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Abstract— in this paper, a new-type recursive least squares 

algorithm is proposed for identifying the system model 

parameters and the noise model parameters of Box–Jenkins 

Systems. The basic idea is based on replacing the unmeasurable 

variables in the information vectors with their estimates. The 

proposed algorithm has high computational efficiency because 

the dimensions of the involved covariance matrices in each 

subsystem become small. Validation of the model is evaluated 

using some statistical methods, Which, best-fit criterion and 

Histogram. Simulation results are presented to illustrate the 

effectiveness of the proposed algorithm. 
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I. INTRODUCTION  

Up until the 1950’s most of control design relied on Bode, 
Nyquist and Nichols charts or step response analyses. These 
methods where mostly limited to SISO systems. In the early 
1960,’s Kalman introduced the state-space representation and 
through this established state-space based optimal filtering and 
optimal control theory with Linear Quadratic optimal control as 
a cornerstone for model-based control design (Gevers, 2006). It 
was on the heels of this introduction and rise of model-based 
control that system identification developed [1]. 

System modeling and system identification are the 
prerequisite and foundation of all control issues. System 
identification is about building mathematical models of 
dynamic systems from observed input–output data . It belongs 
to the automatic control field with more than 80 years history 
of theoretical and algorithmic development as well as software 
packages and industrial applications[2].  

System identification contains the structure or order 
determination and parameter estimation. Parameter estimation 
is basic for signal filtering, adaptive control and system 
modelling [3]. System identification has a significant effect on 

the filtering , state estimation , system control and 
optimization. For example, Scarpiniti et al. proposed a 
nonlinear filtering approach based on spline nonlinear 
functions ; Zhuang et al. presented an algorithm to estimate the 
parameters and states for linear systems with canonical state-
space descriptions ; Khan et al. discussed the theoretical 
implementation of robust attitude estimation for a rigid 
spacecraft system under measurement loss.  

As system identification becomes widely available, many 
identification methods have been raised, e.g., the gradient 
identification methods, the hierarchical identification methods , 
the auxiliary model identification methods and the multi-
innovation identification methods[4]. In the field of system 
identification, the autoregressive (AR) model, moving average 
(MA) model and autoregressive moving average (ARMA) 
model are three basic models of the time series.[5]. Multi-stage 
algorithms have been widely used in the field of identification. 
For example, Duan et al. presented a two-stage recursive least 
squares parameter estimation algorithm for output error 
models, the basic idea is to combine the auxiliary model 
identification idea and the decomposition technique [6]. 

The decomposition identification techniques include matrix 
decomposition and model decomposition can enhance 
computational efficiencies [7]. Model validation is usually 
defined to mean “substantiation that a computerized model 
within its domain of applicability possesses a satisfactory range 
of accuracy consistent with the intended application of the 
model”.  A model sometimes becomes accredited through 
model accreditation. Model accreditation determines if a model 
satisfies specified model accreditation criteria according to a 
specified process [8]. 

 During the past few years, Many parameter estimation 
methods using variety of techniques such as the maximum 
likelihood methods [9], [10], the least squares methods [11], 
the gradient methods [12], [13], the subspace identification 
method [14], [15], the intelligent algorithm [16], [17], the data-



driven identification method [18] and the EM method [19] 
have been developed [20].  

Finally, System identification and parameter estimation 
methods have been used widely in process control, signal 
modeling, communication, and electronic technology [21]. 
The rest of the paper is organized as follows. Section 2, 
identification model of the proposed algorithm is derived. 
Section 3, model validation methods is described. In Section 4, 
simulation results is presented. Finally, concluding remarks are 
given in Section 5. 

