of the formulas for small n.

cos 2θ = 2 cos2 θ − 1

cos 3θ = 4 cos3 θ − 3 cos θ

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1
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cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ

cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

The first few formulas for sinnθ are the following:

sin 2θ = 2 sin θ cos θ

sin 3θ = sin θ(4 cos2 θ − 1)

sin 4θ = sin θ(8 cos3 θ − 4 cos θ)

sin 5θ = sin θ(16 cos4 θ − 12 cos2 θ + 1)

sin 6θ = sin θ(32 cos5 θ − 32 cos3 θ + 6 cos θ).

In the next sections we focus on these polynomials, seeing how they arise in

different areas. The presentations of these connections should on one hand explain

why the ,,drawing rule” works, on the other hand wake up the interest for these

studies, see them in a wider context. In the last section we also show an example

how the ,,drawing rule”, the combinatorial approach can be used for advanced

studies of the polynomials.

The Chebyshev polynomials

Chebyshev polynomials of first and second kind are well-studied sequences

of orthogonal polynomials with many interesting properties and applications, for

instance in approximation theory. In this section we collected some well-known

basic facts about these polynomials that arise in several forms and ways in differ-

ent areas of mathematics.

Historical remarks

Pafnuty Chebyshev (1821–1894) was a Russian mathematician, professor and

a revered teacher in St. Petersburg. He has great contributions in the fields of

probability theory, statistics, number theory, mechanics. Chebychev had a pas-

sion for building models and machines of new kind. The Foot-Stepping Machine

was presented in the Paris World’s fair in 1878. (“Chebyshevs Foot-Stepping

Machine (MATH-Film 2008)”, 2008) One of his main interests was the theory of

mechanisms called linkages. Linkages were used to convert one type of motions

into another. His goal was to find a mathematical method for systematically

devising linkages to produce desired types of motions with high accuracy. This
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problem led Chebyshev to introduce and investigate the polynomials that were

named after him. This story is a beautiful example for the gift of Chebyshev, who

created from a seemingly simply setting a mathematical theory that reaches far

beyond the initial application.(Albert, 2009) Chebyshev considered actually the

following question in a paper of 1854. Let f be a function on [−1, 1]. Approximate

f by a polynomial with leading coefficient 1:

p(x) = a0 + a1x+ a2x
2 + · · · an−1xn−1 + xn.

Chebyshev defined a sequence of polynomials such that the norm

||p|| = sup
−1≤x≤1

|p(x)|

is minimized. mial of degree n− 1 Another interesting fact about the Chebyshev

polynomial of the first kind, Tn was conjectured first by Erdős (Erdős, 1939)

in 1939. He conjectured that among all the polynomials of degree n with real

coefficients and leading coefficient 1, satisfying ||p|| ≤ 1, Tn has the longest arc

length on the interval −1 ≤ x ≤ 1. Quite hard proofs were given after 40 years

independently by Kristiansen (Kristiansen, 1979) and Bojanov (Bojanov, 1982).

An important aspect of Chebyshev polynomials is that they are orthogonal

polynomials with respect to a certain inner product defined on a vector space of

functions from [−1, 1] to R. The study of orthogonal polynomials is today still

an active research field, and Chebyshev was the first who made investigations in

full generality on this topic.

Definition and properties of Chebyshev polynomials

For a non-negative integer n, the Chebyshev polynomials of the first kind,

Tn(x), respectively second kind, Un(x), of degree n is defined as follows. Given

any x ∈ [−1, 1], there is a unique angle 0 ≤ θ ≤ π such that x = cos θ. Then,

Tn(x) = cosnθ,

Un(x) =
sin(n+ 1)θ

sin θ
.

