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Abstract  —  In  a  lot  of  virtual  reality  applications,  it  is
necessary to display and animate the user's hand in the virtual
world. In game engines, armatures are often used for modeling
parts or the whole of the human body. The process of creating
the armature and assigning parts of the mesh representing flesh
and skin to the “bones” of the armature is called rigging. After
performing  rigging,  moving  the  armature  will  result  in  the
movement of the mesh, thus the virtual hand (or other object) is
animated.  The Blender Game Engine (BGE) is one of the few
open-source game engines available. The paper gives a detailed
description  of  the  process  of  successfully  building  a  complex
rigged hand model for the BGE and gives guidance for driving
this  hand model  with  input  data  from the Leap Motion hand
movement  detector.  The  rigged  hand  model  has  been
implemented,  using  the hand  mesh  from the LibHand library
and  an  armature  specifically  built  to  match  the  hand
representation of the Leap Motion. The model will be used for
navigation and interaction in the virtual model of a power plant
control room.
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I.  INTRODUCTION

In the world of virtual reality, the term “rigging” is used
for the preparations to move (animate) virtual objects. Often
these virtual objects are the whole or parts of the human body,
especially the human hand. Depending on the requirements of
use and the technical possibilities of the actual application (a
game,  a  virtual  tour  of  an  existing  or  imaginary  place,  an
instructional application etc.), the complexity of hand models
varies greatly. A rudimentary 3D hand model may consist of
five cuboids or cylinders representing the fingers. A complex
hand  model  is  more  realistic  in  shape,  with  sophisticated
coloring, it may even display small freckles on the skin of the
hand.

These  virtual  reality  applications  are  often  realized  in
game engines, where the more complex animated hand models
are usually constructed from armatures, which can be regarded
as “skeletons” consisting of bones. These virtual bones and the
bone structure they belong to may quite closely resemble the
real bones of a  real  hand, or they may bear only a passing
resemblance to them. During animation, the bones themselves
are usually not displayed. Instead, “flesh” and “skin” (which
are – usually complex - meshes in the game engine), which

have  been  “glued”  to  them,  are  displayed.  In  this  context,
rigging  is  the  process  of  creating  the  armature  and  the
“gluing” (assigning parts of the mesh to particular “bones” of
the armature). After the rigging has been performed, moving
the armature will result in the movement of the mesh, thus the
virtual hand (or other object) is animated. 

The  Blender  Game  Engine  is  a  component  of  Blender
(www.blender.org), a free and open-source 3D creation suite
(cf. [1], [2]) used for making real-time interactive content. The
version used by the author is  2.76b, under the Windows 10
operation system.

The  Leap  Motion  hand  tracking  device
(www.leapmotion.com)  was  introduced  in  2013.  There  have
been attempts to integrate it into the Blender Game Engine as
well. Simpler hand models, like the one published by Magnus
Benjes at www.magben.de/?h1=3d work fine, but it is not easy
to  build  for  the  BGE  a  more  sophisticated,  armature-based
rigged hand model with which it is possible to simulate (and
animate with Leap Motion data) a hand using a complex mesh
instead  of  objects  of  simple  geometry  like  cuboids  or
cylinders.  Those  people  who  tried  that  path  have  usually
reported failure and switching to another game engine, mostly
to Unity. The probable reason for the failures is the peculiarity
and complexity of the way armatures are handled in the BGE.
However, as Blender is completely free and open-source, and
most  alternative tools are  not,  a solution in  the BGE could
come  in  handy  for  those  wishing  to  use  open-source,  free
tools. This paper gives a detailed description of the process of
successfully building such a hand model and gives guidance
for  driving this  hand model  with  input  data  from the Leap
Motion. 