II. THE IDENTIFICATION MODEL DERIVATION OF THE PROBOSED 

ALGORITHM 

Consider the following two-stage recursive least squares 
algorithm for box–Jenkins systems: 
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are shift operators polynomials is introduced as 

)()( ikykyz i 
, Where )(),(),( knkuky  are the sequences 

of system output, measurable input and stochastic input, or 

noise, respectively, while the constants ia , jb , ic  and id  

represent system parameters. The derivation of model 
identification algorithm represented by eq. (1) is depend on 
decomposition technique that transform the original 
identification problem into two sub problems with smaller 
sizes. First sub problems is system identification model and 
second sub problems is noise identification model. A System 
identification model is  
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This equation can be written as 
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Where 

 Tnbnas bbbaaa ,...,,,,..., 2121 is vector of system 

parameters and the information vector is  
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Also, the noise identification model is 
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Equation (5) can be written as 
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By substituting equations (4) and (6) into equation (2), 
equation (1) can be written as  
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Because the information vector )(kZn  in )(kZT
contains 

unknown variables )( ikv  and unmeasurable noise terms 

).( ikn  the RLS algorithm cannot be used.  

The solution is to replace these unmeasurable variables 

)( ikv  and ( )n k i  in )(kZn ) of )(kZT
with their estimates 

as 
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T ZZZ ˆˆ  .  

Then, )(ˆ kv can be computed after system parameters )(ˆ z  

be estimated by  
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T
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The goal is to and to develop the development of new RLS 
by apply the data filtering technique is required for estimation 

of parameters. The rational fraction 
)(

)(

zD

zC
is used and 

therefore the model equation (1) becomes “an equation error 
model’', and the recursive least squares algorithm can be 
applied.  

The estimation of 
)(ˆ

)(ˆ

zD

zC
is used to filter the input–output 

data because 
)(

)(

zD

zC
is unknown [22]. The identification 

method is called the filtering based recursive least squares 
algorithm (F-RLS) [23]. 
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and the filtered )(kZ f can be defined as 
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Equation (2) can be written as 
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For two identification models equations (14) and equation 
(6), we can obtain the following recursive least squares 

algorithm for computing the estimates ŝ  and n̂  of s  

and n : 
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The polynomials )(zC and )(zD are unknown, 

therefore )(ku f , )(ky f , )(kZ f  and )(kZn  are unknown.  

So, the algorithm in equations (15)–(21) cannot 
implemented [24]. A solution is to replace the unknown 
variables with their estimate to derive the new identification 
algorithms as 

s
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Substituting equation (6) into equation (22), we get 
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s

T
s                                (23) 

Replacing s on the right-hand side of equation (22) with its 

estimate )1(ˆ ks , the estimate )(kv can be computed 

by ˆ( ) ( ) ( ) ( 1)T

s sv k y t Z k k   . 

Let )(ˆ kv be the estimate of )(kv and construct the estimate of 

)(kZn as equation (8). From equation (6), we 

have n
T
n kZkvkn )()()(  .  

Replacing )(kZn and n  with )(ˆ kZn and )1(ˆ kn , the 

estimate )(ˆ kv  can be computed by 
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n  .Using the parameter estimates 

of the noise model 
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 From the previous equations, we can recursively 

compute )(ˆ ku f  and )(ˆ ky f by the following equations 
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Construct the estimate of the )(kZ f  
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Replacing )(kZ f with ˆ ( ),fZ k and )(kZn  with )(ˆ kZn . 

Also, )(ky f  with )(ˆ ky f , and the noise )(kv  with )(ˆ kv , two-

stage recursive least squares algorithm for box–Jenkins 

systems is obtained for estimating the parameter vectors s  

and n for the ARARMA systems: 
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The flowchart of computing the parameter estimates 
ˆ ( )s k and ˆ ( )n k is shown in fig. 1. Data from k=1 to k =N has 

been used. Where N is the last value of the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The flowchart of computing the estimates 

III. MODEL VALIDATION 

Model validation is the final step of the system identification 

process; it involves verifying between the measured data and 

desired data. Based on this work, we will concentrate the 

study on few criterions [23]. 

 Best fit criterion 

The best model structure is the one that minimizes the 
prediction error. Best fit criterion is often used for model 
validation, by considering the highest fit [25]. The ideal 

situation is when the predicted outputs ˆ ( )y k are capable of 

explaining a major part of the actual output. The ratio 
2R  

measures the proportion of the actual variation of ( )y k that is 

explained by the regression. It is known as the multiple 
correlation coefficient and s often expressed in percent [26].  
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Where ε is error between measured and estimated output at 
the sequence k. 

