
Rigged hand model for the Blender Game Engine

B. Katalin Szabó

Reactor Monitoring and Simulator Laboratory
Hungarian Academy of Sciences Centre for Energy Research

Budapest, Hungary,
Faculty of Informatics, University of Debrecen

Debrecen, Hungary
szabo.katalin@energia.mta.hu

Abstract — In a lot of virtual reality applications, it is
necessary to display and animate the user's hand in the virtual
world. In game engines, armatures are often used for modeling
parts or the whole of the human body. The process of creating
the armature and assigning parts of the mesh representing flesh
and skin to the “bones” of the armature is called rigging. After
performing rigging, moving the armature will result in the
movement of the mesh, thus the virtual hand (or other object) is
animated. The Blender Game Engine (BGE) is one of the few
open-source game engines available. The paper gives a detailed
description of the process of successfully building a complex
rigged hand model for the BGE and gives guidance for driving
this hand model with input data from the Leap Motion hand
movement detector. The rigged hand model has been
implemented, using the hand mesh from the LibHand library
and an armature specifically built to match the hand
representation of the Leap Motion. The model will be used for
navigation and interaction in the virtual model of a power plant
control room.

Keywords — rigging; hand model; Blender Game Engine;
Leap Motion

I. INTRODUCTION

In the world of virtual reality, the term “rigging” is used
for the preparations to move (animate) virtual objects. Often
these virtual objects are the whole or parts of the human body,
especially the human hand. Depending on the requirements of
use and the technical possibilities of the actual application (a
game, a virtual tour of an existing or imaginary place, an
instructional application etc.), the complexity of hand models
varies greatly. A rudimentary 3D hand model may consist of
five cuboids or cylinders representing the fingers. A complex
hand model is more realistic in shape, with sophisticated
coloring, it may even display small freckles on the skin of the
hand.

These virtual reality applications are often realized in
game engines, where the more complex animated hand models
are usually constructed from armatures, which can be regarded
as “skeletons” consisting of bones. These virtual bones and the
bone structure they belong to may quite closely resemble the
real bones of a real hand, or they may bear only a passing
resemblance to them. During animation, the bones themselves
are usually not displayed. Instead, “flesh” and “skin” (which
are – usually complex - meshes in the game engine), which

have been “glued” to them, are displayed. In this context,
rigging is the process of creating the armature and the
“gluing” (assigning parts of the mesh to particular “bones” of
the armature). After the rigging has been performed, moving
the armature will result in the movement of the mesh, thus the
virtual hand (or other object) is animated.

The Blender Game Engine is a component of Blender
(www.blender.org), a free and open-source 3D creation suite
(cf. [1], [2]) used for making real-time interactive content. The
version used by the author is 2.76b, under the Windows 10
operation system.

The Leap Motion hand tracking device
(www.leapmotion.com) was introduced in 2013. There have
been attempts to integrate it into the Blender Game Engine as
well. Simpler hand models, like the one published by Magnus
Benjes at www.magben.de/?h1=3d work fine, but it is not easy
to build for the BGE a more sophisticated, armature-based
rigged hand model with which it is possible to simulate (and
animate with Leap Motion data) a hand using a complex mesh
instead of objects of simple geometry like cuboids or
cylinders. Those people who tried that path have usually
reported failure and switching to another game engine, mostly
to Unity. The probable reason for the failures is the peculiarity
and complexity of the way armatures are handled in the BGE.
However, as Blender is completely free and open-source, and
most alternative tools are not, a solution in the BGE could
come in handy for those wishing to use open-source, free
tools. This paper gives a detailed description of the process of
successfully building such a hand model and gives guidance
for driving this hand model with input data from the Leap
Motion.

II. LEAP MOTION'S REPRESENTATION OF THE HAND

The Leap Motion is a relatively inexpensive but
reasonably accurate, optical-based hand detector device which
is connected with a cable to the USB port of a computer. It
uses infrared LEDs and cameras and gives quite detailed
position, orientation, length and width information about the
individual bones of the hand, and also some gesture detection
(fist etc.). It provides application programming interfaces
(APIs) for various programming languages. A feature list can
be found at blog.leapmotion.com/getting-started-leap-motion-
sdk/.

Fig. 1. The Leap Motion device [3]

The bones of the (right) human hand can be seen in Fig. 2
(with the palm facing the viewer).