There is a simple connection between these two polynomials:

T ′n(x) = nUn−1(x). (8)

A crucial property of the Chebyshev polynomials are that they can be gen-

erated recursively. (This property implies for instance the orthogonality.) Let
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T0(x) = 1 and T1(x) = x. Then,

Tn+1(x) = 2xTn(x)− Tn−1(x); (9)

The first few polynomials are:

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

The recurrence relation for the Chebyshev polynomials of the second kind is

as follows:

U0(x) = 1; U1(x) = 2x; Un+1(x) = 2xUn(x)− Un−1(x).

The first few polynomials are:

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x2 + 1

U5(x) = 32x5 − 32x3 + 6x

U6(x) = 64x6 − 80x4 + 24x2 − 1.

Next, we describe how to use the recurrence (9) to calculate the coefficients of

the Chebyshev polynomial of the first kind in a Pascal-like triangle. Start with

1. We obtain the entries of the row from the previous row as follows. Decrease

the double of the entry in the previous row directly above the entry you wish to

calculate by the number left to it. More precisely, let tn,k denote the entry in

the nth row and kth column, then to obtain tn,k multiply the entry tn−1,k and

reduce it by tn−1,k−1. The coefficients can be find in the ascendent diagonal. The

following table (Table 1) shows the first values of the triangles. As an example

we underlined the coefficients of T5(x) and U5(x).

Similar method can be used for the coefficients of the Chebyshev polynomi-

als of the second kind. We mention here that Macdougall (Macdougall, 1999)

presented a Pascal-like triangle for the generation of the absolute values of the

coefficients of both Chebyshev polynomials simultaneously based on the adding
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1

1 -1

2 -3 1

4 -8 5 -1

8 −20 18 -7 1

16 -48 56 -32 9 -1

32 -112 160 -120 60 -11 1

1

2 -1

4 -4 1

8 -12 6 -1

16 −32 24 -8 1

32 -80 80 -40 10 -1

64 -192 240 -160 60 -12 1

Table 1. Calculations of the coefficients

formula of trigonometric functions combined with de Moivre formula. It is easier

to read the polynomials from this triangle off, if we know some basic facts about

them. The Chebyshev polynomial of the first kind, Tn(x), is a polynomial of

degree n, with leading coefficient 2n−1. The Chebyshev polynomial of the second

kind, Un(x), is a polynomial of degree n with leading coefficient 2n. It is true

for both sequences of polynomials, Tn(x) and Un(x), that they have only even

powers of x if n is even, and only odd powers of x, if n is odd. The roots of

the Chebyshev polynomials of the first kind are known as Chebyshev points in

approximation theory. Tn(x) = 0 if and only if cosnθ = 0. This is true, if

cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n.

Hence, we have

Tn(x) = 2n−1
n∏
k=1

(
x− cos

(
2k − 1

2n
π

))
, for n ≥ 1.

Similarly, we have a closed product form for the Chebyshev polynomials of the

second kind:

Un(x) = 2n
n∏
k=1

(
x− cos

(
k

n+ 1
π

))
, for n ≥ 1.

There are several identities involving Chebyshev polynomials. Here we mention

as an example the composition rule, which is a direct consequence of its definition

by the cosine function.

Tn(Tm(x)) = Tnm(x).

Clearly, the trigonometric identities and identities of Chebyshev polynomials go

hand in hand. We recall two examples:

sin(n+ 1)θ − sin(n− 1)θ = 2 sin θ cosnθ ⇐⇒ Un(x)− Un−2(x) = 2Tn(x)
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sin(n+ 1)θ − cos θ sinnθ = sin θ cosnθ ⇐⇒ Un(x)− xUn−1(x) = Tn(x).

Matching polynomials

We have seen in the drawing rule, that matchings of paths and cycles help us

to get the expressions for cosnθ and sin(n+1)θ
sin θ . In order to understand why this

works, one should be familiar with some fundamental ideas of graph theory and

enumerative combinatorics. Here, we give brief description about some simple

ingredients from these great disciplines (Shi, Dehmer, Li, & Gutman, 2017).

