
17/1 (2019), 59–72
DOI: 10.5485/TMCS.2019.0457

Square root in secondary school

Zoltán Matos

Abstract. Although in Hungary, for decades, the calculation method of the square root
of a real number is not in the mathematics curriculum, many of the taught concepts and
procedures can be carried out using different square root finding methods. These provide
an opportunity for students in secondary school to practice and deepen understand
the compulsory curriculum. This article presents seven square-root-finding methods,
currently teachable in secondary schools.
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Introduction

In mathematics education we first learn about numbers, second we get ac-

quainted with operations on them. After working out simple mental calculations,

we learn written methods used for complex operations. The first operations where

the result is not calculated by ourselves (we look it up in tables, or calculate it

by a calculator) is the square root. Later the demand for individual calculation is

lost, no student asks how to find the logarithm of a number with pen and paper.

Since the topic of square root is close to the four basic operations which we can

do using formal written methods, it comes into a lot of students’ mind if there

is a pen-and-paper method to calculate the square root of a number. As a high

school teacher I often wish that the students were as interested in compulsory

topics as in these ones for fun.

Copyright c© 2019 by University of Debrecen
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In this article we are going to show seven square root finding methods that

are suitable for secondary school students and by which we, beside working out

square roots, can improve skills and competences that are compulsory parts of the

national curriculum providing they are discussed at the appropriate time and in

the appropriate depth in classes or workgroups. There are several consequences

of this aim. First those square root finding methods that are beyond the level of

final exam are not discussed. Second, in each case those parts of the methods are

presented that can help to acquire the compulsory curriculum. Sometimes it is

the mathematical background of the given method or it is just a simple algorithm.

However, we always mention where the detailed proof can be found.

Why is it important for a teacher to know these kinds of methods? Accord-

ing to Gábor Tákacs: ”The acquisition of mathematical skills and competences

requires solution of several calculation exercises. This can become monotonous

since repeating an activity loses positive influence and motivation, rooted on the

activity itself, fades away. Obviously, ideally the subject of the activity, the mathe-

matical problem, has the function of motivation at the same time.” (Takács, 2006,

p. 3)

The following square-root finding methods satisfy these needs. So after pre-

senting these methods a list of skills and competences are given that can be

developed by finding square-root. On one hand it satisfies the students’ natural

curiosity, on the other hand the topic that should be taught can be practised in

different situations which can help its deeper understanding and it’s saving into

long-term memory.

Each technique is followed by an example. The numbers used here were

chosen to emphasize the properties of the given method. For example, in some

cases we compute the square root of five or six-digit numbers, in other cases we

have chosen a two digit number to make the calculation easier. In addition to

this, if we had calculated the square root of the same number in each case, the

reader would believe automatically that one method is better than the other one

since we get more exact result than in the other case while it can only be thanked

to a luckier choose.

These methods were tried out in Hungary, where the school system is divided

into two levels: eight-year primary school followed by a 3-year vocational school,

a 4-year vocational secondary school where vocational subjects and basic subjects

are taught, or a 4-year (5-year in special bilingual classes) secondary school that

prepares students for higher education. Mathematics is taught in each grade. At

the compulsory school final exam students should choose between two levels in
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Mathematics: standard level and higher level, which requires higher knowledge

and good problem-solving skills. Although it is possible to gain admission to

a lot of university faculties with both types of exams, in some cases the higher

level exam is compulsory. The practice of workgroups, where the development of

talented students takes place should be also mentioned. These are not compulsory

classes, so they are not restricted by the national curriculum. Students there can

hear about higher level topics or practise complex problems once or twice a week.

The following techniques can help students’ and teachers’ work at compulsory

education and workgroups as well.

János Szendrei classifies the results of mathematics research into three cat-

egories. Among them, ”The third category could be the category of enhancers

of practical efficiency. Teachers are delighted with the research that helps them

understand what they teach and give them ideas for teaching.” (Szendrei, 1993,

p. 17) We believe our work is in this category.

Finding square root by hand

The written method of finding the square root (like the other operations) was

part of the curriculum a long time ago, it was taught as an algorithm. However, it

is not advisable to show the proof to the students. We can find a demonstration

idea for students in ”idea why the algorithm is good1”.