Fig, 2, The bones of the human hand
(https://commons.wikimedia.org/wiki/File:Scheme_human_hand_bones-

en.svg)

Leap Motion's representation of the hand (including a part
of the armbone) is in Fig. 3.

 Fig. 3. Leap Motion's hand representation (adapted from

http://blog.leapmotion.com/getting-started-leap-motion-sdk/)

III. A STEP-BY-STEP GUIDE TO THE RIGGING

This section describes the main steps of creating a usable
rig for a relatively complex hand mesh in the Blender editor,
to be used later in the BGE with the Leap Motion hand
detector. Some familiarity with Blender's editor and the BGE
is necessary for understanding the details. There are code
samples (in Python which is used by the BGE) in the
Appendix. The method can be adapted for hand meshes other
than the one used here, and also for other hand movement
detectors.

The hand mesh chosen is the mesh in the Blender file
published at www.libhand.org (updates may be found at
github.com/libhand/libhand). For the mesh, a new armature
had to be constructed, to match the hand representation of
Leap Motion.

The rig is for the right hand. You will later be able to
derive the left hand from the right hand by mirroring the
armature.

The basic idea behind this particular rigging solution is
controlling the individual bones in the armature through Copy
Rotation constraints which can be set in the Blender editor and
will work in the BGE. For each bone, a cuboid of similar size
is created. When the BGE application runs, each cuboid will
get the orientation information for its corresponding bone
from the Leap Motion device (through Leap Motion's Python
API). Through Copy Rotation constraints, the orientation of
each bone will be exactly the same as the orientation of the
corresponding cuboid. However, due to the peculiarities of the
BGE (some constraints are not completely or correctly
implemented), these constraints will work properly only if the
orientation of the armature never changes. It should always
remain in an upright position (in a Z-up coordinate system),
and only the orientation of its bones may change. (It should be
noted that neither the armature itself, nor the bones can be
seen when the virtual reality application runs, only the mesh
“glued” to the bones of the armature is visible. Thus,
regardless of the theoretical orientation of the armature, the
bones will get the correct orientation. Consequently, the mesh
will be correctly deformed and moved.) The position of the
armature will change according to the position of the hand (as
detected by Leap Motion).

The difficult part is to make a usable rig for the hand mesh
so that the rest position of all of the armature's bones is the
default upright position (otherwise the Copy Rotation
constraints will not work correctly). The way to do it is first to
pose the armature bones normally, so that they match the hand
mesh that you use, then to do the rigging. After that, the
armature bones should be posed to an upright position (with a
script), By performing a trick with the modifier of the mesh,
you can set this default upright pose as the new rest pose,
without corrupting the rig. The resulting armature and the
mesh rigged to it will look strange, but the mesh, controlled by
the bones, which in turn are controlled by the orientation of
the cuboids, will be animated correctly during the BGE run.

The cuboids used for the Copy Rotation constraints may
have an additional function (provided that not only their
orientation but also their position is updated according to the

data taken from Leap Motion): if you need to handle collisions
in your application, these simple cuboids, made invisible, may
be used as a “shadow hand” which can collide with other
objects, while the more complex hand mesh is left out of
collision detection, thus conserving computer resources (this
trick is often used in 3D games).

After this introduction, let us see the actual steps of the
rigging.

A. Make an armature which fits your mesh

The way of creating armatures is described in Blender
tutorials. First create the correct bone structure. During this
first phase the exact bone lengths are not a priority, you should
care about the correct topology only.

The next phase is setting the correct bone lengths. To
facilitate this, you can make a run with the Leap Motion and
print out the measured bone lengths, and you can set the bone
lengths accordingly (manually or with a script).

For the mesh taken from LibHand, the armature in Fig. 4 has
been constructed.

Fig. 4. Hand mesh and armature

It must be noted that, apart from the very first bone (the
armbone), each bone has a “parent” bone to which it is
connected. To ensure this continuous topology, certain
“fictitious” bones had to be introduced, even though they have
no corresponding bone in the hand model of Leap Motion.
They connect the wrist position with the origins of the fingers.
These fictitious bones differ in one thing from the "real"
bones: they are set as non-deforming bones, so that the mesh
will not be “glued” to them. (All other bones should be set as
deforming bones.) The Inherit Rotation setting should be on
for all bones. The lengths of the fictitious bones can be
calculated from the end points of the connecting bones (which
you can obtain from a Leap Motion run).