Historical remarks

After the introduction of the first graph polynomials by J. J. Sylvester in

1878, the theory of graph polynomials have been developed and have been proven

useful in discrete mathematics, and in several applications as in engineering, in-

formation sciences, mathematical chemistry, etc. The matching polynomial is

one of the graph polynomials that has deep-lying algebraic properties. The con-

cept of matching polynomials in graph theory were used first by E. Farrell in

1979 (Farrell, 1979), though these polynomials arose already before in theoretical

physics as a mathematical model for phase transition based on dimers (diatomic

molecules) on a lattice (Gutman, Milun, & Trinajstić, 1975). All the main results

were developed between 1970s and 1980s. One of the main results is that all zeros

of the polynomials are real-valued. This was first proven by C. J. Heilmann and

E. H. Lieb (Heilmann & Lieb, 1970). It has a very important consequence in the

theoretical physic dimer model mentioned above. Since for a phase transition a

complex valued zero is a condition, it followed that phase transition is not possible

in this model, hence, this model was abandoned.

Notations and definition

Let G be a simple graph, (no multiple edges, loops, or directed edges) with

vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}, so it has

n = n(G) = |V (G)| vertices and m = m(G) = |E(G)| edges. n is called the

order of the graph. A matching of a graph G is a set of pairwise disjoint edges

of G, and a k−matching is a set of k independent edges, edges that do not share

endvertices. Let m(G, k) denote the number of k-matchings. Clearly, m(G, 1) =

m and m(G, k) = 0 for all k > n
2 . It is convenient to set m(G, 0) = 1. The
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matching polynomial of a graph G of order n is defined as

M(G) = M(G, x) :=
∑
k≥0

(−1)km(G, k)xn−2k.

A more suggestive way (emphasizing its combinatorial nature and using the

usual notation of weights in enumerative combinatorics) to give this definition is

the following:

M(G, x) :=
∑
M

(−1)|M |xip(M),

where the sum is taken over all matchings of the graph G. Here ip(M) denotes

the number of isolated points of M and |M | the number of edges in the matching.

Clearly, the two definitions differ only in their forms.

Since m(G, k) = 0 for k > n
2 , M(G, x) is a polynomial in the variable x and

since m(G, 0) 6= 0, M(G, x) is a polynomial of degree n. Moreover, the polynomial

is monic.

Basic properties

The matching polynomial is a graph invariant, i.e., ifG andG′ are isomorphic,

then M(G) = M(G′). Moreover, if we denote by µ1 ≥ µ2 ≥ · · · ≥ µn the zeros of

the matching polynomial, which are all real numbers, it holds

n∑
j=1

µj = 0 and

n∑
j=1

µ2
j = 2m.

It is not an accident that the same formulas hold for the eigenvalues of graphs,

which are defined as the eigenvalues of the adjacency matrix of graphs. Namely,

the theory of matching polynomials can be embedded into spectral graph theory

(Shi et al., 2017).

Here, we want to emphasize the recursive calculation of matching polynomi-

als. It is clear, that if G consists of two (disconnected) components H1 and H2;

G ∼= H1 ∪H2, then

M(G) = M(H1)M(H2),

or generally for a graph G consisting of r components G ∼= H1 ∪ · · · ∪Hr:

M(G) =

r∏
j=1

M(Hj).
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So, for instance if the graph is the set of n isolated points, i.e., |E(G)| = 0, then

M(G) = xn. For the next results we need some more notations. If u is a vertex

of G we let G− u denote the graph obtained by deleting the vertex u and all its

incident edges. If e is an edge of G, then G− e is the subgraph of G obtained by

deleting the edge e but keeping all the vertices. If e = {u, v} then we write G− [e]

for G− u− v. The following relation is an easy but fundamental observation.

Proposition 2. For the number of k-matchings of a graph G, the following

recursion holds:

m(G, k) = m(G− e, k) +m(G− [e], k − 1). (10)

Proof. A set of k independent edges contains e or does not contain e. The

number of sets of k independent edges not containing e is clearly m(G − e, k),

while the number of those containing the edge e is the same as the number of

independent sets of k− 1 edges selecting from the graph obtained by deleting the

edge e, which number we denoted by m(G− [e], k − 1). �

A direct consequence of (10) is the following:

Proposition 3. Given a graph G, the matching polynomial satisfies:

M(G) = M(G− e)−M(G− [e]). (11)

Proof.