The algorithm consists of the following steps:

Step 1: Group the numbers under the root in pairs on both sides of the

decimal point (the left-side group may be one-digit, on the right side 0 should be

written if needed).

Step 2: Find the integer part of the leftmost group’s square root, and write

it down after the equal sign. This will be the first number of the result.

Step 3: Subtract the square of this number from the first group, move the

second group down next to the difference.

Step 4: Double the already found root, write an unknown number to it, to

get the biggest number that is not bigger than the second number. The unknown

number is the next digit of the square root.

Step 5: Then repeat the third and the forth steps until you like. As difficult

this method seems in theory as simple it is in practise.

1Retrieved from http://villemin.gerard.free.fr/ThNbDemo/RacinCar.htm#marche
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Problem: Find
√

312 to one decimal place.√
3|12, 00|00|... ≈ ab, cd

12 ≤ 3 et 22 > 3. So a = 1

3− 12 = 2

2b · b ≤ 212. So b = 7 since 27 · 7 = 189 (and 28 · 8 = 224 > 212)

212− 189 = 23

34c ·c ≤ 2300. So c = 6 since 346 ·6 = 2076 (and 347 ·7 = 2429 > 2300)

2300− 2076 = 224

352c·c ≤ 22400. So c = 6 since 3526·6 = 21156 (and 3527·7 = 24689 > 22400)

Then
√

312 ≈ 17, 66 ≈ 17, 7.

Since this method requires only the four basic operations, it can be shown

even to 8th grade students as well. The main profit of using this method is that

two of the basic operations are worked out in writing and estimation which based

on my experiences is difficult for students, can be practiced.

Other advantages of this method is that the found decimal (unlike other

approximation methods) should not be corrected. With some practise it can be

easily learnt, and the calculation (till 3-4 digits) can be worked out quickly. The

method should be presented in secondary school as well if students are preparing

for a competition where calculators are not allowed to use. The algorithmic

structure of the method suits well to the concept of basic operations. Proof of

the algorithm is not worth discussing (unlike the long division). It is better if we

regard this method just a tool.

Finding square root with odd numbers’ sum (in French: Méthode
Du Goutte Á Goutte, The Dropping Method)

In Hungary this method is not widely known. It is based on the fact, that the

sum of consecutive odd numbers starting from 1 creates square numbers. This

fact is taught in secondary schools. Like in previous case it is not worth discussing

the proof of the algorithm described in ”Root extraction technique2”.

The steps of the method:

Step 1: The given number is grouped into pairs on both sides of the decimal

point (the leftmost group may be one-digit).

2Retrieved from http://fracademic.com/dic.nsf/frwiki/1608983#Preuve de l.27algorithme
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Step 2: From the leftmost group we subtract the odd numbers starting from

one (1, 3, 5 ...) until we get a non-negative number.

Step 3: The result of subtraction gives the first digit of square root.

Step 4: Take the last subtracted odd number, add one, multiply it by 10 and

add 1.

Step 5: Put the next number group to the difference we have got in step 2.

Step 6: From this number subtract the consecutive odd numbers starting

from the number got in step 4 until we get a non-negative number.

Step 7: The result of subtractions gives the next digit of square root.

Continue this process as long as you like (put 00 to the next number group

if needed) to find the next digit. If in step 3 after subtraction the difference is 0

and there are only 0 digits in the number we stop and we put as many zeros to

the square as the number of the remaining number groups. If we can compute

0 subtraction, we deduct the number got in step 4 by 2, and we regard it as the

last used odd number.

Problem: Find
√

715 expressed to one decimal place.

Step 1: We split the number: 7|15

Step 2: 1 + 3 = 4. We approximate 7 with this (since 1 + 3 + 5 > 7). Since

this is a two-term sum,
√

715 ≈ 2a.

Step 3: 7− 4 = 3, so we approximate 315.

Step 4: Since (3 + 1) ·10 + 1 = 41, 315 is approximated by this sum 41 + 43 +

45 + 47 + 49 + 51 = 276. Since it is a six-term sum, the next number of the root

is 6, so
√

715 ≈ 26.

