Search

Published After
Published Before

Search Results

  • Solar Tracker Platform Development for Energy Efficiency Improvement of Photovoltaic Panels
    1-6.
    Views:
    165

    Solar energy systems have emerged over the last decades as the cleanest and most abundant renewable energy resources available worldwide. Solar trackers are devices specially developed to enhance the energy efficiency of solar energy systems. This paper presents the design and implementation stages of a reconfigurable hardware technology-based two-axis solar tracker platform, specially conceived to improve the energy efficiency of photovoltaic (PV) panels. The main module of this platform is the NI-MyRIO ready-to-use development system built upon a high-performance Field Programmable Gate Array (FPGA) processor that controls the entire solar tracker unit. Optimal tracking of the sun movement and obtaining the maximal energy efficiency rate is achieved by simultaneous real-time controlling both the captured sunlight intensity and PV cell temperature magnitudes. In this way, a robust and versatile positioning system has been developed that performs a high precision and accurate tracking pathway. All the control algorithms are implemented there under the LabView graphical programming software toolkit. The final solution boosts in a useful and modularized tracking system that looks useful in a wide range of applications both in industrial and domestic project sites with different power scales.

  • LabView-based Modeling and Evaluation of Solar Photovoltaic Cells Energetic Efficiency
    1-6.
    Views:
    83

    As it is well known, an accurate knowledge of solar photovoltaic (PV) cell parameters from experimental data is of major importance for estimate their performances and to implement high energetic efficiency PV plants. In the last decade several solar cell models, respectively a high amount of software toolkits have been developed to evaluate their electrical behavior and performances. This paper is focused to introduce a LabView graphical programming language based solution to conveniently modeling, simulate, and evaluate solar PV cells energetic efficiency. By using their well known electrical equivalent circuits a fast and accurate PV simulator has been designed and implemented for research and energetic efficiency studies. The simulation models used has been validated through comparison of the obtained characteristics with the ones given by the manufacturers of PV panels. The computer-aided simulation results carried out are in a good agreement with the manufacturer’s catalogue data and the LabView-based program can serve as a very useful toolkit for engineers or researchers who require an accurate PV simulator and evaluate the performances of any photovoltaic module.

  • Development of Portable Measuring System for Testing of Electrical Vehicle’s Heat Energy Recovery System
    1-4.
    Views:
    72

    Nowadays the consumer society applies a huge amount of energy in many fields including the transportation sector. The application of the internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

Database Logos