II. LEAP MOTION'S REPRESENTATION OF THE HAND

The  Leap  Motion  is  a  relatively  inexpensive  but
reasonably accurate, optical-based hand detector device which
is connected with a cable to the USB port of a computer. It
uses  infrared  LEDs  and  cameras  and  gives  quite  detailed
position, orientation, length and width information about the
individual bones of the hand, and also some gesture detection
(fist  etc.).  It  provides  application  programming  interfaces
(APIs) for various programming languages. A feature list can
be found at blog.leapmotion.com/getting-started-leap-motion-
sdk/.



Fig. 1. The Leap Motion device [3]

The bones of the (right) human hand can be seen in Fig. 2
(with the palm facing the viewer).

 
                          

Fig, 2, The bones of the human hand
(https://commons.wikimedia.org/wiki/File:Scheme_human_hand_bones-

en.svg)

Leap Motion's representation of the hand (including a part
of the armbone) is in Fig. 3.

             
 Fig. 3. Leap Motion's hand representation (adapted from

http://blog.leapmotion.com/getting-started-leap-motion-sdk/)

III. A STEP-BY-STEP GUIDE TO THE RIGGING

This section describes the main steps of creating a usable
rig for a relatively complex hand mesh in the Blender editor,
to  be  used  later  in  the  BGE  with  the  Leap  Motion  hand
detector. Some familiarity with Blender's editor and the BGE
is  necessary  for  understanding  the  details.  There  are  code
samples  (in  Python  which  is  used  by  the  BGE)  in  the
Appendix. The method can be adapted for hand meshes other
than the one used  here,  and also  for  other  hand movement
detectors.

The  hand  mesh  chosen  is  the  mesh  in  the  Blender  file
published  at  www.libhand.org (updates  may  be  found  at
github.com/libhand/libhand).  For  the  mesh,  a  new armature
had  to  be  constructed,  to  match  the  hand  representation  of
Leap Motion.

The rig  is  for  the right  hand.  You will  later  be able  to
derive  the  left  hand  from  the  right  hand  by  mirroring  the
armature.

The  basic  idea behind  this  particular  rigging  solution is
controlling the individual bones in the armature through Copy
Rotation constraints which can be set in the Blender editor and
will work in the BGE. For each bone, a cuboid of similar size
is created. When the BGE application runs, each cuboid will
get  the  orientation  information  for  its  corresponding  bone
from the Leap Motion device (through Leap Motion's Python
API).  Through  Copy Rotation constraints,  the orientation of
each bone will be exactly the same as the orientation of the
corresponding cuboid. However, due to the peculiarities of the
BGE  (some  constraints  are  not  completely  or  correctly
implemented), these constraints will work properly only if the
orientation of  the armature never  changes.  It  should always
remain in an upright position (in a Z-up coordinate system),
and only the orientation of its bones may change. (It should be
noted that neither  the armature itself,  nor  the bones can be
seen when the virtual reality application runs, only the mesh
“glued”  to  the  bones  of  the  armature  is  visible.  Thus,
regardless  of  the theoretical  orientation of the armature,  the
bones will get the correct orientation. Consequently, the mesh
will  be correctly deformed and moved.) The position of the
armature will change according to the position of the hand (as
detected by Leap Motion). 

The difficult part is to make a usable rig for the hand mesh
so that the rest position of all of the armature's bones is the
default  upright  position  (otherwise  the  Copy  Rotation
constraints will not work correctly). The way to do it is first to
pose the armature bones normally, so that they match the hand
mesh  that  you  use,  then  to  do  the  rigging.  After  that,  the
armature bones should be posed to an upright position (with a
script), By performing a trick with the modifier of the mesh,
you can  set  this  default  upright  pose  as  the  new rest  pose,
without  corrupting  the  rig.  The  resulting  armature  and  the
mesh rigged to it will look strange, but the mesh, controlled by
the bones, which in turn are controlled by the orientation of
the cuboids, will be animated correctly during the BGE run.

The cuboids used for the  Copy Rotation constraints may
have  an  additional  function  (provided  that  not  only  their
orientation but also their position is updated according to the



data taken from Leap Motion): if you need to handle collisions
in your application, these simple cuboids, made invisible, may
be  used  as  a  “shadow hand”  which  can  collide  with  other
objects,  while  the  more  complex  hand  mesh  is  left  out  of
collision detection, thus conserving computer resources (this
trick is often used in 3D games).