M(G) =
∑
k≥0

(−1)km(G, k)xn−2k

=
∑
k≥0

(−1)k[m(G− e) +m(G− [e], k − 1)]xn−2k

=
∑
k≥0

(−1)km(G− e)xn−2k

+ (−1)
∑
k≥0

(−1)k−1m(G− [e], k − 1)x(n−2)−2(k−1)

= M(G− e)−M(G− [e]).

Note, that |V (G− [e])| = n− 2. �

In particular, if v ∈ V (G) with degree 1, attached to a vertex u, (in particular

if e = {u, v} and v has no other neighbours), we have

M(G) = xM(G− v)−M(G− u− v). (12)
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Generally, if v ∈ V (G) and the neighbours of v are {u1, . . . , ud}, then

M(G) = xM(G− v)−
d∑
i=1

M(G− ui − v).

We mention two more interesting identities:∑
v∈V (G)

M(G− v) = M ′(G) and M(G) =
∑

v∈V (G)

∫ x

0

M(G− v)dx+M(G, 0),

where M(G, 0) is the value of M(G) at x = 0.

Matching polynomials of paths and cycles

We focus now on the matching polynomial of two simple graphs, the path

graph and the cycle graph. We let Pn denote the path graph with with V (G) =

{v1, . . . vn} and E(G) = {e|e = {vi, vi+1}, i = 1, . . . , n−1}. An n-cycle is denoted

by Cn, and defined by V (G) = {v1, . . . vn} and E(G) = {e|e = {vi, vi+1}, i =

1, . . . , n−1}∪{e = {v1, vn}}. According to (12) the matching polynomials of the

paths Pn, n ≥ 0 satisfy the recurrence relation

M(Pn) = xM(Pn−1)−M(Pn−2),

with the initial conditions

M(P0) = 1, and M(P1) = x.

The first few polynomials are:

M(P2) = x2 − 1

M(P3) = x3 − 2x

M(P4) = x4 − 3x2 + 1

M(P5) = x5 − 4x3 + 3x

M(P6) = x6 − 5x4 + 6x2 − 1

M(P7) = x7 − 6x5 + 10x3 − 4x

The case of n-cycle is immediate if we notice that for any edge e of Cn we have

Cn − e = Pn and Cn − [e] = Pn−2. After applying the recurrences (11) and (12),

we obtain the relation:

M(Cn) = M(Pn)−M(Pn−2)
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= [xM(Pn−1)−M(Pn−2)]− [xM(Pn−3)−M(Pn−4)]

= x [M(Pn−1)−M(Pn−3)]− [M(Pn−2)−M(Pn−4)]

= xM(Cn−1)−M(Cn−2).

The initial values are M(C1) = x, M(C2) = x2−2, and some further polynomials

are

M(C3) = x3 − 3x

M(C4) = x4 − 4x2 + 2

M(C5) = x5 − 5x3 + 5x

M(C6) = x6 − 6x4 + 9x2 − 2

M(C7) = x7 − 7x5 + 14x3 − 7x.

The recursions

The similarity between Chebyshev polynomials and matching polynomials of

paths and cycles is not an accident. The relation between them is precisely the

following:

Tn(x) =
1

2
M(Cn, 2x),

Un+1(x) = M(Pn, 2x).

We have seen that in both cases (Chebyshev polynomials and matching poly-

nomials) the recursive relation plays a key role and the above mentioned con-

nection can be proven for instance by the recursions. Sequences of numbers and

polynomials that fulfill such three term recurrences are studied in combinatorics,

algebra, geometry and combinatorics for their own sake. For instance, Fibonacci

polynomials are defined by the recursion

Fn+2(x) = xFn+1(x) + Fn(x)

for n ≥ 0 with F0(x) =, F1(x) = 1. The first few polynomials are:

F2(x) = x2 + 1

F3(x) = x3 + 2x

F4(x) = x4 + 3x2 + 1
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Setting x = 1, the formula reduces to the well-known Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 34, 55, 89, 144, . . . .