Step 5: (Repetition of Step 3.): 315− 276 = 39, so we approximate 3900.

Step 6: (Repetition of Step 4.): Since (51+1)·10+1 = 521, the approximation

of 3900 is 521+523+525+527+529+531+533 = 3689. Since it is a seven-term

sum,
√

715 ≈ 26, 7.

Step 7: (Repetition of step 3.): 3900− 3689 = 211, so we try to approximate

21100.

Step 8: (Repetition of step 4.): Since (533 + 1) · 10 + 1 = 5341, so 21100 is

approximated by 5341 + 5343 + 5345 = 16029 sum. Since it is a three-term sum,√
715 ≈ 26, 73.

Step 9: Then expressed to one decimal place
√

715 ≈ 26, 7.

The method is interesting, but it is not really suitable for daily use. How-

ever, it really helps the development of algorithmic thinking, acquisition of longer

algorithms, practice of basic operations, or (with small modifications) revision of
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the sum of consecutive terms of an arithmetic sequence. Due to this and to the

complexity of the method it is suitable rather for 12th grade students.

Finding square root with continued fractions

Rafael Bombelli (1526-1572) Italian mathematician in his book called

L’Algebra published in 1579 (Figure 13) finds the square root of 13 with infi-

nite continued fractions (∗).

Figure 1. The title page of Bombelli’s work

√
13 = 3 + x (0 < x < 1) (∗)

Squaring both sides: 13 = 9 + 6x + x2, from where 4 = x(x + 6)

4

6 + x
= x

13 = 3 +
4

6 + 4
6+ 4

6+...

3source: http://www-history.mcs.st-and.ac.uk/
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If we calculate the value of each fraction we get the following sequence con-

verging to
√

13 3; 3 + 4
6 = 3, 6; 3 + 4

6+ 4
6

= 3, 6; 3 + 4
6+ 4

6+ 4
6

= 3, 60;

3 + 4
6+ 4

6+ 4
6+ 4

6

≈ 3, 6055045872.

For comparison (using calculator)
√

13 ≈ 3, 605551275, so the fifth term of

our sequence creates the value of
√

13 correct to four decimal place. We note that

for a less lucky number the convergence is not so fast.

It is important to point out that Bombelli’s continued fraction defines a se-

quence that converges to
√

13. However, it does not mean that it is the only

sequence with this property. It is also important to make the students aware

of the fact that finding a thing with a given property does not mean that we

have found all of them. (Remember the solution of an equation. Looking at the

equation and finding a root do not mean that we have found all the roots.) With

Euler’s (1707-1783) method we can easily create another sequence converging to√
13. If x =

√
13, then x2 = 13 adding x to both sides :

x2 + x = 13 + x

x(x + 1) = (x + 1) + 12

x = 1 +
12

1 + x
√

13 = 1 +
12

2 + 12
2+ 12

...

The sequence we get: 1; 7; 5
2 = 2, 5; 31

7 ≈ 4, 43; 61
19 ≈ 3, 21; 77

10 ≈ 3, 85.

The general description of the method with its proof which is suitable for

secondary school workgroups is in work of Gergely (1973) and Bombelli.

According to my experiences it is useful to show this method to students

in 9th grade when we teach algebraic fraction. It breaks the monotony of the

lesson, we can answer students’ frequently asked question (What is it good for?)

by this so it might give some meaning to the existence of the continued frac-

tions for them. While using Bombelli’s method we come across different topics

from the curriculum like estimation (in certain classes the strictly monotonous

root functions can be mentioned), restrictions on variables, square of a two-term

sum, solving equations, factorising, then the calculation of the continued frac-

tions. During calculation we can put down the base of the terms like error term,

convergent sequence, rates of convergence, oscillating sequences.
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In workgroups we can mention that with the help of this method we can

estimate the value of irrational numbers through sequences of rational numbers.

In classes specialised in mathematics where we, in Hungary, are allowed to choose

an optional topic, it is suitable for an introduction of abstract algebra or measure

theory to point out that the rational number set is not complete (there is non-

convergent Cauchy-sequence on Q).