After this introduction, let us see the actual steps of the
rigging.

A. Make an armature which fits your mesh

The  way  of  creating  armatures  is  described  in  Blender
tutorials.  First  create  the correct bone structure. During this
first phase the exact bone lengths are not a priority, you should
care about the correct topology only.

The  next  phase  is  setting  the  correct  bone  lengths.  To
facilitate this, you can make a run with the Leap Motion and
print out the measured bone lengths, and you can set the bone
lengths accordingly (manually or with a script).

For the mesh taken from LibHand, the armature in Fig. 4 has
been constructed. 

Fig. 4. Hand mesh and armature

It  must  be  noted  that,  apart  from  the  very  first  bone  (the
armbone),  each  bone  has  a  “parent”  bone  to  which  it  is
connected.  To  ensure  this  continuous  topology,  certain
“fictitious” bones had to be introduced, even though they have
no corresponding  bone in  the hand model  of  Leap Motion.
They connect the wrist position with the origins of the fingers.
These  fictitious  bones  differ  in  one  thing  from  the  "real"
bones: they are set as non-deforming bones, so that the mesh
will not be “glued” to them. (All other bones should be set as
deforming bones.)  The  Inherit Rotation setting should be on
for  all  bones.  The  lengths  of  the  fictitious  bones  can  be
calculated from the end points of the connecting bones (which
you can obtain from a Leap Motion run).

The third phase is to pose the bones so that they match the
hand mesh as closely as possible. The posing can be aided by
posing your real hand and taking note of the orientation of the

bones as provided by the Leap Motion. You may use scripts
for  this  but  you  will  probably  have  to  adjust  some  bones
manually as well. This is usually an iterative process.  Then
perform  “Apply  Rotation”  (for  mesh  and  armature)  in  the
Blender editor. 

B. Zero all bone rolls

You may do this manually or with a script, in Edit mode
(see sample script in the Appendix).

C. Make the origin points the same for both armature and the
hand mesh

1) For each of these objects, set the origin to the object's
lowest point center:

In  Edit  mode,  move the 3D cursor to  the desired origin
point (to the point where the armature begins, the lowest round
point in Fig. 5). Press Shift+S and choose the option Cursor to
Selected. 

Fig. 5.  Setting the origin point

In  Object  mode,  select  one  of  these  objects  and  press
ctrl/alt/shift C, then choose Set origin to 3D cursor.

Do the same for the other object. 

2) In  Object  mode,  position  the  hand  mesh  and  the
armature so that their origin points occupy the same place:

Make the XYZ coordinates of the two objects the same, by
copying the coordinates of one into the other.

D. Temporarily upscale mesh and armature

This step is recommended because upscaled objects seem
to rig better (at least when parenting is used with automatic
weights). Make sure that no other object shares the space with
the upscaled objects. Do the scaling (e.g. by a factor of 100) in
Object mode, then apply scale.

E. Perform automatic assignment of mesh points to the bones

Parent the mesh to the armature: set Object Mode, select
the mesh, shift-select the armature, press ctrl/p and select the
“Armature Deform”, “With Automatic Weights” option.

F. Downscale the rigged armature

In Object mode, scale the armature (not the mesh) back to
its original size and apply scale.



G. Align all bones to vertical

This can be done with a  script.  First  create an auxiliary
armature with one bone being in a vertical position (that is the
default). Then align each bone in the armature of the hand to
this new bone (you can find a sample script in the Appendix).

H. Make this pose the new rest pose

This subsection is based on 
nixart.wordpress.com/2013/03/28/modifying-the-rest-pose-in-
blender/.

   In Object Mode, select your deformed hand mesh object.

    In the object’s Object Modifiers stack (denoted by the
spanner symbol), copy the Armature Modifier by pressing the
Copy button.