The same recursion with different starting values defines the Lucas polynomials

and sequence, respectively.

Ln+2(x) = xLn+1(x) + Ln(x)

for n ≥ 0 with L0(x) = 2, L1(x) = x. The first few polynomials are:

L2(x) = x2 + 2

L3(x) = x3 + 3x

L4(x) = x4 + 4x2 + 2

Ln(1) gives the Lucas numbers:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . .

Again, here we see also the analogue. M(Pn) and M(Cn) obey the same recur-

rence with different initial values. It is well known that the Fibonacci number

Fn+1 counts for instance the 1’s and 2’s which sums to n. Equivalently, (by a

straightforward bijection) the number of matchings of a path of length n, while

the Lucas number Ln counts the matchings of a cycle of length n. The connection

to our problem is quite obvious. Fibonacci numbers are one of the most studied

number sequences: around 100 identities involving Fibonacci numbers are known.

This wealth motivated several mathematicians to consider generalizations of Fi-

bonacci numbers. One line of such researches is the study of polynomials that

are generally defined by the recursion relation.

< n+ 2 >= x < n+ 1 > + y < n >,

for n ≥ 0. For instance, if < 0 >= 0 and < 1 >= 1 the first values are:

< 2 >= x, < 3 >= x2 + y, < 4 >= x3 + 2xy, < 5 >= x4 + 3x2y + y2

Varying the initial values, and special settings of x and y, the sequence reduces to

different important sequences (involving Chebyshev polynomials). We mention

here just some examples. For < 0 >= 0, < 1 >= 1, x = 2, y = −1 it reduces

to the non-negative integers < n >= n, for < 0 >= 0, < 1 >= 1, x = 1 + q,
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y = −q to the standard q-integers < n >= [n]q = 1−qn
1−q . For < 0 >= 0, < 1 >= 1,

x = 2, y = 1 the sequence reduces to the Pell numbers, that are known as the

denominators of the closest rational approximations to the square root of two:

0, 1, 2, 5, 12, 29, 70, 169, . . .. Setting < 0 >= 1, < 1 >= 2x, x− > 2x y = −1 we

obtain the Chebyshev polynomials of the second kind, while setting < 0 >= 1,

< 1 >= x, x− > 2x, y = −1 to the Chebyshev polynomials of the first kind.

We see that these sequences and polynomials are in strong connections, fall

under the same family.

We mention in this last section that one can use this combinatorial approach

for deriving and proving trigonometric identities as we see in a series of paper

of Benjamin and Quinn (Benjamin & Walton, 2009; Benjamin & Quinn, 2003;

Benjamin, Ericksen, Jayawant, & Shattuck, 2010). As a simple example we prove

the closed form of Un(x):

Proposition 4.

Un(x) =

bn2 c∑
k=0

(
n− k
k

)
(−1)k(2x)n−2k

Proof. The combinatorial interpretation tells us that this formula counts

the matchings of a path of length n such that every edge is associated with the

weight −1 and every isolated point with 2x. On the right side we see a sum,

where clearly k stands for the number of edges in the considered matching. So on

the right side we count the matchings according to the number of edges, and then

we sum over all possibilities from k = 0 to k = bn2 c. If a matching has k edges,

then n− 2k isolated vertices remain. (The weights show this situation (−1)k and

(2x)n−2k). The question is how many matchings with k edges are there? Consider

the first n−k vertices of the path and choose k vertices out of these. Insert (shift

one of the vertices n− k+ 1, n− k+ 2, . . . , n one after the other) one vertex after

each chosen vertex and mark the edge between the chosen and the inserted vertex

for the matching. �
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