Finding square root with Gauss Mean

The arithmetic and geometric mean as well as the ration between them

are an integral part of the secondary school curriculum. Gaussian means (e.g.

arithmetic-geometric, geometric-harmonic, etc.) are less known while harmonic-

arithmetic is suitable for defining a sequence converging (fairly quickly) to
√
a.

Let 0 < a < b be given real numbers, xn, yn are sequences to which

x1 = a, y1 = b, xn+1 =
2xnyn
xn + yn

, yn+1 =
xn + yn

2
(n ∈ N+)

In Lajkó’s and Urbán’s work (Lajkó, 2006; Urbán, 2004) there is the proof of

that lim
n→∞

{xn} = lim
n→∞

{yn} =
√
ab. The common limit of these sequences is

called the harmonic-arithmetic mean of a and b numbers. The proof is not over

the expectations of the higher level final exam, so it can be presented on elective

courses or on workgroups for talented students.

Problem: Define a an sequence converging to
√

40. Give the first seven

terms of the sequence.

a1 = x1 = 5

a2 = y2 = 8

a3 = x2 =
2 · 5 · 8
5 + 8

=
80

13
≈ 6, 1538462

a4 = y2 =
5 + 8

2
=

13

2
= 6, 5

a5 = x3 =
2 · 8013 ·

13
2

80
13 + 13

2

=
2080

329
≈ 6, 322188

a6 = y3 =
80
13 + 13

2

2
=

329

52
≈ 6, 3269231
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a7 = x4 =
2 · 2080329 ·

329
52

2080
329 + 329

52

=
1368640

216401
≈ 6, 324555

As a comparison (using calculator)
√

40 ≈ 6, 32455532. So the seventh term

of our sequence gives the value of
√

40 expressed to six decimal place.

Estimation using linear function approximation

This method is based on topics from 9th grade and can be discussed with

special products (factorising the difference of two squares), or with linear functions

or even with linear transformation as found in Pálfalvi’s work (Pálfalvi, 1990)

expressly written for the 12-14 years old children. It is clear from the above

examples that this method gives great opportunity to integrate the different fields

of mathematics in students’ mind.

The other advantage of this method is that it is also suitable for introduce

estimation and error calculation in workgroups, which can make the base of topics

in future education like the term linear interpolation.

Let’s start with the well-known special product: a2 − b2 = (a− b)(a + b).

Then a = b + a2−b2
a+b (∗), if a 6= −b.

So, if we are looking for
√
n2 + d where d ∈ R+, and n <

√
n2 + d < n + 1,

then from (∗) with substitution a =
√
n2 + d, b = n, we get√

n2 + d = n +
n2 + d− n2

√
n2 + d + n

= n +
d√

n2 + d + n
> n +

d

2n + 1

So, if the value of
√
n2 + d is approximated by n + d

2n+1 then the error is:

√
n2 + d− (n +

d

2n + 1
) =

d√
n2 + d + n

− d

2n + 1
<

d

2n
− d

2n + 1
=

d

2n(2n + 1)

Problem: Estimate the value of
√

75 with four decimal places.

√
75 =

√
64 + 11 ≈ 8 +

11

2 · 8 + 1
≈ 8, 6471

The error is less than 11
2·8·17 ≈ 0, 04.

Plotting the square root function on the appropriate interval (Figure 2) the

estimation and the error themselves can be presented nicely.
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Figure 2

From the similar triangles on the Figure 2 we get the above result since
y
d = 1

2n+1 , then y = d
2n+1 , so

√
n2 + d ≈ n + d

2n+1 .

It is important to point out that unlike previous ones it is not a classical

square root finding method where repeating the steps we get more and more

exact values, it is an estimation of the value of the square root.

Finding square root through solving equation with Newton-method

Finding the value of
√
a (a ∈ R+) can be regarded as finding the positive

root of f(x) = x2 − a function, that is why we can use the so called Newton (or

Newton-Raphson or Newton-Fourier) root finding method that was worked out

by Isaac Newton and which later was generalised and improved by Wallis, Joseph

Raphson and Thomas Simson.