The third phase is to pose the bones so that they match the
hand mesh as closely as possible. The posing can be aided by
posing your real hand and taking note of the orientation of the

bones as provided by the Leap Motion. You may use scripts
for this but you will probably have to adjust some bones
manually as well. This is usually an iterative process. Then
perform “Apply Rotation” (for mesh and armature) in the
Blender editor.

B. Zero all bone rolls

You may do this manually or with a script, in Edit mode
(see sample script in the Appendix).

C. Make the origin points the same for both armature and the
hand mesh

1) For each of these objects, set the origin to the object's
lowest point center:

In Edit mode, move the 3D cursor to the desired origin
point (to the point where the armature begins, the lowest round
point in Fig. 5). Press Shift+S and choose the option Cursor to
Selected.

Fig. 5. Setting the origin point

In Object mode, select one of these objects and press
ctrl/alt/shift C, then choose Set origin to 3D cursor.

Do the same for the other object.

2) In Object mode, position the hand mesh and the
armature so that their origin points occupy the same place:

Make the XYZ coordinates of the two objects the same, by
copying the coordinates of one into the other.

D. Temporarily upscale mesh and armature

This step is recommended because upscaled objects seem
to rig better (at least when parenting is used with automatic
weights). Make sure that no other object shares the space with
the upscaled objects. Do the scaling (e.g. by a factor of 100) in
Object mode, then apply scale.

E. Perform automatic assignment of mesh points to the bones

Parent the mesh to the armature: set Object Mode, select
the mesh, shift-select the armature, press ctrl/p and select the
“Armature Deform”, “With Automatic Weights” option.

F. Downscale the rigged armature

In Object mode, scale the armature (not the mesh) back to
its original size and apply scale.

G. Align all bones to vertical

This can be done with a script. First create an auxiliary
armature with one bone being in a vertical position (that is the
default). Then align each bone in the armature of the hand to
this new bone (you can find a sample script in the Appendix).

H. Make this pose the new rest pose

This subsection is based on
nixart.wordpress.com/2013/03/28/modifying-the-rest-pose-in-
blender/.

 In Object Mode, select your deformed hand mesh object.

 In the object’s Object Modifiers stack (denoted by the
spanner symbol), copy the Armature Modifier by pressing the
Copy button.

 Apply the first Armature Modifier (the top one), but
keep the bottom one. The latter will replace the old Armature
Modifier and will allow to pose your object with respect to
your new rest pose. At this point, the object will still be
deformed twice. That is because we need to apply the current
pose as the new rest pose.

 Select your armature and set Pose Mode.

 Select “Apply Pose as Rest Pose” in the Pose menu
(which you can invoke by ctrl/a). This will clear the double
deformation and put your object in your new rest pose.

I. Create cuboids

Create a cuboid object for each bone in the armature. All
cuboids should have a vertical orientation. If you want to use
these cuboids later for a “shadow hand”, then make the lengths
of the cuboids match the lengths of the armature bones.

J. Create Copy Rotation constraints

Set Pose mode. For each bone, create a Copy Rotation
constraint to drive the bone in the armature with the rotation of
the corresponding cuboid. The constraint subtype should be
World → Local with Parent.

You can set these constraints manually, but it is easier to
do it with a script (see Appendix).

IV. INTERFACING WITH LEAP MOTION

Our rigged hand model is ready, now we want to drive it
runtime in the BGE, with input from the Leap Motion device.
Our task is to set the position of the armature and the rotation
of the cuboids controlling the rotation of the bones.

A. Interfacing the BGE with the Python API of Leap Motion

The Python API of Leap Motion (Orion 3.2.0) uses Python
2.7, while Blender 2.76b uses Python 3.4. (Please note that
different Blender versions may use different Python sub-
versions.) Therefore, a Python wrapper has to be generated,
this can be done with the SWIG interface generator, using the
method described in
support.leapmotion.com/hc/en-us/articles/223784048

(the referenced page uses Python 3.3 but the method also
works for Python 3.4).

B. Driving the cuboids with Leap Motion data

As already mentioned, an example with a simple hand
model can be found at www.magben.de/?h1=3d. Its hand
model consists of simple geometric shapes.

For a complex, armature-based hand model to work, we
need detailed information from the hand movement detector.
Fortunately, Leap Motion provides the information about how
much the bones are rotated around their own longitudinal axis
(this rotation is called the “roll” of the bone in armatures). To
illustrate the importance of this, let us consider Fig. 6.