    Apply the first Armature Modifier (the top one), but
keep the bottom one. The latter will replace the old Armature
Modifier and will allow to pose your object with respect to
your  new  rest  pose.  At  this  point,  the  object  will  still  be
deformed twice. That is because we need to apply the current
pose as the new rest pose.

    Select your armature and set Pose Mode.

    Select “Apply Pose as Rest  Pose” in the Pose menu
(which you can invoke by ctrl/a). This will clear the double
deformation and put your object in your new rest pose.

I. Create cuboids

Create a cuboid object for each bone in the  armature. All
cuboids should have a vertical orientation. If you want to use
these cuboids later for a “shadow hand”, then make the lengths
of the cuboids match the lengths of the armature bones. 

J. Create Copy Rotation constraints

Set  Pose  mode.  For  each  bone,  create  a  Copy  Rotation
constraint to drive the bone in the armature with the rotation of
the corresponding cuboid.  The constraint  subtype should be
World → Local with Parent.

You can set these constraints manually, but it is easier to
do it with a script (see Appendix).

IV. INTERFACING WITH LEAP MOTION

Our rigged hand model is ready, now we want to drive it
runtime in the BGE, with input from the Leap Motion device.
Our task is to set the position of the armature and the rotation
of the cuboids controlling the rotation of the bones.

A. Interfacing the BGE with the Python API of Leap Motion

The Python API of Leap Motion (Orion 3.2.0) uses Python
2.7, while Blender 2.76b uses Python 3.4. (Please note that 
different Blender versions may use different Python sub-
versions.) Therefore, a Python wrapper has to be generated, 
this can be done with the SWIG interface generator, using the 
method described in 
support.leapmotion.com/hc/en-us/articles/223784048 

(the referenced page uses Python 3.3 but the method also 
works for Python 3.4). 

B. Driving the cuboids with Leap Motion data

As  already  mentioned,  an  example  with  a  simple  hand
model  can  be  found  at  www.magben.de/?h1=3d.  Its  hand
model consists of simple geometric shapes.

For a complex, armature-based hand model to work, we
need detailed information from the hand movement detector.
Fortunately, Leap Motion provides the information about how
much the bones are rotated around their own longitudinal axis
(this rotation is called the “roll” of the bone in armatures). To
illustrate the importance of this, let us consider Fig. 6. 

If we represent a finger with a simple cylinder, then the
above  mentioned  rotation  will  not  matter.  However,  if  we
make a fingernail on the cylinder (or “glue” a mesh, which
includes a fingernail, to the cylinder), then this rotation will
matter, as the fingernail will be visible. 

Fig. 6. Finger models without and with fingernail

The y basis vector is one of the three orthonormal basis
vectors  provided  by  the  Leap  Motion  API  (developer-
archive.leapmotion.com/documentation/python/api/Leap.Bone
.html). This vector is perpendicular to the longitudinal axis of
the bone, it can be visualized as originating from the center of
the  fingernail  and  pointing  outwards  (in  Fig.  6  the  y  basis
vector  would point  from the fingernail  directly  towards the
viewer).  With the aid of this vector it is possible to set the
bone roll for each finger correctly.  This holds for all  bones
which have a representation in the Leap Motion hand model. 

However,  in our armature there are also fictitious bones,
for which we get no basis vectors from Leap Motion.

C. Calculating the orientation of the fictitious bones

The orientation of such a bone (as a vector) can be calculated
from its origin point and end point: the end of the armbone
and the start of the metacarpal bone (these data are provided
by Leap Motion). Thus we can set the orientation of the bone.
The roll of the bone does not matter because the bone has been
defined as a non-deforming bone, so no mesh (“fingernail”) is
“glued” to it.

V. CONCLUSION

The hand model which has been described above has been
tested  in  the  BGE and  it  reasonably  accurately  follows  the
user's hand movements, for the right and the left hand as well.