If the method is used to f(x) = x2 − a function, first we find x0, where

0 ≤ x0 − 1 <
√
a < x0 and x0 ∈ Z. We determine the tangent line of f(x)

through x = x0 call it e1. Find the intersection of e1 with x axis (this is the

solution of a linear equation) denote by x1. We determine the tangent line of

f(x) that goes through x = x1 call it e2. Find the intersection of e2 with axis x

call it x2, and so on (Figure 3). The x1, x2, x3, ... sequence we have got converges

to the zero of function f(x) (in this case to
√
a).
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Figure 3

Problem: Estimate the value of
√

90 with the first two steps of the Newton

method.

Find the positive zero of f(x) = x2 − 90 function. We know 9 <
√

90 < 10.

The equation of the tangent line of y = f(x) curve through abscissa=10 is:

y = 20x− 190. It intercepts x axis at x = 9, 5.

The equation of the tangent line of y = f(x) curve through abscissa= 9,5 is

y = 19x− 180, 25.

The intercept of x axis is x = 180,25
19 ≈ 9, 4868.

For comparison
√

90 ≈ 9, 486832981 (using calculator).

The method is worth presenting on elective courses (or workgroups for 11th-

12th grade students) when they learn about equation of tangent line. The lesson

becomes more interesting if students can see that creating equation of a tangent

is not only the goal of an exercise, but it can be a tool for solving a problem also.

In addition to this, another field of usage of differential calculus can be presented.

When we generalise the method to find the zero of other types of functions,

the disadvantages of this technique appear (e.g. starting the iteration from too

far, we cannot get the appropriate sequence) and we have to discuss the function’s

complexity (from which side should we start the iteration?) which is less known

in secondary school.

Finding square root eith Newton (Babilonian or Heron) method

Most Hungarian textbooks and learning materials (e.g. all collections of

figures that are allowed to use in secondary school) connects the method based

on recursive sequences to Newton. However, it actually appeared in ancient times
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in Babilonian mathematics and was published in the first book of Metrica, Heron

of Alexandria’s work, found in 1896.

Take the following recursive sequence x0 = [
√
a], xk+1 = 1

2 (xk + a
xk

). As it

can clearly see from the proof in Sain’s work (Sain, 1986) {xn} converges really

fast to
√
a (xk+1 has twice as much correct place than xk.)

Problem: Find the value of
√

20 expressed to four decimal place.

x0 = [
√

20] = 4

x1 =
1

2

(
4 +

20

4

)
=

9

2

x2 =
1

2

(
9

2
+

20
9
2

)
=

161

36
≈ 4, 472222

x3 =
1

2

(
161

36
+

20
161
36

)
=

51841

11592
≈ 4, 472136

While (using calculator)
√

20 ≈ 4, 472136.

After examining the model, we can realize that this is actually a special case

of Newton’s iteration (That is why we call it Newton type square root finding

method.) The sequence we get xk+1 = xk − f(xk)
f ′(xk)

, where if f(x) = x2 − a, then

xk+1 = xk − x2
k−a
2xk

=
x2
k+a
2xk

= 1
2

(
xk + a

xk

)
.

This method–if we choose appropriate depth and place–can be a part of a

lesson or a workgroup topic.

The rate of convergence and the simplicity of the formula make this method

the most frequently used square root finding technique in Hungary.

Summary

The methods presented above are all fit into Hungarian national curriculum

and from my experiences I can state that they are suitable for motivating students

and supporting their learning. However, teacher knowing his or her class should

decide which method to choose. To help this decision the methods and the topics

from the curriculum related to them are collected.
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Method Topic from the curriculum

1. Finding square root in writing definition of square root

calculation (practice of basic oper-

ations)

2. Finding square root with odd

numbers’ sum

the sum of the first n terms of an arith-

metic sequence

3. Continued fraction method algebraic fractions

4. Square root with Gaussian mean special means

limit of a sequence

5. Estimation with a linear function linear function, similarity

6. Newton-iteration equation of tangent

convexity

7. Square root finding with Newton

(Babilonian or Heron) method

limit of a sequence
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