If we represent a finger with a simple cylinder, then the
above mentioned rotation will not matter. However, if we
make a fingernail on the cylinder (or “glue” a mesh, which
includes a fingernail, to the cylinder), then this rotation will
matter, as the fingernail will be visible.

Fig. 6. Finger models without and with fingernail

The y basis vector is one of the three orthonormal basis
vectors provided by the Leap Motion API (developer-
archive.leapmotion.com/documentation/python/api/Leap.Bone
.html). This vector is perpendicular to the longitudinal axis of
the bone, it can be visualized as originating from the center of
the fingernail and pointing outwards (in Fig. 6 the y basis
vector would point from the fingernail directly towards the
viewer). With the aid of this vector it is possible to set the
bone roll for each finger correctly. This holds for all bones
which have a representation in the Leap Motion hand model.

However, in our armature there are also fictitious bones,
for which we get no basis vectors from Leap Motion.

C. Calculating the orientation of the fictitious bones

The orientation of such a bone (as a vector) can be calculated
from its origin point and end point: the end of the armbone
and the start of the metacarpal bone (these data are provided
by Leap Motion). Thus we can set the orientation of the bone.
The roll of the bone does not matter because the bone has been
defined as a non-deforming bone, so no mesh (“fingernail”) is
“glued” to it.

V. CONCLUSION

The hand model which has been described above has been
tested in the BGE and it reasonably accurately follows the
user's hand movements, for the right and the left hand as well.

The use of such a hand model is especially perspectivic in
immersive virtual environments, with the user wearing a head-

mounted display and not seeing his/her real environment. In
such a situation, he/she cannot see the input devices, either,
and if these input devices require touching (like a keyboard, a
mouse, a game controller), this touch should be performed
either “blindly”, or a virtual representation of the input device
should be displayed in the virtual environment, and this would
usually require displaying a virtual model of the user's hand as
well. Other possible applications would use only the user's
hand as the “input device”: by controlling the virtual hand
with his/her real hand, the user could interact with objects in
the virtual space directly, and hand gestures could be used for
navigation and other actions as well (example: clenching the
hand into a fist could mean that the user wants to quit the
program). In these applications, it is also advisable to display
the virtual hand, to provide feedback for the user.

Potential fields of application are numerous, e.g.
visualization of virtual spaces like historical monuments [4],
gamelike applications used in medical rehabilitation [5],
instructional applications for teaching and providing
practicing opportunities for staff at a facility. The very first
application will belong to the latter category: the virtual hand
will be used for navigation and interaction in the virtual model
of a conventionally equipped nuclear power plant control
room [6]. The navigation will be performed by hand gestures.
The visual representation of the user's hand in the virtual space
provides feedback for the user in the navigation, and shows
the hand's position and orientation, relative to the physical
devices in the control room, for the interaction with these
devices. The interaction with the virtual models of physical
devices (switches and pushbuttons) of the control room can be
realized by colliding the virtual hand with these devices and
sensing pushing (of buttons) and turning (of switches) from
the dynamics of the hand movement. As haptic (tactile)
feedback devices are still in experimental phase, the feedback
about the collision could be visually provided or indicated by
audio effects. Thus staff could exercise and even experiment
in the virtual control room, without having to use the real
control room or a physical replica of it.

Acknowledgment
The author expresses her thanks to Dr. Gábor Házi, head

of the Reactor Monitoring and Simulator Laboratory of the
Hungarian Academy of Sciences Centre for Energy Research,
and to the leadership and the Scientific Committee of the
Hungarian Academy of Sciences Centre for Energy Research,
for making this work possible.

References
[1] Roland Hess: The Essential Blender: Guide to 3D Creation with the

Open Source Suite Blender, No Starch Press San Francisco, CA, USA,
2007

[2] John M. Blain: The Complete Guide to Blender Graphics: Computer
Modeling and Animation, 4th Edition, A K Peters/CRC Press,
September 2017

[3] Gennadiy Donchyts, Fedor Baart, Arthur van Dam, Bert Jagers: Benefits
of the use of natural user interfaces in water simulation, Proceedings of
the 7th International Congress on Environmental Modelling and
Software (iEMSs), June 15-19, San Diego, California, USA,

https://www.researchgate.net/publication/263655945_Benefits_of_the_u
se_of_natural_user_interfaces_in_water_simulations

[4] A. Gilányi, M. Bálint, R, Hajdu, S. Tarsoly, I. Erdős: A Visualization of
the medieval church of Zelemér, in 6th IEEE International Conference
on Cognitive Infocommunications, IEEE, 2015, pp. 449–453