The use of such a hand model is especially perspectivic in
immersive virtual environments, with the user wearing a head-



mounted display and not seeing his/her real environment. In
such a situation, he/she cannot see the input devices, either,
and if these input devices require touching (like a keyboard, a
mouse,  a  game controller),  this  touch  should  be  performed
either “blindly”, or a virtual representation of the input device
should be displayed in the virtual environment, and this would
usually require displaying a virtual model of the user's hand as
well.  Other  possible  applications  would  use  only  the  user's
hand  as  the “input  device”:  by  controlling the  virtual  hand
with his/her real hand, the user could interact with objects in
the virtual space directly, and hand gestures could be used for
navigation and other actions as well (example: clenching the
hand into  a  fist  could mean that  the user wants  to  quit  the
program). In these applications, it is also advisable to display
the virtual hand, to provide feedback for the user.

Potential  fields  of  application  are  numerous,  e.g.
visualization of virtual spaces like historical monuments [4],
gamelike  applications  used  in  medical  rehabilitation  [5],
instructional  applications  for  teaching  and  providing
practicing opportunities for staff at a facility.  The very first
application will belong to the latter category: the virtual hand
will be used for navigation and interaction in the virtual model
of  a  conventionally  equipped  nuclear  power  plant  control
room [6]. The navigation will be performed by hand gestures.
The visual representation of the user's hand in the virtual space
provides feedback for the user in the navigation, and shows
the  hand's  position  and  orientation,  relative  to  the  physical
devices  in  the  control  room,  for  the  interaction  with  these
devices.  The interaction with  the virtual  models of physical
devices (switches and pushbuttons) of the control room can be
realized by colliding the virtual hand with these devices and
sensing pushing (of buttons) and turning (of switches)  from
the  dynamics  of  the  hand  movement.  As  haptic  (tactile)
feedback devices are still in experimental phase, the feedback
about the collision could be visually provided or indicated by
audio effects. Thus staff could exercise and even experiment
in  the  virtual  control  room,  without  having  to  use  the  real
control room or a physical replica of it.

Acknowledgment
The author expresses her thanks to Dr. Gábor Házi, head

of the Reactor  Monitoring and Simulator Laboratory of  the
Hungarian Academy of Sciences Centre for Energy Research,
and  to  the  leadership  and  the  Scientific  Committee  of  the
Hungarian Academy of Sciences Centre for Energy Research,
for making this work possible.

References
[1] Roland Hess: The Essential Blender: Guide to 3D Creation with the 

Open Source Suite Blender, No Starch Press San Francisco, CA, USA, 
2007

[2] John M. Blain: The Complete Guide to Blender Graphics: Computer 
Modeling and Animation, 4th Edition, A K Peters/CRC Press, 
September 2017

[3] Gennadiy Donchyts, Fedor Baart, Arthur van Dam, Bert Jagers: Benefits
of the use of natural user interfaces in water simulation,  Proceedings of
the  7th  International  Congress  on  Environmental  Modelling  and
Software  (iEMSs),  June  15-19,  San  Diego,  California,  USA,

https://www.researchgate.net/publication/263655945_Benefits_of_the_u
se_of_natural_user_interfaces_in_water_simulations

[4] A. Gilányi, M. Bálint, R, Hajdu, S. Tarsoly, I. Erdős: A Visualization of 
the medieval church of Zelemér, in 6th IEEE International Conference 
on Cognitive Infocommunications,  IEEE, 2015, pp. 449–453

[5] A. Gilányi, E. Hidasi: Virtual Reality Systems in the Rehabilitation of 
Parkinson’s Disease, in 7th IEEE International Conference on Cognitive 
Infocommunications, IEEE, 2016, pp. 301–305

[6] G. Házi, J. Páles: Virtuális vezénylő a paksi teljesléptékű szimulátorhoz 
(Virtual control room for the full-scope simulator of Paks), Nukleon, 
December 2013, in Hungarian, 
http://nuklearis.hu/sites/default/files/nukleon/6_4_146_Hazi.pdf

Appendix: Python code samples
These  code  samples  facilitate  the  creation  of  the rigged

hand  in  the  Blender  editor.  They  should  be  executed  in
Blender's Python console.