 

 

Start 

Initialize: k=1 

Collect data u(k) and y(k), form 

ˆ ( ),fZ k and )(ˆ kZn  

Update ˆ ( )s k  and ˆ ( )n k  

Compute ( )f k , ( )n k , ( )fP k  and ( )nP k  

Compute ˆ ( )fy k  and ˆ( )v k  

k=k+1 



 Histogram 

Applying statistical pattern recognition techniques often 
requires an estimation of probability density functions of data 
samples. There are many methods that have been used for 
statistical density estimation and one of the common methods 
is the histogram. The histogram method is the method by 
which a probability density is constructed from a set of 
samples, also histogram is easy to create and are 
computationally feasible [27].   

To construct a histogram one needs to select a starting 

point 
0

x and the bin width b  and we define the bins of the 

histogram to be the intervals 

0 0[ ( 1) , ], 1,2,....,x i h x ih i n    .  

The histogram is defined by: 

1 .
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n b
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More generally, one can also use bins of different widths, 
in which case 

1 .
( )Hist

No of observation in the same bin as x
f x

n Width of bin coniaining x
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IV.  SIMULATION RESULTS 

In order to show the performance of the proposed 
algorithm, consider the following example as a second order 
system 

1 1 2( ) 1 0.25 0.92A z z z      

1 1 2( ) 0.9 0.65B z z z      

1 1( ) 1 0.3C z z    

1 1( ) 1 0.45D z z    

 ˆ ( ) 0.25,0.92, 0.9,0.65
T

s k         

 ˆ ( ) 0.3, 0.45
T

n k    

The sequence )(ku  is generated as a white sequence with 

a Gaussian distribution of zero mean and unit variance, while 

the disturbance )(kn  is generated as a white noise sequence 

with zero mean and variance 2 0.4  .  

The performance of the algorithm is examined when a 
fault that appear abruptly in a time instant (Abrupt Faults). 
The parameters of the system will change when the fault 
happen. In this work, data sequences from n =0 to n =2000 has 
been used.  

We assume that the fault happen at n=1000 in window of 
the 125 samples .Then, the system parameters are described by 

 ˆ ( ) 0.45,1.05, 0.5,0.4
T

s k    

 ˆ ( ) 0.1, 0.25
T

n k    

The estimation error is introduced as a measure of the 

algorithm’s effectiveness [2]. 
where 

2 22 2

1 1 2 2 1 1 2 2

2 2 2 2

1 2 1 2

a a a a b b b b

a a b b
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Fig. 2 shows the estimation errors for this algorithm versus 
all sequences (k) [28]. The figure shows that the parameter 
estimation errors for fault free mode and faulty mode.  In fault 
free mode '' red color'', the parameter estimation errors become 
smaller and smaller with the sequences increasing, while in 
faulty mode situation ''Black color'', the parameter estimation 
errors become smaller and smaller with the sequences before 
the occurrence the fault .After the fault occurs, the parameter 
estimation errors will be increasing with the sequences is 
increasing. 
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Fig. 2.  Estimation errors versus sequences for no fault and faulty situation 

The ratio 
2R  is computed and the percentage value of 

best fit for this model equal 92.23%. 

Finally, the residual histogram is shown in fig. 3. 
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Fig. 3.  The residual histogram of the prosed algorithm for validation data 



The figure shows that the data is normally distributed, that 
means, the estimated model describes the observed data well 
[29].  

V. CONCLUSIONS 

A new-type recursive least squares algorithm for Box–
Jenkins Systems has derived in this paper. The aim is to 
decompose the system into two subsystems and then 
interactively to estimate the parameters of each subsystem. 
This algorithm can improve the computational efficiency due 
to the input-output data of the system. The simulation results 
show that the proposed algorithm can generate highly accurate 
parameter estimates and the application of statistical methods 
showed that the validation of the model is good. The proposed 
algorithm can be extended to other linear or nonlinear systems 
with colored noise. 
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