[5] A. Gilányi, E. Hidasi: Virtual Reality Systems in the Rehabilitation of
Parkinson’s Disease, in 7th IEEE International Conference on Cognitive
Infocommunications, IEEE, 2016, pp. 301–305

[6] G. Házi, J. Páles: Virtuális vezénylő a paksi teljesléptékű szimulátorhoz
(Virtual control room for the full-scope simulator of Paks), Nukleon,
December 2013, in Hungarian,
http://nuklearis.hu/sites/default/files/nukleon/6_4_146_Hazi.pdf

Appendix: Python code samples
These code samples facilitate the creation of the rigged

hand in the Blender editor. They should be executed in
Blender's Python console.

Zeroing all bone rolls with script:

Set Edit mode, select all bones of the armature and run the
following script:

for bone in bpy.context.selected_bones:
bone.roll = 0

Aligning a bone's orienta�on to that of another bone:

The following code has been taken from
blenderartists.org/t/visual-transform-helper-functions-for-2-
5/500965#post1804788:

import bpy
from mathutils import Matrix, Vector
from math import acos

def get_pose_matrix_in_other_space(mat, pose_bone):
 """ Returns the transform matrix relative to pose_bone's current
 transform space. In other words, presuming that mat is in
 armature space, slapping the returned matrix onto pose_bone
 should give it the armature-space transforms of mat.
 TODO: try to handle cases with axis-scaled parents better.
 """
 rest = pose_bone.bone.matrix_local.copy()
 rest_inv = rest.inverted()
 if pose_bone.parent:
 par_mat = pose_bone.parent.matrix.copy()
 par_inv = par_mat.inverted()
 par_rest = pose_bone.parent.bone.matrix_local.copy()
 else:
 par_mat = Matrix()
 par_inv = Matrix()
 par_rest = Matrix()
 # Get matrix in bone's current transform space
 smat = rest_inv * (par_rest * (par_inv * mat))
 # Compensate for non-local location
 #if not pose_bone.bone.use_local_location:
 # loc = smat.to_translation() * (par_rest.inverted() *
rest).to_quaternion()
 # smat.translation = loc
 return smat

def set_pose_rotation(pose_bone, mat):
 """ Sets the pose bone's rotation to the same rotation as the given matrix.
 Matrix should be given in bone's local space.
 """
 q = mat.to_quaternion()
 if pose_bone.rotation_mode == 'QUATERNION':
 pose_bone.rotation_quaternion = q

 elif pose_bone.rotation_mode == 'AXIS_ANGLE':
 pose_bone.rotation_axis_angle[0] = q.angle
 pose_bone.rotation_axis_angle[1] = q.axis[0]
 pose_bone.rotation_axis_angle[2] = q.axis[1]
 pose_bone.rotation_axis_angle[3] = q.axis[2]
 else:
 pose_bone.rotation_euler = q.to_euler(pose_bone.rotation_mode)

def match_pose_rotation(pose_bone, target_bone):
 """ Matches pose_bone's visual rotation to target_bone's visual rotation.
 This function assumes you are in pose mode on the relevant armature.
 """
 mat = get_pose_matrix_in_other_space(target_bone.matrix, pose_bone)
 set_pose_rotation(pose_bone, mat)
 bpy.ops.object.mode_set(mode='OBJECT')
 bpy.ops.object.mode_set(mode='POSE')

You can copy the above code into the Python console.
Then, assuming that you want to align a bone named armbone
in the armature named Armature.006 to the vertical bone

named Bone in Armature.004, execute the following code in
Pose mode:

target_bone = bpy.data.objects['Armature.004'].pose.bones['Bone']
pose_bone = bpy.data.objects['Armature.006'].pose.bones['armbone']
match_pose_rotation(pose_bone, target_bone)

Crea�ng a Copy Rota�on constraint:

Assuming that you want to set a Copy Rotation constraint
for a bone named armbone in the armature named
Armature.006, and you want to constrain the bone's rotation to
the rotation of a cuboid named armbone_cuboid:

import bpy
obj = bpy.data.objects
objbone =
bpy.data.objects['Armature.006'].pose.bones['armbone'].constraints
objbone.new('COPY_ROTATION')
objbone['Copy Rotation'].target_space = 'WORLD'
objbone['Copy Rotation'].owner_space = 'LOCAL_WITH_PARENT'
objbone['Copy Rotation'].target = obj['armbone_cuboid']