Zeroing all bone rolls with script:

Set Edit mode, select all bones of the armature and run the
following script:

for bone in bpy.context.selected_bones:
bone.roll = 0

Aligning a bone's orienta�on to that of another bone:

The following code has been taken from 
blenderartists.org/t/visual-transform-helper-functions-for-2-
5/500965#post1804788:

import bpy
from mathutils import Matrix, Vector
from math import acos

def get_pose_matrix_in_other_space(mat, pose_bone):
     """ Returns the transform matrix relative to pose_bone's current
         transform space.  In other words, presuming that mat is in
          armature space, slapping the returned matrix onto pose_bone
         should give it the armature-space transforms of mat.
         TODO: try to handle cases with axis-scaled parents better.
     """
     rest = pose_bone.bone.matrix_local.copy()
     rest_inv = rest.inverted()
     if pose_bone.parent:
         par_mat = pose_bone.parent.matrix.copy()
         par_inv = par_mat.inverted()
         par_rest = pose_bone.parent.bone.matrix_local.copy()
     else:
         par_mat = Matrix()
         par_inv = Matrix()
         par_rest = Matrix()
     # Get matrix in bone's current transform space
     smat = rest_inv * (par_rest * (par_inv * mat))
     # Compensate for non-local location
     #if not pose_bone.bone.use_local_location:
     #    loc = smat.to_translation() * (par_rest.inverted() * 
rest).to_quaternion()
     #    smat.translation = loc
     return smat

def set_pose_rotation(pose_bone, mat):
        """ Sets the pose bone's rotation to the same rotation as the given matrix.
            Matrix should be given in bone's local space.
        """
        q = mat.to_quaternion()
        if pose_bone.rotation_mode == 'QUATERNION':
            pose_bone.rotation_quaternion = q



        elif pose_bone.rotation_mode == 'AXIS_ANGLE':
            pose_bone.rotation_axis_angle[0] = q.angle
            pose_bone.rotation_axis_angle[1] = q.axis[0]
            pose_bone.rotation_axis_angle[2] = q.axis[1]
            pose_bone.rotation_axis_angle[3] = q.axis[2]
        else:
            pose_bone.rotation_euler = q.to_euler(pose_bone.rotation_mode)

def match_pose_rotation(pose_bone, target_bone):
        """ Matches pose_bone's visual rotation to target_bone's visual rotation.
            This function assumes you are in pose mode on the relevant armature.
        """
        mat = get_pose_matrix_in_other_space(target_bone.matrix, pose_bone)
        set_pose_rotation(pose_bone, mat)
        bpy.ops.object.mode_set(mode='OBJECT')
        bpy.ops.object.mode_set(mode='POSE')

You can  copy  the  above  code  into  the  Python  console.
Then, assuming that you want to align a bone named armbone
in  the  armature  named  Armature.006 to  the  vertical  bone

named  Bone in  Armature.004, execute the following code in
Pose mode:

target_bone = bpy.data.objects['Armature.004'].pose.bones['Bone']
pose_bone = bpy.data.objects['Armature.006'].pose.bones['armbone']
match_pose_rotation(pose_bone, target_bone)

Crea�ng a Copy Rota�on constraint:

Assuming that you want to set a Copy Rotation constraint
for  a  bone  named  armbone in  the  armature  named
Armature.006, and you want to constrain the bone's rotation to
the rotation of a cuboid named armbone_cuboid:

import bpy
obj = bpy.data.objects
objbone = 
bpy.data.objects['Armature.006'].pose.bones['armbone'].constraints
objbone.new('COPY_ROTATION')
objbone['Copy Rotation'].target_space = 'WORLD'
objbone['Copy Rotation'].owner_space = 'LOCAL_WITH_PARENT'
objbone['Copy Rotation'].target = obj['armbone_cuboid'] 


